The present invention relates to a bellows assembly and a bellows for vehicles.
Bellows assemblies and bellows are known in a large number of design forms in the prior art. In bellows assemblies, bellows are customarily arranged as a protector around the piston rod of a vibration damper. The helical (compression) spring of a suspension strut is often, apart from its coating, exposed unprotected to environmental influences. Particularly in the case of progressive, i.e. nonlinear, helical (compression) springs in which the progressivity is achieved by placing individual windings on one another, high pressure on the contact surfaces of the helical (compression) springs causes damage to the surfaces which during further use can lead to corrosion and as a result to component failure. A protection against surface damage on pressure contact lateral faces of helical compression springs by means of bellows is not known in the prior art. Moreover, assemblies known in the prior art are generally noise-sensitive since vibrations are generated by the metallic contact of the windings at the contact faces (surfaces), which vibrations may be perceived under some circumstances as acoustically disturbing, in particular in the passenger cell.
A bellows is known from DE102008053617A1.
The object on which the present invention is based is therefore to provide improved bellows assemblies and bellows in which the aforementioned disadvantages are avoided. In particular, an alternative solution to known bellows assemblies is intended to be made available with this improved bellows assembly. In addition, the bellows assembly according to the invention is intended to better protect helical compression springs against corrosion and as far as possible avoid surface damage, in particular on pressure contact lateral faces. Furthermore, noise which is caused in particular by winding contact of helical compression springs is intended to be reduced as far as possible.
This object is achieved by a bellows assembly as claimed in claim 1, a bellows as claimed in claim 11 and a vibration damper having a bellows assembly as claimed in claim 12.
By contrast with conventional bellows assemblies, the bellows assembly according to the invention has the advantage that winding contacts of helical compression springs are avoided as far as possible under pressure loading. It is advantageous that, as a result, surface damage to the helical compression springs, and also resulting disturbing noise which can be perceived in particular in the passenger compartment, are avoided as far as possible, which also makes the helical compression springs less susceptible to corrosion.
By contrast with conventional bellows, the bellows according to the invention has the advantage that, when it is arranged on the helical compression spring, it is positionally stable, i.e. slips in particular only to a minor extent on the helical compression spring.
The subject of the invention is therefore a bellows assembly for a vibration damper, comprising a bellows with a plurality of pockets with pocket walls and a pocket inner profile, a helical compression spring with windings consisting of a wound spring wire and pressure contact lateral faces, wherein the helical compression spring is arranged in the bellows and the plurality of pockets extend coaxially to the longitudinal axis of the helical compression spring and, under pressure loading of the helical compression spring arranged in the bellows, the bellows folds together with the helical compression spring, wherein the wound spring wire is arranged at least in certain portions in the plurality of pockets, wherein the pocket walls of the plurality of pockets in which the wound spring wire is arranged at least in certain portions cover at least the mutually opposite pressure contact lateral faces of adjacent windings of the helical compression spring.
A further subject of the invention is a bellows for arranging on a helical compression spring with windings consisting of a wound spring wire according to a bellows assembly, the bellows comprising a plurality of pockets with pocket walls and a pocket inner profile, wherein the plurality of pockets are formed in such a way that a wound spring wire can be arranged at least in certain portions in the plurality of pockets, wherein the pocket walls of the plurality of pockets are formed in such a way that, with complete or partial folding of the bellows, the adjacent pocket walls at least partially contact one another.
A further subject of the invention is a vibration damper for vehicles having a bellows assembly as claimed in one of claims 1 to 10, comprising a bellows with a plurality of pockets with pocket walls and a pocket inner profile, a helical compression spring with windings consisting of a wound spring wire and pressure contact lateral faces, wherein the helical compression spring is arranged in the bellows and the plurality of pockets extend coaxially to the longitudinal axis of the helical compression spring and, under pressure loading of the helical compression spring arranged in the bellows, the bellows folds together with the helical compression spring, wherein the wound spring wire is arranged at least in certain portions in the plurality of pockets, wherein the pocket walls of the plurality of pockets in which the wound spring wire is arranged at least in certain portions cover at least the mutually opposite pressure contact lateral faces of adjacent windings of the helical compression spring, wherein the pocket walls of the plurality of pockets are arranged in such a way that, under complete or partial pressure loading of the helical compression spring, the mutually opposite pressure contact lateral faces of adjacent windings of the helical compression spring do not contact one another.
The present invention can be realized in a bellows assembly, a bellows and a vibration damper having a bellows assembly.
In the context of the present invention, a pressure contact lateral face is understood to mean the lateral face(s) of a helical compression spring which contact one another under pressure loading. For example, these are mutually opposite lateral faces of adjacent windings of a helical compression spring which contact one another under pressure loading.
According to a further embodiment of the invention, the pocket walls of the plurality of pockets are arranged in such a way that, under complete or partial pressure loading of the helical compression spring, the mutually opposite pressure contact lateral faces of adjacent windings of the helical compression spring do not contact one another.
In a further embodiment of the invention, the pocket walls of adjacent pockets of the plurality of pockets in which the wound spring wire is arranged at least in certain portions space apart at least the wound spring wire in the region of the pressure contact lateral faces of adjacent windings of the helical compression spring.
In the context of the present invention, the term “space apart” is understood to mean that the pressure contact lateral face(s) of adjacent windings of a helical compression spring do not directly contact one another since pocket walls are arranged between the pressure contact lateral face(s).
According to a further embodiment of the invention, the pocket walls of the plurality of pockets in which the wound spring wire is arranged at least in certain portions extend, in the region of the lateral face of the wound spring wire arranged at least in certain portions in the plurality of pockets, at least radially beyond half the cross section of the wound spring wire in the direction of the longitudinal axis of the helical compression spring.
According to a further embodiment of the invention, the adjacent pocket walls of the plurality of pockets in which extend at least radially beyond half the cross section of the wound spring wire in the direction of the longitudinal axis of the helical compression spring form a loop. Examples of a loop, in particular its geometric configuration, can be a round arc loop, an omega loop, a pointed arc loop or a combination thereof. The geometry of the loop, such as the loop size or the loop circumference, for example, can change in particular under pressure loading of the helical compression spring arranged in the bellows assembly.
According to a further embodiment of the invention, the pocket inner profile is a pointed arc profile.
In a further embodiment of the invention, the pocket inner profile is a round arc profile, in particular an elliptical arc, a circular arc or a combination thereof.
According to a further embodiment of the invention, the pocket inner profile is formed in such a way that the pocket walls, with the exception of the loops, lie on the outer radius of the wound spring wire arranged at least in certain portions in the plurality of pockets.
According to a further embodiment of the invention, the plurality of pockets of the bellows are formed as a thread, in particular formed as an internal thread, at least in subregions, wherein the helical compression spring is screwed into the thread.
In a further embodiment of the invention, the thread has the same pitch as the windings of the helical compression spring in the construction position.
Within the context of the present invention, construction position is understood to mean that the helical compression spring is loaded purely statically by the nonmoving (vehicle) weight.
The bellows assembly according to the invention and the bellows according to the invention are explained with reference to the drawings.
Bellows assemblies, bellows and vibration dampers for vehicles having a bellows assembly of the above-described type are used in the production of damping systems, in particular in vibration dampers of motor vehicles.
Number | Date | Country | Kind |
---|---|---|---|
10 2016 212 686.5 | Jul 2016 | DE | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2017/067580 | 7/12/2017 | WO | 00 |