This disclosure relates in general to submersible well pump assemblies and in particular to a below motor pressure equalizer and method of filling the equalizer and motor with lubricant.
Many hydrocarbon wells are produced by electrical submersible well pump assemblies (ESP). A typical ESP includes a centrifugal pump having a large number of stages, each stage having an impeller and a diffuser. An electrical motor couples to the pump for rotating the impellers. A pressure equalizer or seal section connects to the motor to reduce a pressure differential between lubricant in the motor and the hydrostatic pressure of the well fluid. The pressure equalizer has a motor lubricant passage leading from a flexible barrier such as a bag or bellows into the interior of the motor. The motor lubricant passage is always open to communicate well fluid pressure applied in the pressure equalizer to the flexible barrier to the motor lubricant in the motor.
With most prior art ESP's, the pressure equalizer or seal section is located between the motor and the pump. In others, the pressure equalizer is mounted below the motor. During a prior art installation using a below motor pressure equalizer, the pressure equalizer may be initially filled with lubricant and suspended vertically from a rig at the well site. The motor is then lowered onto the equalizer and secured. Then motor lubricant may be pumped in from the lower end of the motor and upward through the motor. Alternately, the motor may be evacuated by a vacuum pump, then filled from the top.
The weight of the motor lubricant filled into the motor while the assembly is suspended above the well would act hydrostatically on the bellows of the pre-filled pressure equalizer, possibly causing the bellows to become fully extended. If fully extended before lowering into the well, and if the motor is completely full of lubricant, the bellows would not be able to further extend due to an increase in temperature, requiring some of the lubricant to be expelled through a check valve. The combined equalizer and motor would thus be over-filled with lubricant before the assembly is lowered into the well. The preferred position of the bellows prior to lowering the assembly into a well provides adequate expansion capacity of the bellows in cases of low pressure and high temperature while also maintaining adequate contraction capacity in cases of high pressure and low temperature.
Also, if multiple motors are in tandem, the assembly can be quite lengthy, more than 100 feet. The total length, including the pressure equalizer, could be greater than the distance from the blocks of the rig to the wellhead. If the lower end of the assembly is lowered into the wellhead in order to accommodate the length of the assembly during motor lubricant filling, the procedure becomes difficult if lubricant is pumped from the lower end, which would require access to the lower end of the assembly.
An electrical submersible pump has a pump and a motor with a rotatable shaft extending along a longitudinal axis and operatively coupled to the pomp for driving the pump. A pressure equalizer is coupled to an end of the motor, the equalizer having a movable element for communicating well fluid pressure exterior of the pressure equalizer to motor lubricant in the motor. An adapter connects the equalizer to the motor, the adapter having a motor lubricant passage through which lubricant in the motor communicates with motor lubricant in the equalizing element. A valve located in the motor lubricant passage selectively opens and closes the motor lubricant passage.
Preferably, the valve is remotely actuable between open and closed positions. In the preferred embodiment, an end portion of the shaft is in engagement with, the valve while the valve is in a closed position. The valve is movable from the closed position to an open position in response to rotation of the shaft. A locking feature retains the valve in the closed position. In the preferred embodiment, a technician engages an upper end of the motor and manually rotates the shaft to release the locking feature.
In the embodiment shown, the valve is axially movable from the closed position to an open position out of engagement with the shaft in response to manual rotation of the shaft. A spring urges the valve toward the open position.
In the preferred embodiment, the locking feature comprises a set of internal threads in the motor lubricant passage that engage a set of external threads on the valve element to retain the valve element is in a closed position. A seal between the exterior of the valve element and the motor lubricant passage adjacent the internal and external threads seals the valve element in the motor lubricant passage while the valve element is in the closed position. A drive member on an end of the valve element engages a drive member on end of the shaft, the drive members having mating torque drive surfaces.
The drive members may comprise a socket on an end of the valve element that receives an end of the motor shaft, the socket and the end of the shaft having mating torque drive surfaces. Rotation of the motor shaft in a selected direction rotates the valve element and releases the locking feature, causing the valve element to move axially from the closed position to the open position and the socket to disengage from the end of the motor shaft.
