This patent application is based on and claims priority pursuant to 35 U.S.C. §119(a) to Japanese Patent Application Nos. 2016-158964 filed on Aug. 12, 2016, 2016-239750 filed on Dec. 9, 2016, and 2017-114581 filed on Jun. 9, 2017, in the Japan Patent Office, the entire disclosure of each of which is hereby incorporated by reference herein.
This disclosure generally relates to a belt device and an image forming apparatus incorporating the belt device.
There are belt devices including a plurality of rotators, an endless belt rotatably looped around the plurality of rotators, and a pressing device to press the belt against a pressed target.
According to an embodiment of this disclosure, a belt device includes a belt unit including a plurality of rotators and a belt looped around the plurality of rotators. The belt device further includes a frame including a plurality of support portions to support the belt unit, a biasing member to bias the belt unit supported by the frame in a predetermined direction, and an adjuster to adjust a position of at least one of the plurality of support portions.
In another embodiment, an image forming apparatus includes an image bearer to bear a toner image and the belt device described above. The belt is a transfer belt pressed against the image bearer, and the toner image is transferred from the image bearer onto the belt in a transfer nip between the image bearer and the belt.
In yet another embodiment, a belt device includes a belt unit including a plurality of rotators and a belt looped around the plurality of rotators. The belt device further includes a frame including a plurality of support portions to support the belt unit, a biasing member to bias the belt unit supported by the frame in a predetermined direction, and an adjuster to adjust a twist of the belt unit relative to the frame.
In yet another embodiment, an image forming apparatus includes an image bearer to bear a toner image and the belt device described above. The belt is a transfer belt pressed against the image bear, and the toner image is transferred from the image bearer onto the belt in a transfer nip between the image bearer and the belt.
A more complete appreciation of the disclosure and many of the attendant advantages thereof will be readily obtained as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings, wherein:
The accompanying drawings are intended to depict embodiments of the present invention and should not be interpreted to limit the scope thereof. The accompanying drawings are not to be considered as drawn to scale unless explicitly noted.
In describing embodiments illustrated in the drawings, specific terminology is employed for the sake of clarity. However, the disclosure of this patent specification is not intended to be limited to the specific terminology so selected, and it is to be understood that each specific element includes all technical equivalents that operate in a similar manner and achieve a similar result.
Referring now to the drawings, wherein like reference numerals designate identical or corresponding parts throughout the several views thereof, and particularly to
The suffixes Y, M, C, and K attached to each reference numeral indicate only that components indicated thereby are used for forming yellow, magenta, cyan, and black images, respectively, and hereinafter may be omitted when color discrimination is not necessary.
The four image forming units 1Y, 1M, 1C, and 1K are similar in configuration except the color of toner (powdered developer) employed. The image forming units 1Y, 1M, 1C, and 1K are replaced when the respective product live expire. The four image forming units 1Y, 1M, 1C, and 1K are removably mounted in a body of the image forming apparatus (an apparatus body 100A) and replaceable.
The image forming unit 1 includes, a drum-shaped photoconductor 2 (2Y, 2M, 2C, or 2K) as an image bearer, a photoconductor cleaner 3 (3Y, 3M, 3C, or 3K, a discharger, a charging device 6 (6Y, 6M, 6C, or 6K), and a developing device 8 (8Y, 8M, 8C, or 8K). The components of the image forming unit 1 are held in a common casing and construct a process cartridge mountable and removable in and from the apparatus body 100A. That is, the components of the image forming unit 1 are replaceable at a time.
Driven by a driver such as a motor, the photoconductor 2 rotates counterclockwise in
The surface of the photoconductor 2, uniformly charged by the charging device 6, is scanned by exposure light such as a laser beam from an optical writing unit 101 disposed above the image forming units 1. Thus, an electrostatic latent image of yellow, magenta, cyan, or black is formed on the surface of the photoconductor 2. The developing device 8 develops the electrostatic latent image on the photoconductor 2 with yellow, magenta, cyan, or black toner, into a visible toner image T. The toner image T is primarily transferred from the photoconductor 2 onto a front face 31a of an intermediate transfer belt 31, which is an endless belt.
The photoconductor cleaner 3 removes residual toner (untransferred toner) remaining on the surface of the photoconductor 2 after a primary transfer process, that is the surface downstream from a primary transfer nip (between the intermediate transfer belt 31 and the photoconductor 2) in the direction of rotation of the photoconductor 2. The discharger removes residual charge remaining on the photoconductor 2 after the surface thereof is cleaned by the photoconductor cleaner 3. Thus, the surface of the photoconductor 2 is initialized in preparation for subsequent image formation.
