This application claims the priority of European Patent Application EP 12 186 775.8, filed Oct. 1, 2012, pursuant to 35 U.S.C. 119(a)-(d), the content of which is incorporated herein by reference in its entirety as if fully set forth herein.
The present invention relates to a belt finishing device with a pressing mechanism for pressing a finishing belt against a workpiece surface.
The following discussion of related art is provided to assist the reader in understanding the advantages of the invention, and is not to be construed as an admission that this related art is prior art to this invention.
In finish-machining, the workpiece surface to be machined is rotatably driven and relative movement between the workpiece and the finishing belt parallel to the workpiece axis is superimposed on this rotary motion. In this way, the workpiece surface is provided with a cross-cut structure characteristic for the finishing method.
The workpiece surfaces to be machined are in particular bearing surfaces of crankshafts or camshafts. These bearing surfaces must be manufactured with a high dimensional accuracy. In particular, the bearing surfaces of the crankshaft or camshaft should be made so as to ensure, in cooperation with the bearing surfaces of a crankshaft or camshaft housing or with the bearing surfaces of a connecting rod, low-backlash and low-friction bearings with high bearing surface proportions.
It has been observed that the above requirements cannot be optimally met with the conventional belt finishing devices. It would therefore be desirable and advantageous to obviate these prior art shortcomings and to provide an improved belt finishing device that enables the production of workpiece surfaces with high dimensional stability.
According to one aspect of the present invention, a belt finishing device includes a finishing belt, two bearing surfaces that are spaced-apart in a running direction of the finishing belt, and a pressing device for pressing the finishing belt against a workpiece surface, wherein the pressing device comprises a pressure belt that is supported on the two spaced-apart bearing surfaces, wherein at least one of a bearing surface and the pressure belt have a profile that deviates in a width direction of the finishing belt from a straight course.
The invention is based on the observation that, when using bearing surfaces known in the art, which have a straight profile in the width directions of the finishing belt (for example using cylindrical roller bearings and a pressure belt having a rectangular profile), the pressure belt is subjected to different tensile stress in the widthwise direction of the finishing belt. In a region with a higher tensile stress of the pressure belt, a higher pressing force is applied to a contact region of the finishing belt. In areas of the pressure belt with lower tension, a lower pressing force is applied to finishing belt areas supported on these areas. The different pressing forces cause the workpiece surface to be machined to deviate from a desired nominal contour.
According to the invention, the geometry of the workpiece surface to be machined is now influenced, namely by forming the profile of at least one of the bearing surfaces and/or of the pressure belt different from a linear course. A profile according to the invention deviating from a straight course has a predetermined shape which can not be provided by the surfaces of cylindrical roller bearings with the standard tolerances and by the pressure belts with a rectangular cross-section.
According to an advantageous feature of the present invention, the profile according to the invention of the at least one bearing surface and/or of the pressure belt has at least one profiled section which deviates by at least 10 micrometer, in particular by at least 20 micrometers from a mathematically ideal straight line.
Advantageously, the profile may have a curvature. For example, the profile of the pressure belt may have a curvature. Through contact of the pressure belt having a curved profile with the finishing belt, the finishing belt is also curved commensurately, namely about an axis of curvature extending parallel to a running direction of the finishing belt. In this way, the geometry of the workpiece surface to be finished can be specifically influenced. For example, the curvature of the pressure belt may be designed so that the workpiece surface to be finished attains a nearly perfect cylindrical shape. However, the curvature of the pressure belt may also be designed so as to produce a workpiece surface with a nominal shape deviating from a cylindrical shape. Specifically, convex workpiece surfaces can be produced. However, it is also possible to produce concave workpiece surfaces.
According to another advantageous feature of the present invention, at least one of the bearing surfaces may deviate from a straight course in the width direction of the finishing belt. For example, the profile of at least one of the bearing surfaces may be curved. When for example at least one of the bearing surfaces has a concave curvature, a higher tension is applied to the pressure belt in the outer side areas than in a central region. A finishing belt contacting this pressure belt is subjected to a higher pressing force in the outer side areas than in a central region. In this way, a workpiece surface can be produced which has a convex profile, i.e. which has a larger diameter in a central region than in the outer side regions.
