The application relates generally to robotic work cells and, more particularly, to surface treatment or material removal tools and devices for such cells.
Surface treatment such as polishing, deburring, sanding or grinding of fan, fan blades or other engine components may be made manually or as part of an automated process. Tools for such tasks, e.g., belt sanders, may include abrasive/polishing components, such as abrasive/polishing belts mounted for rotation about belt engaging idlers driven by a powered device, e.g. pneumatic, hydraulic, electric, etc. Frequent belt replacements may be required during a polishing operation. Manual replacements of such belts may be time consuming. In addition, cyclic manual replacement of belts may monopolize labor time during a surface treatment operation, which may increase the overall runtime of such operation, and/or which may reduce the labor's efficiency in performing other tasks. Proper health and safety measures may be required if such belt replacements occur in a robotic work cell, which may impact downtime between subsequent operation cycles, for instance.
In one aspect, there is provided a belt loading device for loading an abrasive belt in a closed loop configuration on a machining tool, comprising: a base support; a movable part engaged to the base support, the movable part movable relative to the base support between a biased position and a belt releasing position, the base support and the movable part, while in the biased position, cooperating to maintain the abrasive belt in a fixed position defining a tool engaging area circumscribed by an inner surface of the abrasive belt; and a biasing member interfacing between the base support and the movable part to bias the movable part into the biased position.
In another aspect, there is provided a method for loading a belt in a closed loop configuration on a machining tool as part of an automated machining operation, the method comprising: engaging a first end portion of the machining tool with an inner surface of the belt supported by a belt loading device in the closed loop configuration; engaging the machining tool with a movable part of the belt loading device; displacing the movable part from a biased position to a belt releasing position; engaging a second end portion of the machining tool with the inner surface of the belt; disengaging the machining tool from the movable part in the belt releasing position; and freeing the belt from the belt loading device with the machining tool.
Reference is now made to the accompanying figures in which:
In at least some applications, the work cell 10 is a polishing work cell and the machining tool 16 is a material removal tool, which may also be referred to as a surface treatment tool.
The machining tool 16 includes a replaceable abrasive belt 20. Such belt 20 may be referred to as polishing or sanding belt as well. Such belt 20 may have a range of grit depending on the polishing, grinding, sanding, deburring, deflashing, etc., application. In some cases, a polishing paste with one such belt 20 for certain surface finishing. The belt 20 is flexible. The belt 20 may have a fixed length, i.e., unextendable, under normal operating conditions or allow non-permanent (elastic) stretching under tension and temperature, as another possibility. The dimensions of the belt 20 may vary depending on the embodiments and machining tool 16. The dimensions of the belt 20 may be adapted to fit with a given machining tool 16. The belt 20 may have standardized dimensions to fit with various off-the-shelf machining tools, or be adapted to fit to a custom tool as another possibility. The dimensions of the belt 20, may be subject to rather loose manufacturing tolerances meaning their circumference may change by a few millimeters, in some cases.
The belt 20 has a closed loop configuration and is mounted as such onto the machining tool 16. The belt 20 is mounted about a plurality of idlers 22 and in driving engagement therewith. In the depicted embodiment, the machining tool has a driving idler 22A, a driven idler 22B and a tensioner 24 between the driving idler 22A and the driven idler 22B to apply a tension load to the belt 20 mounted about the idlers 22. There may be more idlers 22, either driving or driven, in other embodiments, for instance more than one driving idler 22A and/or more than one driven idler 22B. The driven idler 22B may be referred to as a “free idler”, meaning that it is not powered as the driving idler 22A can be. The driving idler 22A is operably engaged to a power source, which may be an electric source or motor, a pneumatic source or motor, etc. A transmission, such as a gear box, a reductor, or other types of transmission, may interconnect the power source and the driving idler. Other belt engaging components than idlers may be contemplated, such as other types of rolling elements, e.g., rollers, bearings, gears.