Below the image forming units 1Y, 1M, 1C, and 1K, the intermediate transfer unit 30, serving as a belt unit and a primary transfer device, is disposed. The intermediate transfer unit 30 rotates the intermediate transfer belt 31 clockwise in
The intermediate transfer unit 30 is removably mountable (replaceable) in the apparatus body 100A. In addition to the intermediate transfer belt 31 (an image bearer or intermediate transferor), the intermediate transfer unit 30 includes a drive roller 32, a secondary-transfer backup roller 33, a cleaning backup roller 34, four primary transfer rollers 35Y, 35M, 35C, and 35K (which may be referred to collectively as primary transfer rollers 35), and a pre-transfer roller 37.
The intermediate transfer belt 31 is looped and stretched taut around a plurality of rollers disposed inside the loop, namely, the drive roller 32, the secondary-transfer backup roller 33, the cleaning backup roller 34, the four primary transfer rollers 35Y, 35M, 35C, and 35K, and the pre-transfer roller 37. As the drive roller 32 rotates clockwise in
The intermediate transfer belt 31 is nipped between the primary transfer rollers 35Y, 35M, 35C, and 35K, and photoconductors 2Y, 2M, 2C, and 2K. The portions where the front face 31a (on which toner images are borne) of the intermediate transfer belt 31 contacts the surfaces of the photoconductors 2Y, 2M, 2C, and 2K are referred to as “primary transfer nips N1” (transfer positions). A primary transfer bias is applied to the primary transfer rollers 35Y, 35M, 35C, and 35K by a transfer bias power source. Accordingly, transfer electric fields are generated between the primary transfer rollers 35Y, 35M, 35C, and 35K, and the toner images on the photoconductors 2Y, 2M, 2C, and 2K, respectively.
For example, the yellow toner image on the surface of the photoconductor 2Y enters the primary transfer nip for yellow as the photoconductor 2Y rotates. Subsequently, the yellow toner image is primarily transferred from the photoconductor 2Y onto the intermediate transfer belt 31 with effects of the transfer electric field and nip pressure. While the intermediate transfer belt 31 carrying the yellow toner image passes through the primary transfer nips of magenta, cyan, and black sequentially, magenta, cyan, and black toner images are transferred from the photoconductors 2M, 2C, and 2K and superimposed, one atop the other, on the yellow toner image on the intermediate transfer belt 31. Thus, a four-color superimposed toner image is formed on the surface of the intermediate transfer belt 31.
Although the description above concerns full-color image formation, alternatively, the image forming apparatus 100 can form a single-color toner image using one of yellow, magenta, cyan, and black toners, and a superimposed toner image using at least two of these toners and transfer such an image onto the intermediate transfer belt 31.
Outside and below the loop of the intermediate transfer belt 31, the transfer device 40 including a secondary transfer unit 41 is disposed. The secondary transfer unit 41 includes a secondary transfer belt 406 as a transfer rotator. The secondary transfer belt 406 is harder than the intermediate transfer belt 31 and is made of, for example, polyimide (PI) resin. The secondary transfer unit 41 is attached to a pressing frame 49 to press the secondary transfer unit 41. The pressing frame 49 is swingably attached to a base of the apparatus body 100A with a support shaft 48 attached to a lower end of the pressing frame 49. To an end (on the right in
The secondary transfer unit 41 nips the intermediate transfer belt 31 between the secondary-transfer backup roller 33 disposed inside the loop of the intermediate transfer belt 31 and the secondary transfer belt 406. The contact portion between the front face 31a of the intermediate transfer belt 31 and the secondary transfer belt 406 is referred to as a secondary transfer nip N2. In the present embodiment, a power source 39 as a transfer bias power source applies a secondary transfer bias to the secondary-transfer backup roller 33. Accordingly, a secondary transfer electrical field is generated between the secondary-transfer backup roller 33 and the secondary transfer belt 406. The secondary transfer electric field electrostatically moves the toner, which has a negative polarity, from the secondary-transfer backup roller 33 toward the secondary transfer belt 406.
