1. Field of the Invention
The invention relates to a power sliding door. More particularly, the invention relates to a power drive mechanism mounted to a hinge member for opening and closing a power sliding door of an automotive vehicle.
2. Description of Related Art
In various types of automotive vehicles, including minivans, delivery vans, and the like, it has become common practice to provide a vehicle body with relatively large side openings that are located immediately behind front doors and which are opened and closed with a sliding side door. The sliding side door is typically mounted with upper and lower hinge members to horizontal tracks on the vehicle body for guided sliding movement between a closed position flush with the vehicle body, closing the side opening, and an open position located outward of and alongside the vehicle body rearward of the side opening. The sliding side door may be operated manually or with a power operated system to which the present invention is directed.
Examples of conventional power operated systems for automatically opening and closing the sliding side door are described in U.S. Pat. Nos. 6,481,783; 6,464,287; 6,435,600; 6,256,930; 6,079,767; 5,833,301; 5,644,869; 5,536,061; 5,434,487; 5,203,112; 5,168,666; and 4,612,729. Commonly assigned U.S. Pat. No. 6,435,600, which is hereby incorporated by reference as if fully set forth herein, discloses a power sliding door system for an automotive vehicle 10. A sliding door 36 is operated by a power drive mechanism 124 that is mounted to the door 36 and includes a drive motor 200 mounted within the door, a lower drive unit 204 having a rotatable pinion gear 208 mounted to a hinge member 120 fixed to the door 36, and a flexible driveshaft 202 coupling the drive motor 200 and pinion gear 208 for transmitting drive torque therebetween. The pinion gear 208 meshingly engages a rack 38 mounted along a floor 30 of a vehicle body 14 to open and close the door 36.
While the arrangement disclosed in U.S. Pat. No. 6,435,600 provides certain improvements in the pertinent art, several drawbacks have been noted. These drawbacks include, for example: (1) interference between drop glass in the door 36 and the drive motor 200; (2) excessive labor to install; (3) high drive torque losses in the curved flexible driveshaft 202 resulting in high manual efforts; (4) high cost of the flexible driveshaft 202 and lower drive unit 204 which includes a gear train consisting of bevel gears and ball bearings; and (5) excessive noise from the lower drive unit 204.
Another type of power sliding door system utilizing a rack 17 and a pinion gear 23 to effect the movement of a sliding side door 1 is disclosed in U.S. Pat. No. 4,612,729. This type of arrangement, however, requires considerable accommodating space and modifications to a vehicle body since a motor 18 and gear housing 19 are disposed within a floor of the vehicle body and move along the rack 17 together with the door 1.
U.S. Pat. No. 5,536,601 discloses another type of power sliding door system. The system utilizes a power drive mechanism 28 that is mounted to a sliding door 22 and extends through a side opening in the door 22. The drive mechanism 28 includes a reversible electric motor 62 that drives a friction wheel 38 which is spring biased to forcibly engage a guide track 40 located beneath a vehicle floor 14 and attached to a vehicle body 10. The friction wheel 38 rides along the guide track 40 to open and close the door 22 and additionally guides and stabilizes its sliding movement. Several drawbacks are associated with this arrangement, such as, the appearance of the door 22, and the cost, reliability and performance of the drive mechanism 28.
Various other types of power sliding door systems utilize a cable, chain, or belt to open and close the sliding side door. For example, U.S. Pat. No. 5,168,666 discloses a door drive device which includes a guide rail 2 in a vehicle body 1 defining a path along which a side door 3 moves. An endless belt 22 extends around first 17 and second 20 pulleys which are arranged at spaced positions within the vehicle body 1. A bracket 23 is provided for connecting a portion of the endless belt 22 to the side door 3 and a reversible electric motor 11 drives the first pulley 17 thereby moving the side door 3 between opened and closed positions. These types of power sliding door systems are complicated, include numerous parts, and require considerable accommodating space within a floor of the vehicle body 1 since the belt 22, first 17 and second 20 pulleys, and motor 11 are all disposed therein.