In the depicted embodiment, the tensioner 24 includes an extendable rod 26 and a biasing member 28. The biasing member 28 may bias the extendable rod 26 in an extended state. The biasing member 28 may include a spring, a damper, a spring and damper system, or other biasing components, such as a cam assembly or other suitable mechanisms to apply a load of the tensioner 24 to maintain a tension on the belt 20 and/or the extendable rod 26 in the extended state. In the extended state, the extendable rod 26 stretch the belt 20. The stretching may not elastically deform the belt 20 in at least some cases, though stretching could elastically stretch the belt 20 in other cases. An external load applied axially or at least partially axially against an end 27 of the extendable rod 26 may retract the extendable rod 26 in a retracted state. In the retracted state, the extendable rod 26 is shorter than in the extended state. In the retracted state, the belt 20 may be released and/or under less to no tension. The belt 20 may then more easily disengage the driven idler 22B and/or the driving idler 22A when the extendable rod 26 is in the retracted state.
Returning to
In a surface treatment process performed within a work cell as the work cell 10, an abrasive component such as the belt 20 of the machining tool 16 may wear and cyclic replacement thereof during such surface treatment process may be contemplated. It may be desirable to automate the cyclic replacement of such abrasive component on the machining tool 16 without or with limited manual handling of the machining tool 16 and/or without accessing the work space of the work cell 10 after each life cycle of the abrasive component. This may reduce downtimes to remove manually a worn out belt 20 from the machining tool 16 and replace it with another belt 20 (new or in better condition). This would involve, for instance, entering the work cell 10, which may be undesirable for time efficiency and/or health and safety reasons, for example. A belt loading device 30 is illustrated within the work space 11 defined by the work cell 10.
The belt loading device 30 may be part of a support rack 19. In an embodiment, the work cell 10 may include a plurality of such belt loading device 30. The belt loading device(s) 30 may be mounted on a support rack 19 of the work cell 10, with the support rack 19 disposed in an area within the work cell 10. The support rack 19 may be in the vicinity of the robot 12, at a reachable distance by the robotic arm 14. The support rack 19 may be fixed or movable with respect to the robot 12 depending on the embodiments. The support rack 19 may include a frame on which a plurality of the belt loading device 30 may be mounted. Prior to performing a polishing process on a component such as the component 18 with the work cell 10, an operator may mount a plurality of the belt loading device 30 each including an abrasive belt, such as belt 20, onto the support rack 19.
The belt loading devices 30 may be viewed as cartridges of replacement abrasive belts 20 for the robot 12 equipped with a machining tool, as the machining tool 16 described above. Such cartridges may be pre-loaded with belts 20 by an operator, or as part of an automated process, for instance, beforehand or during the material removal process in the work cell 10 if the belt loading devices 30 may be moved in a safe location. During a polishing operation, once the belt 20 mounted onto the machining tool 16 on the robot 12 is worn out, or at another desired moment, the belt 20 that is worn out may be unloaded from the machining tool 16 on the robot 12. The robot 12 may subsequently reach the support rack 19 for loading another belt 20 of one of the belt loading device 30 on the machining tool 16. The robot 12 having the robotic arm 14 equipped with the machining tool 16 may be programmed so as to load a belt 20 of one of the belt loading devices 30 onto the machining tool 16 by engaging with that belt loading device 30, as will be described later.
In at least some embodiments, in the fixed position, the belt loading device 30 applies a limited or no tension on the belt 20. The belt 20 may not be stretched permanently or non-permanently when mounted onto the belt loading device 30. Because of the inherent flexibility of the belt 20, the belt 20 may not maintain the fixed position without external assistance. The base support 32 and the movable part 34 may provide such assistance, so as to facilitate engagement of the machining tool 16 with the belt 20 during a belt replacement process by constraining the belt 20 in a desired shape.
