(1) Field of the Invention
This invention relates to a process and apparatus for the continuous belt casting of metal strips and, particularly, to the twin-belt casting of metal strips from a variety of molten metals having different cooling requirements and characteristics.
(2) Description of the Related Art
Twin-belt casting of metal strips typically involves the use of a pair of endless belts, usually made of flexible, resilient steel bands or the like, which are driven over suitable rollers and other path defining means, so that they travel together along opposite sides of an elongated narrow space, typically downward-sloping or horizontal, which forms a casting cavity. Molten metal is introduced between the belts in the vicinity of the upstream entry end of the casting cavity and the metal is discharged as a solidified strip or slab from the downstream exit end of the cavity.
An example of a twin-belt casting system can be found in Rochester et al. U.S. Pat. No. 3,163,896, issued Jan. 5, 1965. That patent describes a casting machine in which each belt is circulated, in turn, around a tension roll, a guide roll, at least a pair of sizing rolls and a power roll. The belts are maintained in position to form a casting cavity by the guide rolls and the sizing rolls, such that the cavity after the last sizing roll diverges before feeding onto the power rolls. The sizing rolls, in combination the guide rolls, press against the opposite sides of the belts throughout the cooling and solidification region, and serve to maintain (adjustably, if desired) the selected, predetermined distance between the belts, depending on the thickness desired in the resulting cast strip.
In Hazelett et al. U.S. Pat. No. 3,167,830, issued Feb. 2, 1965, a twin-belt casting apparatus is described in which the upper and lower belt assemblies can be moved with respect to each other so as to affect the cavity length/position. This is used to permit flexibility in the type of operation, e.g. pool vs. direct nozzle feed, and thickness. The flexibility does not affect the cavity length when measured as the total length in which the belt actually confines the slab.
Wood et al. U.S. Pat. No. 4,367,783, issued Jan. 11, 1983, describes a further twin-belt casting system in which load cells are used to measure the pressure applied to a shrinking metal slab and are the results are then used to apply a corrective taper to the cavity. This adjustment to the taper does not affect the length of the cavity.
A still further design is described in Braun et al. WO 97/18049 published May 22, 1997 . This document describes a block caster which can be adapted to have a belt-type liner, and hence behave as a belt caster backed up by a series of connected blocks. The taper of the cavity can be adjusted to meet various metallurgical needs, but there is no description of a system for varying the contact length with the cast strip.
Different alloys, e.g. foil alloys versus can-end or automotive alloys, have remarkably different heat flux requirements, i.e. they require very different heat extraction rates to ensure that a good quality cast slab is obtained. As a result, a caster designed to cast foil alloys, requiring a relatively low heat extraction, will have a relatively long cavity. If the same caster is used with a high heat flux suitable for can-end or similar alloys, the amount of slab cooling that occurs along the cavity is too high and the exit temperature of the slab is too low for subsequent processing (e.g. rolling). If the overall convergence of the cavity is lessened to compensate, the surface quality of the slab deteriorates. Thus, there remains a need for a twin-belt caster that, for a wide range of aluminum alloys, can operate at essentially constant throughput yet ensure that the cast slab exiting the caster has a temperature lying within a predetermined temperature range suitable for further rolling to produce a desired sheet product.
An exemplary embodiment of the present invention relates to a twin-belt casting system for continuously casting a metal slab in strip form directly from molten metal in which the molten metal is confined and solidified in a parallel, or more usually convergent, casting cavity defined by upper and lower cooled, endless, flexible travelling casting belts supported by respective upper and lower belt supporting mechanisms. In such an embodiment, the portion of the casting belts in direct contact with the cast slab can be mechanically changed within the casting cavity so as to ensure that the slab exit temperature lies within a desired predetermined range, and yet the casting cavity characteristics (e.g. convergence) can be maintained sufficiently high in the upstream end to ensure that good slab quality is achieved for all alloys. This is achieved according to the exemplary embodiment by providing supporting mechanisms for the belts which permit adjustment between one position, in which the cavity is parallel or uniformly convergent and the belts are in contact with the slab substantially along its entire length, and one or more other positions in which the cavity is adapted to switch from parallel or convergent to a different slope, e.g. a less convergent or divergent angle, at a mid-region of the cavity sufficient to break contact between the belts and the cast slab. The sections of different slope may include belts in parallel or divergent paths. With such an arrangement, the first section of the belt remains in contact with the slab over its entire length, whereas the section of different slope (e.g. the less convergent or divergent section) is taken out of contact with the slab and so does not extract heat from the slab.
In one illustrative embodiment, the belt is carried by supporting blocks which are typically cooling blocks. One or more of these supporting blocks are mounted on a tiltable assembly whereby they can be adjusted to a position which forces the section of the belts travelling over the tilted supporting blocks from a parallel or convergent path, in which the belts are in contact with the cast slab, to a path in which contact between the belts and the cast slab is broken.
Embodiments of the invention also apply to twin-belt casters which use a series of supporting rollers for the belts. In a similar manner as described for the supporting blocks, groups of support rollers may be mounted on tiltable assemblies adapted tilt the belts out of contact with the cast slab at a predetermined location within the casting cavity.
Reducing the portion of the cavity in contact with the slab in the above manner significantly reduces the amount of heat being removed from the slab and therefore prevents any over-cooling effect. Where an alloy requiring a lower heat flux for casting is being processed, the tilt mechanism is pivoted so as to bring a greater portion of the casting cavity in contact with the slab, and thus ensure that the slab leaves the casting cavity at substantially the same exit temperature as other metals requiring a higher heat flux. This may require having the entire length of the casting cavity in contact with the slab.