The above-described options (at least one curved bearing surface, a pressure belt having a curved profile) may also be combined.
Within the context of the present invention, a bearing surface for supporting the pressure belt may advantageously be made entirely of the same material in order to define and produce a more dimensionally stable profile that deviates from a straight course.
Similarly, the pressure belt may have a pressing surface cooperating with the finishing belt, which is formed from only a single layer material or pressure belt material. This allows specifying and producing a particularly dimensionally stable profile of a pressure belt deviating from a straight course.
According to another advantageous feature of the present invention, the at least one bearing surface and/or the pressure belt may be continuous so that they completely support the finishing belt across its width. Alternatively, the at least one bearing surface and/or the pressure belt may have at least one discontinuity, so that the finishing belt is subjected to a lower pressing force, when viewed in the width direction, at least in the region of the discontinuity of the bearing surface and/or the pressure belt. The geometry of the workpiece surface can then be intentionally influenced so that less material is removed in a rotation plane of the workpiece surface associated with the discontinuity and/or the pressure belt than in a laterally adjacent region.
The discontinuities may be, for example, pocket-shaped recesses and/or openings of at least one of the bearing surfaces and/or the pressure belt.
For example, at least one bearing surface may advantageously have recesses or grooves extending parallel to the running direction of the finishing belt. The bearing surface may also be formed by several separate bearing bodies, wherein the bearing bodies are arranged with a mutual offset in the width direction of the finishing belt.
According to another advantageous feature of the present invention, the pressure belt may have pocket-shaped recesses, for example in the region of the profile deviating from a straight course, so that a pressing surface facing the finishing belt is interrupted, whereas a back surface of the pressure belt facing away from the finishing belt is closed. Alternatively, the pressure belt may also be perforated, so that the pressure belt is interrupted not only on the front surface of the finishing belt in contact with the back side of the pressure belt, but also in the region of the back side of the finishing belt facing away from the pressure belt.
According to another advantageous feature of the present invention, at least one of the bearing surfaces may be formed by a bearing roller. This allows support of pressure belt over a high wrap angle.
According to another advantageous feature of the invention, the bearing roller may be floatingly mounted. This has the advantage that the course of the pressure belt and thus the course of the finishing belt can be readily adapted to workpiece surfaces having different diameters.
Advantageously, the bearing roller may be supported on a stationary bearing roller support system. This limits the degree of freedom of movement of a bearing roller.
Alternatively, at least one of the bearing surfaces may be formed by a stationary bearing element. Such a bearing element has an immovable bearing surface. This enables support of pressure belt with very low tolerances.
The pressure belt may also be movable relative to the bearing surfaces. However, according to another advantageous feature of the present invention, a fixing device for fixing the pressure belt relative to the bearing surfaces may be provided. This can further improve the dimensional accuracy of the workpiece surface to be produced.
Advantageously, a pressure belt may be provided with a back side facing away from the finishing belt having a profile that deviates from a linear course. However, at least the pressing surface of the pressure belt may have a profile that deviates from a linear course. In particular, only the pressing surface of the pressure belt has a profile that deviates from a linear course.
The pressing forces that can be transferred by the pressure belt to the finishing belt in the width direction of the finishing belt may be more easily controlled when the pressure belt is formed as an endless belt. Such pressure belt has a front active section whose front end interacts with the back side of the finish belt. Such endless belt is deflected in the region of spaced-apart bearing surfaces and transitions into a rear section that is spaced from the finishing belt.
According to another advantageous feature of the present invention, a rear section of the pressure belt may be supported or is supported by a pressure belt-support device. This creates another possibility for influencing the tension of the pressure belt along the width of the finishing belt.
According to another aspect of the invention, a belt finishing system includes an aforedescribed belt finishing device and a workpiece with a workpiece surface to be machined. At least one of the bearing surfaces and/or the pressure belt has at least one discontinuity, wherein the workpiece surface is also discontinuous in the region of a bore and wherein the position of the discontinuity is aligned with the position of the hole in the width direction of the finishing belt. Such belt finishing system is capable of producing crankshafts or camshafts that have a bore, in particular an oil outlet bore in the bearing surface. A plane of rotation associated with such bore experiences lower pressing forces during the finish-machining of the workpiece surface, so that the finishing belt presses with a lower pressing force against the workpiece in the region of the edge of the bore than in the laterally adjacent regions. This can prevent the finishing belt from penetrating too deeply into the bore and thus remove an excessive quantity of material in the region of the edge of the bore. Advantageously, a workpiece section that is already mechanically weakened in the region of the bore is then not further weakened, so that, in spite of such a bore, bearing surfaces having a comparatively high support surface proportion may be produced.