In the present embodiment, the toner image is transferred secondarily from the intermediate transfer belt 31 onto the recording sheet P in the secondary transfer nip N2. The intermediate transfer belt 31 is an image bearer that forms the secondary transfer nip N2 together with the secondary transfer belt 406 that is a conveyor belt. The intermediate transfer belt 31 also serves as an intermediate transferor onto which the toner images are transferred primarily from the photoconductors 2Y, 2M, 2C, and 2K. Onto the secondary transfer belt 406, a test toner image used for image density detection is transferred.
Although, in the description above, the power source 39 applies the secondary transfer bias to the secondary-transfer backup roller 33, alternatively, the power source 39 may apply the secondary transfer bias to a secondary transfer roller 405 disposed opposite the secondary-transfer backup roller 33. When the secondary transfer bias is applied to the secondary transfer roller 405, the secondary transfer bias applied is opposite in polarity to the toner. When the secondary transfer bias is applied to the secondary-transfer backup roller 33, the secondary transfer bias applied is identical in polarity to the toner. The secondary transfer roller 405 is also be referred to as a nip forming roller.
Below the transfer device 40 in
In the secondary transfer nip N2, the superimposed toner image on the front face 31a of the intermediate transfer belt 31 secondarily is transferred onto the recording sheet P with effects of the secondary transfer electric field and the nip pressure, and the toner image becomes a full-color toner image on the white recording sheet P. After the intermediate transfer belt 31 passes through the secondary transfer nip N2, residual toner not transferred onto the recording sheet P remains on the intermediate transfer belt 31. The residual toner is removed from the intermediate transfer belt 31 by a belt cleaner 38 disposed in contact with the front face 31a of the intermediate transfer belt 31.
The fixing device 90 is disposed downstream from the secondary transfer nip N2 in the direction indicated by arrow b, which is hereinafter referred to as sheet conveyance direction b. After the secondary transfer, the recording sheet P, onto which the toner image is transferred, is transported to the fixing device 90. The fixing device 90 includes a fixing roller 91 including a heat source inside thereof and a pressure roller 92. The fixing roller 91 and the pressure roller 92 contact to form the fixing nip where heat and pressure are applied. The full-color toner image is softened and fixed on the recording sheet P as the recording sheet P passes through the fixing nip. Then, the recording sheet P is output from the fixing device 90, outside the image forming apparatus 100.
Descriptions are given below of the transfer device 40 in further detail.
The first cleaning unit 410 is disposed upstream from the second cleaning unit 420 in the direction of rotation of the secondary transfer belt 406. An upstream conveyance guide 46 is disposed on un upper side of the second cleaning unit 420 and upstream from the secondary transfer belt 406 (the secondary transfer nip N2) in the sheet conveyance direction. The transfer device 40 further includes a downstream conveyance guide 47 disposed downstream from the secondary transfer belt 406 (the secondary transfer nip N2) in the sheet conveyance direction.
The secondary transfer unit 41 includes the secondary transfer belt 406 looped around a plurality of rotators as illustrated in
As illustrated in
The secondary transfer unit 41 is movably supported by a unit frame 422 extending in the axial direction and serves as a case of the cleaning device 42. Specifically, the secondary transfer unit 41 is movable in the direction toward the secondary-transfer backup roller 33 and the opposite direction, to change the width or pressure of the secondary transfer nip N2. Further, the secondary transfer unit 41 is movable in such directions to press and disengage the secondary transfer belt 406 to and from the intermediate transfer belt 31.
The first cleaning unit 410 includes a first cleaning blade 411 (i.e., a cleaner). An end 411a of the first cleaning blade 411 is disposed opposite the tension roller 403 via the secondary transfer belt 406 and biting into a front face 406b of the secondary transfer belt 406. The second cleaning unit 420 includes a second cleaning blade 421 (i.e., a cleaner). An end 421a of the second cleaning blade 421 is disposed opposite the second blade-opposing roller 404 via the secondary transfer belt 406 and biting into the front face 406b of the secondary transfer belt 406.
The cleaning device 42 includes a dust removal brush 43 to remove dust such as paper dust, a lubricant applicator 44, and a collection section 45. The dust removal brush 43 includes a brush portion overlying a tubular body. The dust removal brush 43 is disposed in contact with the front face 406b of the secondary transfer belt 406. In the direction of rotation of the secondary transfer belt 406, the dust removal brush 43 is disposed upstream from the first cleaning unit 410, to remove substances (mainly paper dust) from the front face 406b of the secondary transfer belt 406. In one embodiment, the dust removal brush 43 rotates to follow the rotation of the secondary transfer belt 406. Alternatively, the dust removal brush 43 can be disposed to rotate in the direction counter to the rotation of the secondary transfer belt 406.