The lubricant passage may have a bypass area of larger diameter joining a seal area. A spring support may be mounted in the lubricant passage at a point joining the bypass area. The spring support has a central bore and at least one flow-through passage laterally spaced from the central bore. The valve element seals to the seal area while the valve element is in a closed position. The valve element has a cylindrical exterior having a diameter smaller than a diameter of the bypass area, enabling lubricant to flow around the valve element and through the flow-through passage while the valve element is in an open position.
In the embodiment shown, a pin protrudes axially from the valve element through the central bore of the spring support. A spring surrounds the pin and is located within the central bore. The spring urges the valve element axially toward the open position.
So that the manner in which the features, advantages and objects of the disclosure, as well as others which will become apparent, are attained and can be understood in more detail, more particular description of the disclosure briefly summarized above may be had by reference to the embodiment thereof which is illustrated in the appended drawings, which drawings form a part of this specification. It is to be noted, however, that the drawings illustrate only a preferred embodiment of the disclosure and is therefore not to be considered limiting of its scope as the disclosure may admit to other equally effective embodiments.
The methods and systems of the present disclosure will now be described more fully hereinafter with reference to the accompanying drawings in which embodiments are shown. The methods and systems of the present disclosure may be in many different forms and should not be construed as limited to the illustrated embodiments set forth herein; rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey its scope to those skilled in the art. Like numbers refer to like elements throughout.
It is to be further understood that the scope of the present disclosure is not limited to the exact details of construction, operation, exact materials, or embodiments shown and described, as modifications and equivalents will be apparent to one skilled in the art. In the drawings and specification, there have been disclosed illustrative embodiments and, although specific terms are employed, they are used in a generic and descriptive sense only and not for the purpose of limitation.
Referring to
A rotary pomp 21 connects to the upper end of thrust bearing unit 15 in this example. Pump 21 could be a centrifugal pump with a large number of stages, each stage having an impeller and a diffuser. Alternately, pump 21 could be another type, such as a progressing cavity pump. Pump 21 has an intake 23 for admitting well fluid. A string of production tubing 25 secures to the upper end of pump 21 and supports ESP 11 in a well. Production tubing string 25 may be sections of tubing with threaded ends secured together, or it could be continuous coiled tubing. A wellhead assembly 27 at the upper end of the well supports production tubing string 25 and controls the flow of well fluid.
Referring to the schematic representation of
A plug or valve 39 in adapter 31, when closed, seals the motor lubricant 37 within bellows 35 and isolates the motor lubricant 37 within bellows 35 from motor lubricant in motor 13 (
Valve 39 is closed initially to prevent the hydrostatic weight of the lubricant in motor 13 from acting on the motor lubricant 37 in bellows 35 after motor 13 is coupled to the upper end of equalizer 17 while motor 13 is being filled. Pressure equalizer 17 can thus be precisely filled with bellows 35 in a desired position between fully extended and fully contracted. Referring to
Motor 13 has a tabular housing 41 with an upper adapter 43 at the upper end and a lower adapter 45 at the lower end. Upper adapter 31 of pressure equalizer 17 secures to lower adapter 45 of motor 13, such as by bolting. A stator 47 extends most of the length of housing 41. Stator 47 comprises thin metal discs or laminations with windings extending through holes in the laminations. A rotor 49 mounts within central bore of stator 47. Rotor 49 is also made up of laminations and has copper rods extending longitudinally through holes in the laminations. Rotor 49 mounts to a drive shaft 51 and is made up in rotor sections separated by radial bearings 52. Shaft 51 has an upper splined end 53 and a lower splined end 57. Upper splined end 53 is within upper adapter 43 and lower splined end 57 is within lower adapter 45. In this example, lower splined end 57 comprises a drive member that engages a mating drive member of valve 39 once equalizer 17 is connected to motor 13, but lower splined end 57 does not move valve 39 to the open position, yet.