According to yet another aspect of the invention, in a method for manufacturing an aforedescribed belt finishing device, the nominal contour of a finished workpiece surface is determined and additionally at least one of the following method steps is performed:
According to another advantageous feature of the present invention, the profile and/or the superposition of the two partial profiles may have a more pronounced contour than the nominal contour, and the profile and/or the superposition of the two partial profiles may across an active width of the finishing belt delimit a segment of a circle, with a segment height that is greater by a factor from 1.5 to 25, preferably by a factor from 3 to 15, especially by a factor from 5 to 10, than a segment height of a segment of a circle that is delimited by the nominal contour across the effective width of the finishing belt.
Other features and advantages of the present invention will be more readily apparent upon reading the following description of currently preferred exemplified embodiments of the invention with reference to the accompanying drawing, which shows in:
a-10c views corresponding to
a to 11c respective force profiles corresponding to the successive workpiece machining phases shown in
Throughout all the figures, same or corresponding elements may generally be indicated by same reference numerals. These depicted embodiments are to be understood as illustrative of the invention and not as limiting in any way. It should also be understood that the figures are not necessarily to scale and that the embodiments are sometimes illustrated by graphic symbols, phantom lines, diagrammatic representations and fragmentary views. In certain instances, details which are not necessary for an understanding of the present invention or which render other details difficult to perceive may have been omitted.
Turning now to the drawing, and in particular to
A reservoir 17 is, for example, provided for the finishing belt 16. Starting from the reservoir 17, the finishing belt is guided on a guiding/deflection device 18 and deflected, and is in an active region 20 in contact with the workpiece surface 12 across a wrap angle (which is, for example, at least about 10°).
Adjacent to the active region 20 is a region 22, where a spent finishing belt 16 is collected. Alternatively, the finishing belt 16 is deflected in the region 22 and fed to a second effective region 24 opposite the first active region 20. The finishing belt is also in contact with the workpiece surface 12 in the second effective region 24 across a wrap angle (which is, for example, at least about 10°).
A guiding/deflection device 26 is adjacent to the active region 24, from which the finishing belt 16 is fed to a collection region 28.
Pressing devices 30 associated with a respective effective region 20, 24 are provided for applying pressure to the finishing belt 16 in the active regions 20 and/or 24. The pressing devices 30 are each held in respective holders 32, which are preferably pivotable about respective associated pivot axes 34.
The workpiece 14 is driven for rotation about a workpiece axis 36 (see
The pressure belt 42 is formed as an endless belt. The pressure belt 42 cooperates with the finishing belt 16 by way of a front section 44. Deflection sections 46 which cooperate with the bearing surfaces 40 and transition into a rear section 48 of the pressure belt 42 are located adjacent to the front section 44. The rear section 48 is spaced apart from the front section 44. The rear section 48 is supported in the region of a bearing surface 52 by a pressure belt support device 50. The bearing surface 52 applies a supporting force acting on the rear section 48 of the pressure belt 42 in the direction of the workpiece 14.
The bearing rollers 38 have mutually parallel bearing axles 54. The bearing axles 54 are floatingly supported, for example by bearing elements 56 in the form of slots. The shape and arrangement of the bearing elements 58 (for example, the direction of the slots) is such that the bearing axles 54 are movable in a radial direction in relation to the workpiece axis 36.
Preferably, the bearing rollers 38 are supported by a stationary bearing roller support device 60. The device 60 includes, for example, a bearing surface 62 supporting the bearing rollers 38 through interposition of the pressure belt 42. The devices 50 and 60 may be formed integrally as a single piece. The bearing surfaces 52 and 62 preferably transition into each other continuously (without kinks).
