Advantages of the present invention will be readily appreciated as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings wherein:
Referring to
The rear side opening 18 is defined by an upper edge 26, a lower edge 28, a first body pillar 30, and a second body pillar 32. A lower guide track 34 is disposed in the floor 16 adjacent the lower edge 28 and extends therealong. Similarly, a conventional upper guide track 36 is disposed adjacent the upper edge 26 and extends therealong. The side door 24 is slidably mounted to the lower guide track 34 with a lower mounting assembly, generally indicated at 38, and to the upper guide track 36 with an upper mounting assembly, generally indicated at 40, for movement between an open position and a closed position. In the open position, the side door 24 substantially clears the rear side opening 18 and is disposed rearward thereof. In the closed position, the side door 24 substantially covers the rear side opening 18.
Referring to
Referring to
The lower mounting assembly 38 is mounted to a lower forward corner of the side door 24. The lower mounting assembly 38 includes a lower hinge member 62 having a first vertical portion 64 and a second horizontal portion 66, as shown in
Referring to
Referring to
Referring to
An output shaft 120 extending axially from the clutch 104 includes a second spur gear 122 fixed thereto for transmitting drive torque to a third spur gear 124. The third spur gear 124 is journally supported by a vertically extending post 126 mounted to the horizontal portion 66 of the lower hinge member 62 at the proximal end 68 thereof. A toothed drive pulley 128 is also journally supported by the post 126 below the third spur gear 124 and secured to the third spur gear 124 such that rotation of the third spur gear 124 by the second spur gear 122 causes the drive pulley 128 to rotate. As seen in
Referring to
The belt 96 can be any suitable belt including rubber belts with Kevlar, steel or other reinforcements and preferably is a reinforced toothed belt which can carry relatively large tensile loads and which is not generally subject to stretching. Referring to
A belt cover 148 extends between the housing 130 and the distal end 70 of the horizontal portion 66 of the lower hinge member 62 covering the belt 96 and pinion gear 136, as shown in
Preferably, the power unit 94, belt 96, and drive unit 98 cooperate to provide the pinion gear 136 with sufficient drive torque to enable the side door 24 to operate while the vehicle 10 is on 20% fore and aft grades with an average velocity of approximately 190.5 mm/sec. The clutch 104 is preferably an electromagnetic clutch which is operable between a disengaged position wherein the transmission of drive torque between the motor 100 and pinion gear 136 is inhibited, and an engaged position wherein the transmission of drive torque between the motor 100 and pinion gear 136 is permitted. Preferably, the clutch 104 is normally maintained in the disengaged position which prevents the pinion gear 136 from back-driving the motor 100 when the side door 24 is manually moved between the open and closed positions. Configuration in this manner permits the side door 24 to be opened and closed manually without substantially increasing the force required to propel the side door 24 compared to a completely manual side door.
In operation, starting with the side door 24 in the closed position, when it is desired to move the side door 24 to the open position an electrical signal is sent to actuate the clutch 104 from the disengaged position to the engaged position. The motor 100 is then actuated to drive in a first direction producing drive torque which passes through the gearbox 102 and clutch 104, eventually causing the output shaft 120 and second spur gear 122 to rotate in a first direction. Rotation of the second spur gear 122 in the first direction causes the third spur gear 124 and therefore the drive pulley 128 to rotate in a second direction. Engagement between the drive pulley 128 and the belt 96 causes the belt 96 to rotate in the second direction, whereby engagement between the belt 96 and driven pulley 132 in turn causes the pinion gear 136 to rotate in the second direction. Rotation of the pinion gear 136 in the second direction, and the resulting interaction between the drive teeth 138 and rack teeth 50 moves the side door 24 rearwardly into the open position. At the same time, rotational movement within the clutch 104 rotates the idler gear 116 which in turn causes the first spur gear 112, and thus the encoder wheel 114 to rotate. The optical sensor 118 monitors the rotation of the encoder wheel 114 to determine the position and velocity of the side door 24.
To close the side door 24 an electrical signal is sent to actuate the clutch 104 from the disengaged position to the engaged position. The motor 100 is then actuated to drive in a second direction producing drive torque which passes through the gearbox 102 and clutch 104, eventually causing the output shaft 120 and second spur gear 122 to rotate in the second direction. Rotation of the second spur gear 122 in the second direction causes the third spur gear 124 and therefore the drive pulley 128 to rotate in the first direction. Engagement between the drive pulley 128 and the belt 96 causes the belt 96 to rotate in the first direction, whereby engagement between the belt 96 and driven pulley 132 in turn causes the pinion gear 136 to rotate in the first direction. Rotation of the pinion gear 136 in the first direction, and the resulting interaction between the drive teeth 138 and rack teeth 50 moves the side door 24 forwardly into the closed position. At the same time, rotational movement within the clutch 104 rotates the idler gear 116 which in turn causes the first spur gear 112, and thus the encoder wheel 114 to rotate. The optical sensor 118 monitors the rotation of the encoder wheel 114 to determine the position and velocity of the side door 24.
Alternatively, the side door 24 can be moved between the open and closed positions manually. Again, starting with the side door 24 in the closed position, when it is desired to move the side door 24 to the open position no electrical signal is sent to actuate the clutch 104, which therefore remains in the disengaged position. With the clutch 104 in the disengaged position the side door 24 can be manually moved rearwardly into the open position. As the side door 24 moves rearwardly the interaction between the rack teeth 50 and the drive teeth 138 cause the pinion gear 136 and therefore the driven pulley 132 to rotate in the second direction. Engagement between the driven pulley 132 and belt 96 causes the belt 96 to rotate in the second direction, whereby engagement between the belt 96 and drive pulley 128 in turn causes the third spur gear 124 to rotate in the second direction. Rotation of the third spur gear 124 in the second direction causes the second spur gear 122 and output shaft 120 of the clutch 104 to rotate in the first direction. Rotational movement within the clutch 104 rotates the idler gear 116 which in turn causes the first spur gear 112, and thus the encoder wheel 114 to rotate. At the same time, the optical sensor 118 monitors the rotation of the encoder wheel 114 to determine the position and velocity of the side door 24.
To close the side door 24 manually, again no electrical signal is sent to actuate the clutch 104, which therefore remains in the disengaged position. With the clutch 104 in the disengaged position the side door 24 can be manually moved forwardly into the closed position. As the side door 24 moves forwardly the interaction between the rack teeth 50 and the drive teeth 138 cause the pinion gear 136 and therefore the driven pulley 132 to rotate in the first direction. Engagement between the driven pulley 132 and belt 96 causes the belt 96 to rotate in the first direction, whereby engagement between the belt 96 and drive pulley 128 in turn causes the third spur gear 124 to rotate in the first direction. Rotation of the third spur gear 124 in the first direction causes the second spur gear 122 and output shaft 120 of the clutch 104 to rotate in the second direction. Rotational movement within the clutch 104 rotates the idler gear 116 which in turn causes the first spur gear 112, and thus the encoder wheel 114 to rotate. At the same time, the optical sensor 118 monitors the rotation of the encoder wheel 114 to determine the position and velocity of the side door 24.
The invention has been described in an illustrative manner, and it is to be understood that the terminology, which has been used, is intended to be in the nature of words of description rather than of limitation. Many modifications and variations of the present invention are possible in light of the above teachings. It is, therefore, to be understood that within the scope of the appended claims, the invention may be practiced other than as specifically described.
This application claims the benefit of U.S. Provisional Application No. 60/846,956, filed Sep. 25, 2006.
Number | Date | Country | |
---|---|---|---|
60846956 | Sep 2006 | US |