The lubricant applicator 44 is disposed between the first cleaning unit 410 and the second cleaning unit 420 and includes a lubricating brush 441 to apply lubricant 442 to the front face 406b of the secondary transfer belt 406.
The collection section 45 is located below a contact portion where the first cleaning blade 411 contacts the secondary transfer belt 406. The collection section 45 includes a compartment 451 to store the paper dust removed by the dust removal brush 43 and the toner removed by the first cleaning blade 411. Inside the compartment 451, a conveying screw 452 is disposed to convey the substances accumulating in the compartment 451 toward a waste toner tank in the apparatus body 100A.
Thus, the transfer device 40 cleans, with a plurality of cleaners (the first and second cleaning blades 411 and 421), the secondary transfer belt 406 kept taut by the tension roller 403. In such a configuration, the second cleaning blade 421 (i.e., a downstream blade) removes toner that has escaped the first cleaning blade 411 (i.e., an upstream blade), thus improving the performance of cleaning.
Referring to
The support shaft 48 extending in the axial direction W penetrates first ends 491a and 492a (on the left in
The components to determine the positions of the ends 48a and 48b of the support shaft 48 are not limited to the bases 101A and 101B (side plates of the retractable unit). For example, a plate serving as a base of the intermediate transfer unit 30 can be used instead.
The first ends of the coil springs 51A and 51B are attached to second ends 491b and 492b (on the right in
An upper face 491c of the front plate 491 is provided with a plurality of support portions, namely, positioning portions 495A and 496A. An upper face 492c of the rear plate 492 is provided with a plurality of support portions, namely, positioning portions 495B and 496B. The positioning portions 495A and 495B are axisymmetric and disposed opposite from each other. The positioning portions 496A and 496B are axisymmetric and disposed opposite from each other.
As illustrated in
Referring to
The positioning portion 496A is recessed downward from the upper face 491c. A ball bearing 498A is attached to a first end 401Aa of the shaft 401A of the separation roller 401, and the ball bearing 498A is put in the positioning portion 496A from above. The positioning portion 496A has a width greater than the diameter of the ball bearing 498A. Thus, when the ball bearing 498A is put in the positioning portion 496A, the ball bearing 498A is mounted on a bottom 496Aa of the positioning portion 496A and supported movably in the axial direction W, the sheet conveyance direction b, and a vertical direction Z.
Referring to
The positioning portion 496B is recessed downward from the upper face 491c and serves as a recess into which a ball bearing 498B attached to a second end 401Ab of the shaft 401A of the separation roller 401 is put, from above. The positioning portion 496B has a width greater than the diameter of the ball bearing 498B. Thus, as the ball bearing 498B is held in the positioning portion 496B, the ball bearing 498B is mounted on a bottom 496Ba of the positioning portion 496B and supported movably in the axial direction W, the sheet conveyance direction b, and the vertical direction Z.
That is, in the present embodiment, in mounting the secondary transfer unit 41 in the pressing frame 49, the shaft 405A is used as a main reference for positioning without a play, and the shaft 401A is used as a sub-reference for positioning with a play. If there are various components up to the main reference, distortion is accumulated, increasing the possibility of variations in spring pressure. Since the number of components up to the shaft 405A is smaller, the shaft 405A is used as the main reference.
As described above, in the present embodiment, the intermediate transfer belt 31 and the secondary transfer belt 406 are elastic. Accordingly, compared with a configuration employing a belt that is not elastic, the pressing force applied to the pressing frame 49 is increased. Thus, the nip pressure in the secondary transfer nip N2 is raised, to attain preferable transfer of an image onto a sheet having a coarse surface.
Accordingly, when the secondary transfer unit 41 is attached to the pressing frame 49, differences in absolute value in the nip pressure is larger, even when the rate of deviation in the nip pressure is equivalent to that in a configuration in which the pressing force applied to the pressing frame 49 is not increased. Thus, the speed of belt deviation tends to be high. The term “belt deviation” means that the belt is drawn to one side in the width direction of the belt. Note that even in a case where an elastic belt is not used and the pressing force is not increased, the speed of belt deviation may fluctuate depending on assembling error when the secondary transfer unit 41 is attached to the pressing frame 49.
Referring to
According to
When the sub-reference position was shifted by 0.4 mm upward or downward, the speed of deviation exceeded 0.4 μm/mm, and the ride of deviation restraint occurred. The plus side and the minus side of the speed of deviation correspond to the deviation of the belt to the rear side and that to the front side, respectively.