The pressing device 30 is suitable for workpieces 14 having different diameters. For example, when instead of the workpiece 14 (see
The bearing rollers 38 are rotationally symmetric in relation to the bearing axles 54 and have in profile curved convex bearing surfaces 40 (see
The pressure belt 42 has a pressing surface 66 facing away from the back side 64, which applies pressing forces to a back side 68 of the finishing belt 16, causing an effective surface 70 of the finishing belt 16 provided with finish material to be pressed against the workpiece surface 12 of the workpiece 14 to be finish-machined
The pressure belt 42 has in an undeformed initial state a rectangular cross-section. Thus, the pressing surface 66 in the undeformed state of the pressure belt 42 has a straight course. The pressure belt 42 is elastically deformable and is in the turn sections 46 (see
The above description applies likewise for an embodiment illustrated in
Preferably, a radius of curvature of a bearing surface 40 with a convex curvature (see
A radius of curvature of a bearing surface 40 with a concave curvature (see
c shows a diagram corresponding to
In the state shown in
c shows a state in which the workpiece surface 12 assumes a curved nominal contour. In this state, the concave radius of curvature of the active surface 70 of the finishing belt 16 communicates with the convex radius of curvature of the workpiece surface 12 of the workpiece 14, with the working surface 70 being in full contact with the workpiece surface 12 of the workpiece 14 across the width direction 72.
Regarding the pressing devices 30 described hereinafter with reference to
The pressing devices 30 according to
These bearing elements 82 are shown, for example, in a perspective view in
The bearing elements 82 have a bearing surface 52 disposed on the side facing away from the constriction 84.
The pressing device 30 according to
The bearing element 82 has, for example, a one-piece bearing element 92 extending in the width direction 72 of the finishing belt 16 (see
The bearing body 92 may be connected, for example with screws 98, with mounting elements 100 (see
In the embodiment of a pressing device 30 shown in
The bearing surface 52 of the bearing element 82 illustrated in
In the embodiment of a bearing element 82 and a pressure belt 42 illustrated in
However, the support element 82 according to
For the embodiments described below with reference to
The openings 104 extend in the width direction 72 of the finishing belt 16 as well as in the running direction 106 of the finishing belt 16.
When only a single opening 104 is provided, this opening may preferably be substantially elliptic or rhombic.
For dimensioning a discontinuity 104 shown in
In a further refinement of the dimensions of a discontinuity 104, the nominal contour 108 of a workpiece 14 may also be described in the form of, for example, a continuous and kink-free function, as indicated in
With the discontinuities 104 shown for example in
While the invention has been illustrated and described in connection with currently preferred embodiments shown and described in detail, it is not intended to be limited to the details shown since various modifications and structural changes may be made without departing in any way from the spirit and scope of the present invention. The embodiments were chosen and described in order to explain the principles of the invention and practical application to thereby enable a person skilled in the art to best utilize the invention and various embodiments with various modifications as are suited to the particular use contemplated.
Number | Date | Country | Kind |
---|---|---|---|
12186775 | Oct 2012 | EP | regional |
Number | Name | Date | Kind |
---|---|---|---|
1905821 | Dunbar et al. | Apr 1933 | A |
2671993 | Jones et al. | Mar 1954 | A |
4145846 | Howland et al. | Mar 1979 | A |
4443977 | Gaiani | Apr 1984 | A |
4682444 | Judge et al. | Jul 1987 | A |
5531631 | Judge | Jul 1996 | A |
5695391 | Steinwender | Dec 1997 | A |
6080051 | Weber | Jun 2000 | A |
6203402 | Hildebrandt | Mar 2001 | B1 |
6309287 | Martin et al. | Oct 2001 | B2 |
6454638 | Bonachera et al. | Sep 2002 | B2 |
6746315 | Klukos | Jun 2004 | B2 |
7115023 | Owczarz | Oct 2006 | B1 |
7413498 | Omata et al. | Aug 2008 | B2 |
8408973 | Grabsch et al. | Apr 2013 | B2 |
8517804 | Weigmann et al. | Aug 2013 | B2 |
8771037 | Boggs et al. | Jul 2014 | B2 |
Number | Date | Country |
---|---|---|
43 18 007 | Dec 1994 | DE |
103 32 605 | Feb 2005 | DE |
2 212 058 | Jul 2011 | EP |
Number | Date | Country | |
---|---|---|---|
20140094099 A1 | Apr 2014 | US |