Thus, embodiments of the present invention provide a casting machine that, for a wide range of metal alloys (e.g. aluminum alloys), can operate at essentially constant throughput while ensuring that the cast slab exiting the caster has a temperature lying within a predetermined range suitable for further rolling to produce a sheet product. This means that parameters can be established for different alloys and exit temperature requirement so that, depending on those requirements, the position of the adjustable portion of the casting region can be set prior to a casting run.
The fixed portion of the casting cavity preferably converges, most preferably with a convergence of about 0.015% to 0.025% (corresponding to the linear shrinkage of the solidified slab), while the adjustable portion may be moved between a position having the same convergence as the fixed portion, and another position having a divergence of as much as 1.0% to significantly reduce the rate of heat extraction through the belts once solidification is appreciably complete.
Another exemplary embodiment provides a method of operating a twin-belt caster having rotating belts provided with confronting sections of fixed length to form cast metal strip products from at least two molten metals having different cooling requirements in different casting operations. The method involves establishing for each metal the length and convergence (which may include parallel casting surfaces) of a casting cavity within the caster required to produce a cast product of predetermined characteristics, and, prior to casting each one of the metals, adjusting the paths of at least one of the twin belts in the confronting sections to form an upstream casting cavity having a length and convergence corresponding to those established for the metal to be cast, and a downstream region where the belts loose contact with the metal and cease to exert a significant cooling effect. This makes the casting apparatus more versatile in that many different metals may be cast in a caster having belts provided with confronting sections of fixed length without compromising the desired characteristics, as well as the desired exit temperatures, of the cast products.
Referring to the drawings, an example of a basic belt casting machine to which the present invention may be applied is shown in
The molten metal is fed to the casting cavity 12 by any suitable means, e.g. from a continuously supplied trough or launder 21. As the liquid metal in the cavity 12 moves along with the belts, it is continuously cooled and solidified, from the outside to the inside, from its contact with the belts, so that a solid, cast strip (not shown) is continuously discharged from exit end 14. Convenient means for cooling the belts may typically be in the form of a series of cooling “pads” which contain chambers for coolant, e.g. water, and a multiplicity of outlet nozzles arranged so as to cover the area facing the reverse surface of each belt, with a slight spacing from the belt so that jet streams of liquid coolant projected perpendicular against the belt through the nozzle faces flow outwardly over the face, returning to the appropriate discharge means. The preferred nozzles for this purpose are those having a flat guiding face of hexagonal contour as described in Thorburn et al. U.S. Pat. No. 4,193,440, issued Mar. 18, 1980, and incorporated herein by reference.
As can be seen in
In this particular embodiment, three support bulkheads 26a, 26b and 26c are all rigidly fixed between support carriage 20 and cooling pads 25a and 25b. However, bulkheads 26d and 26e are connected at their bottom ends to a pivotable subframe 28 supported by a bracket 29 and a pivot 30. An additional bulkhead 31 is also connected to subframe 28 and bracket 29 and this serves to support one end of cooling pad 25c. A small gap 32 is provided between bulkheads 26c and 31 to permit mechanical assembly. Thus, it will be seen from
Further details of the tilting support portion are shown in
The attachment of the cooling pads to bulkhead 31 and bulkhead 26c requires some special consideration. The cooling pad 25b (
During the rotation of subframe 28, the roller 16 remains in place with respect to the remainder of the carriage. The rotation of the subframe causes a slight decrease in the total length of the path followed by the belt, but the decrease is less than 1 mm compared to a typical total belt length of 5 m or more. Such a change is easily accommodated by the kind of belt tensioners (not shown) provided in this kind of casting apparatus. For example, the roller 16 may be mounted on horizontally slidable bearings and urged by spring means or the like to the right as seen in
The apparatus configured in this way may be used for casting a variety of different metals having different heat flux requirements by varying the rotation of the subframe 28 prior to casting in order to suit the cooling and heat flux characteristics of the metal to be cast. Whether or not tilting is required, and the degree of such tilting, for any particular metal may be determined empirically or by calculation from known metal cooling properties and casting conditions.
It will be appreciated that, while
This application claims the priority right of our prior U.S. provisional patent application Ser. No. 60/783,767 filed Mar. 16, 2006.
Number | Name | Date | Kind |
---|---|---|---|
3163896 | Rochester et al. | Jan 1965 | A |
3167830 | Hazelett et al. | Feb 1965 | A |
3700027 | Petersen | Oct 1972 | A |
3828841 | Hazelett et al. | Aug 1974 | A |
3848658 | Hazelett et al. | Nov 1974 | A |
4061178 | Sivilotti et al. | Dec 1977 | A |
4193440 | Thorburn et al. | Mar 1980 | A |
4367783 | Wood et al. | Jan 1983 | A |
6026887 | Dykes et al. | Feb 2000 | A |
6755236 | Sivilotti et al. | Jun 2004 | B1 |
20040168789 | Wyatt-Mair et al. | Sep 2004 | A1 |
Number | Date | Country |
---|---|---|
0 008 901 | Aug 1983 | EP |
58148056 | Sep 1983 | JP |
62 024845 | Feb 1987 | JP |
62077159 | Apr 1987 | JP |
WO 9718049 | May 1997 | WO |
Number | Date | Country | |
---|---|---|---|
20070215314 A1 | Sep 2007 | US |
Number | Date | Country | |
---|---|---|---|
60783767 | Mar 2006 | US |