When the deviation rate of the pressure of the secondary transfer nip N2 is thus limited, the deviation restraint is inhibited from riding on the collar 505 by the adjustment of the sub-reference position. Specifically, the ride of deviation restraint is inhibited when the first end 401Aa of the shaft 401A (the sub-reference) is adjusted to restrict the speed of belt deviation due to the change of the sub-reference position equal to or lower than 0.2 μm/mm. That is, the sub-reference position is adjusted to reduce the speed of deviation.
The adjuster plate 602 includes a step 605S on a side of a first end 602a. When the adjuster plate 602 is in a horizontal position and secured by the screws 603 and 604, a bottom 605a of the step 605S is in parallel to the horizontal bottom 496Aa (see
On a side of a second end 602b of the adjuster plate 602 opposite the step 605S across the shaft 601, as illustrated in
To adjust the speed of belt deviation with the adjuster 600, initially, the adjuster plate 602 is placed in the horizontal position (the home position) and attached to the front plate 491. In this state, when the speed of belt deviation is within a predetermined range (e.g., equal to or smaller than 0.2 μm/mm as described with reference to
If the speed of belt deviation exceeds the predetermined range (e.g., 0.2 μm/mm) with the adjuster plate 602 disposed horizontally, an operator performs the adjustment. Specifically, the operator loosens the screws 603 and 604, moves the adjuster plate 602, for example, by 0.1 mm in the direction D1, and tightens the screws 603 and 604 to secure the adjuster plate 602. Then, the operator measures the speed of belt deviation. If the speed of belt deviation is equal to or lower than 0.2 μm/mm, the adjustment is completed. After the adjuster plate 602 is moved by 0.1 mm, if the speed of belt deviation is not suppressed, the operator moves the adjuster plate 602 further by 0.1 mm in the direction D1. Then, the operator measures the speed of belt deviation. Here, in a case where the speed of belt deviation increases in the plus direction, the adjuster plate 602 is moved by 0.1 mm in the direction D2 relative to the horizontal position (home position) and secured by the screws 603 and 604. Then, the operator measures the speed of belt deviation. If the speed of belt deviation is equal to or lower than 0.2 μm/mm, the adjustment is completed.
Since the transfer device 40 includes the adjuster 600 to adjust the twist of the secondary transfer belt 406 relative to the pressing frame 49, the speed of belt deviation can be adjusted. Accordingly, the belt guide 502 of the secondary transfer belt 406 is inhibited from riding on the collar 505 (deviation restraint), and the secondary transfer belt 406 can run reliably. Specifically, the adjuster 600 adjusts the position of the ball bearing 498A attached to the first end 401Aa of the shaft 401A and held by the positioning portion 496A, and the shaft 401A serves as at least one of a plurality of supports. Accordingly, the transfer device 40 and the image forming apparatus 100 according to the present embodiment can stabilize the running of the belt in a simple manner.
In the transfer device 40 (i.e., the belt device) including the secondary transfer belt 406, as the running of the secondary transfer belt 406 is stabilized, conveyance of the recording sheet P that passes through the secondary transfer nip N2 is stabilized. Further, the toner image can be reliably transferred from the intermediate transfer belt 31 and reliably conveyed. Thus, good transfer performance is attained. Disposing the adjuster 600 on the front side of the apparatus body 100A makes it easier to adjust the position while checking the speed of belt deviation, in a state in which the unit is mounted in the apparatus body 100A. Thus, workability is improved, leading to improvement in positioning accuracy. To stabilize the running of the belt, a conceivable approach is to provide a plurality of ball bearings 498A different in size, and, from the plurality of ball bearings 498A, to select one ball bearing that stabilizes the running of the belt most. This approach, however, involves attaching and removing the plurality of ball bearings to and from the shaft 401A one by one, and the adjustment work is burdensome. Another conceivable approach is to shave the positioning portion 496A with a cutting tool little by little until the running of the belt is stabilized most. This approach is burdensome similarly. According to the present embodiment, with the adjuster 600 to adjust the position of the ball bearing 498A, the burdensomeness described above is eliminated.
In the present embodiment, in attaching the secondary transfer unit 41 (i.e., the belt device) to the pressing frame 49, the secondary transfer unit 41 is supported by the four supports, namely, both ends of the shaft 405A and both ends of the shaft 401A. At least one of the four supports is provided with the adjuster 600 to make the position of the positioning portion of the plurality of supports adjustable relative to other positioning portions.