In one method, the operator introduces motor lubricant 37 into motor 13 after motor 13 has been connected to equalizer 17 and valve 39 remains closed. The filling procedure may proceed by pumping motor lubricant 37 into a lower port (not shown) in lower adapter 45. The operator may employ a vacuum pump to evacuate air horn motor 13 prior to pumping lubricant 37. The lubricant 37 flows up the spaces in motor housing 41 between upper and lower adapters 43, 45 and between rotor 49 and stator 47. Motor lubricant 37 in motor 13 is initially not in fluid communication with motor lubricant 37 in bellows 35 because valve 39 is closed. If vertical space for the entire assembly is needed, pressure equalizer 17 could be lowered into wellhead 27 (
Thrust bearing unit 15 has a housing 61 with an upper adapter 63 and a lower adapter 65 for connecting to pump 21 (
Referring to
Valve 39 has a valve element or body 81 located within bore upper portion 79a. Body 81 has an upward-facing splined receptacle or drive member 83 that is engaged by motor shaft lower splined end or drive member 57 (
Valve body 81 has a smaller diameter cylindrical portion or pin 89 extending downward. Pin 89 extends through a central aperture or bore 92 in a spring support 91. Spring support 91 is a cylindrical element secured in bore lower portion 79c, such as by a snap ring 94. A coil spring 93 secured in central aperture 92 has an upper end bearing against a downward facing shoulder and a lower end bearing against a retainer 95. Spring support 91 has flow-through passages 97 extending axially through and spaced around central aperture 92.
Threads 79b on upper adapter 31 and mating threads 85 on valve body 81 retain valve body 81 in an upper closed position, compressing spring 93. Rotating valve body 81 relative to upper adapter 31 releases threads 85 from threads 79b, allowing spring 93 to extend and push valve body 81 downward to the open, position of
In one method of operation, the operator will pre-fill bellows 35 of pressure equalizer 17 with motor lubricant 37, as shown in
In the open lower position, motor lubricant 37 in motor 13 is free to communicate with bellows 35. The hydrostatic weight of the motor lubricant 37 in motor 13 may cause some of the motor lubricant 37 in motor 13 to flow downward into bellows 35 and cause bellows 35 to extend from the initial position. The amount of motor lubricant 37 flowing downward into bellows 35 leaves an equal volume of space at the upper end of thrust chamber 15 that is free of motor lubricant.
The operator then connects pump 21 to thrust bearing unit 15 and lowers ESP 11 into the well. As ESP 11 is lowered into the well, hydrostatic well fluid pressure acts on bellows 35, causing it to contract. When bellows 35 is contracted back into the initial position, the displaced motor lubricant 37 is pushed back into the free space at the upper portion of thrust chamber 15. An increase in well fluid temperature may cause the motor lubricant 37 to expand. If so, the excess volume of the motor lubricant 37 will flow into bellows 35. Check valves, such as used in the prior art to expel lubricant due to lubricant thermal expansion, may not be needed.
While the disclosure has been shown in only one of its forms, it should be apparent to those skilled in the art that various changes may be made.
This application claims priority to provisional application Ser. No. 62/002,259, filed May 23, 2014.
Number | Name | Date | Kind |
---|---|---|---|
2674194 | Arutunoff | Apr 1954 | A |
2739252 | Patterson | Mar 1956 | A |
4313497 | Graham | Feb 1982 | A |
4421166 | Cain | Dec 1983 | A |
4583923 | James | Apr 1986 | A |
6688860 | Du | Feb 2004 | B2 |
7708534 | Parmeter | May 2010 | B2 |
8419390 | Merrill et al. | Apr 2013 | B2 |
8651837 | Tetzlaff | Feb 2014 | B2 |
Number | Date | Country | |
---|---|---|---|
20150337843 A1 | Nov 2015 | US |
Number | Date | Country | |
---|---|---|---|
62002529 | May 2014 | US |