Consequently, it is desirable to provide a simple, inexpensive, quiet, compact, and easily installed power door drive system for opening and closing a power sliding door of an automotive vehicle.
According to one aspect of the invention, a power door drive system is provided for moving a sliding side door on a vehicle body having an aperture between an open position wherein the side door substantially clears the aperture and a closed position wherein the side door substantially covers the aperture. The power door drive system includes a guide track mounted to and extending along the vehicle body adjacent the aperture. The guide track includes a channel portion and a rack portion which has a plurality of rack teeth disposed therealong. A hinge member has a first end adapted for mounting to the side door and a second end. The second end has a plurality of guide rollers for rollingly engaging the channel portion of the guide track. A power drive mechanism is mounted to the hinge member. The power drive mechanism includes a reversible motor that is operable for producing a drive torque, a pinion gear which has a plurality of drive teeth meshingly engaging the plurality of rack teeth, and an endless belt for transferring the drive torque from the motor to the pinion gear thereby driving the sliding door between the open and closed positions.
Advantages of the present invention will be readily appreciated as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings wherein:
Referring to
The rear side opening 18 is defined by an upper edge 26, a lower edge 28, a first body pillar 30, and a second body pillar 32. A lower guide track 34 is disposed in the floor 16 adjacent the lower edge 28 and extends therealong. Similarly, a conventional upper guide track 36 is disposed adjacent the upper edge 26 and extends therealong. The side door 24 is slidably mounted to the lower guide track 34 with a lower mounting assembly, generally indicated at 38, and to the upper guide track 36 with an upper mounting assembly, generally indicated at 40, for movement between an open position and a closed position. In the open position, the side door 24 substantially clears the rear side opening 18 and is disposed rearward thereof. In the closed position, the side door 24 substantially covers the rear side opening 18.
Referring to
Referring to
The lower mounting assembly 38 is mounted to a lower forward corner of the side door 24. The lower mounting assembly 38 includes a lower hinge member 62 having a first vertical portion 64 and a second horizontal portion 66, as shown in
Referring to
Referring to
Referring to
An output shaft 120 extending axially from the clutch 104 includes a second spur gear 122 fixed thereto for transmitting drive torque to a third spur gear 124. The third spur gear 124 is journally supported by a vertically extending post 126 mounted to the horizontal portion 66 of the lower hinge member 62 at the proximal end 68 thereof. A toothed drive pulley 128 is also journally supported by the post 126 below the third spur gear 124 and secured to the third spur gear 124 such that rotation of the third spur gear 124 by the second spur gear 122 causes the drive pulley 128 to rotate. As seen in
Referring to
The belt 96 can be any suitable belt including rubber belts with Kevlar, steel or other reinforcements and preferably is a reinforced toothed belt which can carry relatively large tensile loads and which is not generally subject to stretching. Referring to
A belt cover 148 extends between the housing 130 and the distal end 70 of the horizontal portion 66 of the lower hinge member 62 covering the belt 96 and pinion gear 136, as shown in
Preferably, the power unit 94, belt 96, and drive unit 98 cooperate to provide the pinion gear 136 with sufficient drive torque to enable the side door 24 to operate while the vehicle 10 is on 20% fore and aft grades with an average velocity of approximately 190.5 mm/sec. The clutch 104 is preferably an electromagnetic clutch which is operable between a disengaged position wherein the transmission of drive torque between the motor 100 and pinion gear 136 is inhibited, and an engaged position wherein the transmission of drive torque between the motor 100 and pinion gear 136 is permitted. Preferably, the clutch 104 is normally maintained in the disengaged position which prevents the pinion gear 136 from back-driving the motor 100 when the side door 24 is manually moved between the open and closed positions. Configuration in this manner permits the side door 24 to be opened and closed manually without substantially increasing the force required to propel the side door 24 compared to a completely manual side door.