In the present embodiment, of the plurality of rotators around which the secondary transfer belt 406 is looped, the shaft 405A (both end thereof in particular) of the secondary transfer roller 405 is used as the main reference and the shaft 401A (both end thereof in particular) of the separation roller 401 is used as the sub-reference in adjusting the positions of the secondary transfer unit 41 and the pressing frame 49. The shaft 405A is used as the main reference to stabilize the positions of the secondary transfer roller 405 and the secondary-transfer backup roller 33, thereby stabilizing the secondary transfer nip N2. By contrast, the shaft 401A is made the sub-reference from the following reason. The secondary transfer belt 406 is looped around the secondary transfer roller 405 and the separation roller 401 having the shaft 401A, and the separation roller 401 and the secondary transfer belt 406 together form a face to convey the recording sheet P downstream from the secondary transfer nip N2 in the sheet conveyance direction. Further, the shaft 401A is disposed close to a conveyor to convey the recording sheet P toward the fixing device 90 and forwards the recording sheet P that has passed through the secondary transfer nip N2 to the conveyor. That is, the shaft 401A is made the sub-reference to stabilize the conveyance of the recording sheet P that has passed through the secondary transfer nip N2.
Onto the secondary transfer belt 406, a toner image for image density adjustment (adjustment toner pattern) is transferred. Accordingly, as illustrated in
When the first end 401Aa of the shaft 401A of the separation roller 401, which is the sub-reference for the positioning of the adjuster plate 602 of the adjuster 600, is moved, accuracy may be degraded in alignment of a component of another unit or a frame relative to the secondary transfer unit 41. In the present embodiment, the alignment of the density sensors 701 relative to the secondary transfer belt 406 may be degraded.
Accordingly, in the present embodiment, the positioning is made not to degrade the accuracy in positioning of the density sensors 701. As illustrated in
As illustrated in
Thus, the sensor bracket 702 supporting the density sensors 701 is disposed in contact with the shaft 402A of the driven roller 402 to determine the position thereof. Accordingly, even when the position of the first end 401Aa of the shaft 401A is adjusted by the adjuster 600, the accuracy in relative positions of the density sensors 701 and the driven roller 402 can be maintained. This structure is effective in stabilizing the detection accuracy. Since the sensor bracket 702 that pivots on the support shaft 48 is biased by the torsion coil spring 703 toward the shaft 402A, it is not necessary to lift the sensor bracket 702 each time the density sensors 701 are mounted thereon, thus improving the workability.
Note that the density sensors 701 can be disposed facing a portion of the secondary transfer belt 406 that is not supported by the driven roller 402. In this case, similarly, as the sensor bracket 702 supporting the density sensors 701 is aligned with the secondary transfer unit 41, the accuracy in relative positions of the density sensors 701 and the driven roller 402 can be maintained.
Note that in addition to or instead of the density sensors 701, the image forming apparatus 100 can include an image position sensor to detect positions of toner images (toner patterns) for adjustment of displacement of images or misalignment in superimposition of colors. The controller 200 (illustrated in
Note that the image position sensor can be disposed facing a portion of the secondary transfer belt 406 that is not supported by the driven roller 402. In this case, similarly, when the image position sensor is mounted on the sensor bracket 702 and the sensor bracket 702 is aligned with the secondary transfer unit 41, the accuracy in relative positions of the sensor and the driven roller 402 can be maintained.
As a comparative example, if the coil springs 51A and 51B are disposed inside the secondary transfer unit 41, the following inconvenience may occur in adjustment by the adjuster 600. As the spring lengths of the coil springs 51A and 51B change, the deviation in nip pressure tends to be large, and transferability of the toner image tends to vary in the front-back direction of the apparatus. By contrast, in the present embodiment, the coil springs 51A and 51B bias the pressing frame 49 in the upward direction (i.e., predetermined direction) indicated by arrow c to generate the nip pressure in the secondary transfer nip N2. In other words, the coil springs 51A and 51B are disposed outside the secondary transfer unit 41. Accordingly, the adjustment by the adjuster 600 does not move the pressing frame 49, and the spring lengths of the coil springs 51A and 51B (biasing the pressing frame 49) do not change. Therefore, deviations in the nip pressure are small before and after the adjustment of twist of the belt. In the present embodiment, the pressing structure to press the secondary transfer unit 41 is provided separately from the secondary transfer unit 41, and the pressing structure presses the entire secondary transfer unit 41. Accordingly, twist adjustment performed inside the secondary transfer unit 41 does not affect the pressed state of the secondary transfer belt 406 and can suppress the twist of the secondary transfer belt 406 due to a twist of the roller. Then, variations in the speed of belt deviation are suppressed, and deviation (or skew) of the secondary transfer belt 406 is inhibited.
Another embodiment is described below with reference to
In the above-described embodiment, the support shaft 48 supports the sensor bracket 702, and the pressing frame 49 and the sensor bracket 702 are coaxial with each other and pivotable on the support shaft 48. By contrast, in the embodiment illustrated in
The secondary transfer unit 41 and the pressing frame 49 of the present embodiment are similar to those of the above-described embodiment, but configurations of the sensor bracket 802 and an adjuster 600A are different from the corresponding parts of the above-described embodiment. The features of the present embodiment are described focusing on such differences.
In the present embodiment, as illustrated in
In the present embodiment, the sensor bracket 802 is provided with a support stand 805. The secondary transfer unit 41 further includes a fan cleaner 803 disposed on the support stand 805. The fan cleaner 803 blows air to clean the density sensors 701. The fan cleaner 803 includes a fan 806 and a duct 807 to guide the airflow generated by the fan 806 in the axial direction W. The density sensors 701, the sensor bracket 802, and the fan cleaner 803 together construct a sensor unit 800.
Next, descriptions are given below of the adjuster 600A according to the present embodiment. As illustrated in
An upper side 602Ab of the adjuster plate 602A includes a recess 605A. A bottom 605Aa of the recess 605A is horizontal when the adjuster plate 602A is secured in a horizontal position illustrated in
A first end 480a of the sensor support shaft 480 penetrates the front plate 491 and is supported by the adjuster plate 602A. A second end 480b (illustrated in
A second end 602Ac of the adjuster plate 602A includes a movement amount indicator 620 to indicate the amount by which the adjuster plate 602A has moved. The movement amount indicator 620 includes a scale 620A disposed on the front plate 491 and an arrow-shaped indicator 620B disposed at the second end 602Ac of the adjuster plate 602A.
The scale 620A includes measurement marks arranged in the vertical direction at regular intervals. With the movement amount indicator 620, the operator can check the amount of movement of the adjuster plate 602A with eyes.
As describe above, the sensor support shaft 480 serves as the fulcrum of pivoting of the sensor unit 800 (the density sensors 701) and is supported by the adjuster plate 602A that adjusts the sub-reference position of the pressing frame 49 (the secondary transfer unit 41). Accordingly, even in the configuration in which the sensor support shaft 480 is different from the support shaft 48 of the pressing frame 49, when the pressing frame 49 (the secondary transfer unit 41) rotates around the support shaft 48 and the ball bearing 498A to support the shaft 401A of the separation roller 401 moves, the adjuster plate 602 can be moved to adjust the position of the ball bearing 498A. As a result, the inclination of the secondary transfer unit 41 relative to the pressing frame 49 can be adjusted, to adjust the speed of deviation of the secondary transfer belt 406 to a suitable range. As the pressing frame 49 (the secondary transfer unit 41) rotates, the position of the density sensor 701 relative to the secondary transfer unit 41 changes, and the angle of the density sensor 701 relative to the secondary transfer belt 406 changes. In the present embodiment, since the first end 480a of the sensor support shaft 480 is supported by the adjuster plate 602A, the sensor unit 800 (the density sensor 701) moves in accordance with the amount by which the pressing frame 49 (the secondary transfer unit 41) is moved by the adjuster plate 602A. Accordingly, the angle of the sensor unit 800 (the density sensor 701) relative to the front face 406b of the secondary transfer belt 406 of the secondary transfer unit 41 does not change. The relative positions of the secondary transfer belt 406 and the density sensor 701 are maintained with a high degree of accuracy, enabling reliable detection of toner image density.
Since the sensor bracket 802 is supported rotatably around the sensor support shaft 480, the structure to support the sensor bracket 802 is simple. Further, the sensor support shaft 480 is attached to the pressing frame 49 supporting the secondary transfer unit 41. This structure reduces tolerances between the sensor bracket 802 and the secondary transfer unit 41 and improves the accuracy in the relative positions of the secondary transfer belt 406 and the density sensor 701, enabling reliable detection of toner image density.