In operation, starting with the side door 24 in the closed position, when it is desired to move the side door 24 to the open position an electrical signal is sent to actuate the clutch 104 from the disengaged position to the engaged position. The motor 100 is then actuated to drive in a first direction producing drive torque which passes through the gearbox 102 and clutch 104, eventually causing the output shaft 120 and second spur gear 122 to rotate in a first direction. Rotation of the second spur gear 122 in the first direction causes the third spur gear 124 and therefore the drive pulley 128 to rotate in a second direction. Engagement between the drive pulley 128 and the belt 96 causes the belt 96 to rotate in the second direction, whereby engagement between the belt 96 and driven pulley 132 in turn causes the pinion gear 136 to rotate in the second direction. Rotation of the pinion gear 136 in the second direction, and the resulting interaction between the drive teeth 138 and rack teeth 50 moves the side door 24 rearwardly into the open position. At the same time, rotational movement within the clutch 104 rotates the idler gear 116 which in turn causes the first spur gear 112, and thus the encoder wheel 114 to rotate. The optical sensor 118 monitors the rotation of the encoder wheel 114 to determine the position and velocity of the side door 24.
To close the side door 24 an electrical signal is sent to actuate the clutch 104 from the disengaged position to the engaged position. The motor 100 is then actuated to drive in a second direction producing drive torque which passes through the gearbox 102 and clutch 104, eventually causing the output shaft 120 and second spur gear 122 to rotate in the second direction. Rotation of the second spur gear 122 in the second direction causes the third spur gear 124 and therefore the drive pulley 128 to rotate in the first direction. Engagement between the drive pulley 128 and the belt 96 causes the belt 96 to rotate in the first direction, whereby engagement between the belt 96 and driven pulley 132 in turn causes the pinion gear 136 to rotate in the first direction. Rotation of the pinion gear 136 in the first direction, and the resulting interaction between the drive teeth 138 and rack teeth 50 moves the side door 24 forwardly into the closed position. At the same time, rotational movement within the clutch 104 rotates the idler gear 116 which in turn causes the first spur gear 112, and thus the encoder wheel 114 to rotate. The optical sensor 118 monitors the rotation of the encoder wheel 114 to determine the position and velocity of the side door 24.
Alternatively, the side door 24 can be moved between the open and closed positions manually. Again, starting with the side door 24 in the closed position, when it is desired to move the side door 24 to the open position no electrical signal is sent to actuate the clutch 104, which therefore remains in the disengaged position. With the clutch 104 in the disengaged position the side door 24 can be manually moved rearwardly into the open position. As the side door 24 moves rearwardly the interaction between the rack teeth 50 and the drive teeth 138 cause the pinion gear 136 and therefore the driven pulley 132 to rotate in the second direction. Engagement between the driven pulley 132 and belt 96 causes the belt 96 to rotate in the second direction, whereby engagement between the belt 96 and drive pulley 128 in turn causes the third spur gear 124 to rotate in the second direction. Rotation of the third spur gear 124 in the second direction causes the second spur gear 122 and output shaft 120 of the clutch 104 to rotate in the first direction. Rotational movement within the clutch 104 rotates the idler gear 116 which in turn causes the first spur gear 112, and thus the encoder wheel 114 to rotate. At the same time, the optical sensor 118 monitors the rotation of the encoder wheel 114 to determine the position and velocity of the side door 24.
To close the side door 24 manually, again no electrical signal is sent to actuate the clutch 104, which therefore remains in the disengaged position. With the clutch 104 in the disengaged position the side door 24 can be manually moved forwardly into the closed position. As the side door 24 moves forwardly the interaction between the rack teeth 50 and the drive teeth 138 cause the pinion gear 136 and therefore the driven pulley 132 to rotate in the first direction. Engagement between the driven pulley 132 and belt 96 causes the belt 96 to rotate in the first direction, whereby engagement between the belt 96 and drive pulley 128 in turn causes the third spur gear 124 to rotate in the first direction. Rotation of the third spur gear 124 in the first direction causes the second spur gear 122 and output shaft 120 of the clutch 104 to rotate in the second direction. Rotational movement within the clutch 104 rotates the idler gear 116 which in turn causes the first spur gear 112, and thus the encoder wheel 114 to rotate. At the same time, the optical sensor 118 monitors the rotation of the encoder wheel 114 to determine the position and velocity of the side door 24.