Note that the adjustment with the adjuster plate 602A can be applicable to not only the configuration in which the sensor support shaft 480 is different from the support shaft 48 of the pressing frame 49 but a configuration illustrated in
In the embodiment described above, the recording sheet P passes through the secondary transfer nip N2 (the transfer position) in a horizontal direction. Alternatively, aspects of this disclosure are applicable to image forming apparatuses in which the recording sheet P passes through the transfer position upward, downward, obliquely upward, or obliquely downward.
Although the descriptions above concerns the transfer device 40 of the color image forming apparatus employing the secondary transfer belt, aspects of this disclosure are applicable to belt devices of other types, such as a transfer device of direct transfer type used in a monochrome image forming apparatus. Specifically, in the transfer device of direct transfer type, the transfer position is located between an image bearer and a belt disposed in contact with the image bearer, and a toner image is transferred directly from the image bearer onto a recording medium conveyed to the transfer position. Alternatively, aspects of this disclosure are applicable to the intermediate transfer unit 30 including the intermediate transfer belt 31 to contact the photoconductors 2 (the image bearers) to form the transfer nips (the primary transfer nips N1).
In the above-described embodiments, since the transfer device 40 is located below the intermediate transfer belt 31, the pressing frame 49 (the secondary transfer unit 41) is biased by the coil springs 51A and 51B in the upward direction indicated by arrow C (the predetermined direction), toward the secondary transfer nip N2. However, the predetermined direction is not limited thereto. For example, in an arrangement in which the transfer device 40 is disposed on a lateral side of the intermediate transfer belt 31, the predetermined direction is a lateral direction (to right or left) toward the secondary transfer nip N2. For example, in an arrangement in which the transfer device 40 is at a position higher than the intermediate transfer belt 31, the predetermined direction is a downward direction toward the secondary transfer nip N2. In other words, the predetermined direction is a direction in which the pressing frame 49 (the secondary transfer unit 41) is biased toward the secondary transfer nip N2 or the intermediate transfer belt 31.
Although the descriptions are given above regarding changes in the speed of deviation of the belt in the configuration employing the belt guide 502 (e.g., an adjustment plate) as deviation restraint, the speed of deviation of the belt can change in a configuration without the guide as deviation restraint. Accordingly, application of aspects of this disclosure is not limited to the configuration employing the belt guide 502.
For example, aspects of this disclosure are applicable to the following transfer devices and the image forming apparatuses.
1) A transfer device and an image forming apparatus including a flange to which an end face of a belt is pressed to restrict the deviation of the belt. In this configuration, if the speed of deviation of the belt is too fast, the force to draw the belt to one side is strong, and the belt may be damaged.
2) A transfer device and an image forming apparatus including, for example, an optical sensor to detect deviation of a belt and configured to tilt a roller supporting the belt based on the result of detection by the optical sensor, to adjust the deviation of the belt (so-called steering control). In this configuration, if the speed of deviation of the belt is too fast, the sensor may fail to timely detect the deviation, and tilting of the roller may be insufficient to eliminate the deviation of the belt.
3) A transfer device and an image forming apparatus including a flange to contact an end of a belt and move in the width direction of the belt in accordance with the deviation of the belt in the width direction. In conjunction with the movement of the flange, a roller supporting the belt is tilted, to adjust the deviation of the belt. In this configuration, if the speed of deviation of the belt is too fast, the force to draw the belt to one side is strong, and the belt may be damaged. Additionally, tilting of the roller may be insufficient to eliminate the deviation of the belt.
When the aspects of this disclosure are applied to the configurations 1) to 3) described above, the running of the belt can be stabilized in the transfer devices and the image forming apparatuses. Further, the inconveniences of the configurations 1) to 3) described above can be solved.
Although most preferable advantages are described above, advantages of the present disclosure are not limited to the advantages described above.
The above-described embodiments are illustrative and do not limit the present invention. Thus, numerous additional modifications and variations are possible in light of the above teachings. For example, elements and/or features of different illustrative embodiments may be combined with each other and/or substituted for each other within the scope of the present invention.
For example, image forming apparatuses to which aspects of the present disclosure are applicable are not limited to printers but can be copier, facsimile machines, and multifunction peripherals (MFPs) having at least two of scanning, printing, copying, and facsimile transmission capabilities.
Number | Date | Country | Kind |
---|---|---|---|
2016-158964 | Aug 2016 | JP | national |
2016-239750 | Dec 2016 | JP | national |
2017-114581 | Jun 2017 | JP | national |