The invention has been described in an illustrative manner, and it is to be understood that the terminology, which has been used, is intended to be in the nature of words of description rather than of limitation. Many modifications and variations of the present invention are possible in light of the above teachings. It is, therefore, to be understood that within the scope of the appended claims, the invention may be practiced other than as specifically described.
This application claims the benefit of U.S. Provisional Application No. 60/846,956, filed Sep. 25, 2006.
Number | Name | Date | Kind |
---|---|---|---|
3496794 | Forichon | Feb 1970 | A |
4612729 | Sato | Sep 1986 | A |
4640050 | Yamagishi et al. | Feb 1987 | A |
4744172 | Miyauchi | May 1988 | A |
4887390 | Boyko et al. | Dec 1989 | A |
4932715 | Kramer | Jun 1990 | A |
5004280 | Schap | Apr 1991 | A |
5025894 | Yamasaki | Jun 1991 | A |
5083472 | Kang | Jan 1992 | A |
5168666 | Koura et al. | Dec 1992 | A |
5203112 | Yamagishi et al. | Apr 1993 | A |
5316365 | Kuhlman et al. | May 1994 | A |
5377448 | Boyd et al. | Jan 1995 | A |
5434487 | Long et al. | Jul 1995 | A |
5536061 | Moore et al. | Jul 1996 | A |
5606826 | Calhoun | Mar 1997 | A |
5644869 | Buchanan, Jr. | Jul 1997 | A |
5833301 | Watanabe et al. | Nov 1998 | A |
5992919 | Menke | Nov 1999 | A |
RE36428 | Moore et al. | Dec 1999 | E |
6025685 | Parsadayan | Feb 2000 | A |
6079767 | Faubert et al. | Jun 2000 | A |
6081088 | Ishihara et al. | Jun 2000 | A |
6125583 | Murray et al. | Oct 2000 | A |
6125586 | Buscher | Oct 2000 | A |
6152519 | Blank et al. | Nov 2000 | A |
6155630 | Fukumoto et al. | Dec 2000 | A |
6174020 | Knettle et al. | Jan 2001 | B1 |
6250013 | Apprich | Jun 2001 | B1 |
6256930 | Faubert et al. | Jul 2001 | B1 |
6276743 | Jyawook et al. | Aug 2001 | B1 |
6341448 | Murray et al. | Jan 2002 | B1 |
6367864 | Rogers, Jr. et al. | Apr 2002 | B2 |
6390516 | Kobayashi | May 2002 | B1 |
6390535 | Chapman | May 2002 | B1 |
6435600 | Long et al. | Aug 2002 | B1 |
6460295 | Johnson et al. | Oct 2002 | B1 |
6464287 | Rogers, Jr. et al. | Oct 2002 | B2 |
6481783 | Rogers, Jr. et al. | Nov 2002 | B1 |
6553719 | Stone et al. | Apr 2003 | B1 |
6729071 | Kawanobe et al. | May 2004 | B1 |
6854212 | Engelgau et al. | Feb 2005 | B2 |
20020043818 | Fukumoto et al. | Apr 2002 | A1 |
Number | Date | Country |
---|---|---|
1405978 | Apr 2004 | EP |
1548221 | Jun 2005 | EP |
Number | Date | Country | |
---|---|---|---|
20080072497 A1 | Mar 2008 | US |
Number | Date | Country | |
---|---|---|---|
60846956 | Sep 2006 | US |