The fixed position of the belt 20 may be referred to as a tool engaging position. In at least some embodiments of the belt loading device 30, such as shown, in the fixed position, the belt 20 has an obround shape, which may also be referred to as a stadium shape. The obround shape is defined by an inner surface ISB of the belt 20, which is opposite an outer surface OSB or abrasive surface of the belt 20. The inner surface ISB defines a periphery of a tool engaging area, in which the machining tool 16 may initiate engagement with the belt 20. The obround shape defines a pair of opposite semicircle segments or radius corners 20A, 20B. As shown, the belt 20 has opposite straight or substantially straight segments 20C, 20D extending between the radius corners 20A, 20B. In other words, the radius corners 20A, 20B are connected by the segments 20C, 20D. The segments 20C, 20D may be parallel to each other, for instance where the radius corners 20A, 20B have the same or substantially the same curvature. The radius corners 20A, 20B may receive respective ones of the idlers 22 of the machining tool 16, as will be described later. In at least some embodiments, an obround shape, such as shown may be the closest shape from an outline of the closed loop configuration of the belt 20 when mounted to the machining tool 16. In other embodiments, the belt 20 in the fixed position may have a different shape (e.g., oblong, oval, ellipse, circle, rectangle with rounded corners, squircle) allowing engagement of the machining tool 16 with the inner surface ISB of the belt 20.
The base support 32 defines a slot 33 in which at least part of the movable part 34 and/or the belt 20 is received when the movable part 34 is in the biased position. In the depicted embodiment, the slot 33 is open-ended at an end 33A thereof. A portion of the movable part 34 extends beyond a side of the base support 32, beyond the open-ended end 33A of the slot 33. This configuration may provide more clearance and/or prevent collisions with the base support 32 for the machining tool 16 and/or robotic arm 14 during engagement of the machining tool 16 with the movable part 34 and/or idler 22 with the belt 20 during the belt loading process. The movable part 34 may entirely be recessed (or “contained”) within the slot 33, for instance as the base support 32 may surround, entirely, a periphery of the movable part 34 in some variants of the belt loading device 30.
In the depicted embodiment, the slot 33 has a closed end 33B opposite the open-ended end 33A. The closed end 33B defines a radius corner adapted to receive the radius corner 20A of the belt 20. In other words, the belt 20 may engage with the closed end 33B. The radius corner 20A may interface between the machining tool 16 and the closed end 33B of the slot 33 during the belt loading process. The closed end 33B may allow abutment of the machining tool 16 as it presses against the inner surface ISB of the belt 20 during the belt loading process, which will be further described later. Abutment against the closed end 33B may reduce tensile stress in the belt 20 during the belt loading process and/or limit uncontrolled displacement of the belt 20 relative to the belt loading device 30 during such process. Abutment opposing the pressure exerted by the machining tool 16 during the belt loading process may be performed by another component, for instance a stopper separate from the base support 32. Opposing the pressure exerted by the machining tool 16 in the radius corner 20A of the belt 20 during the belt loading process may be taken up by the tension of the belt 20, though it might be desirable to limit such tensile stress in the belt 20, as set forth above. Radius of such closed end 33B may be selected so as to allow differently sized idlers 22 engaging therewith, depending on the variants of machining tool 16 and/or allow some flexibility in the robot's motion.
At least when the movable part 34 is in the biased position and the belt 20 in the fixed position, at least part of the belt 20 extends between portions of respective ones of the base support 32 and the movable part 34. In the depicted embodiment, a substantial portion of the belt 20 is supported on both sides thereof. As shown, a substantial portion of the belt 20 is recessed in the base support 32. Also shown, the movable part 34 occupies part (at least) of the tool engaging area, in the biased position. A substantial portion (e.g., more than 75%) of the inner surface ISB and outer surface OSB of the belt 20 is located (e.g., more than 75%) between opposite walls 32W, 34W of respective ones of the base support 32 and the movable part 34. As shown, the wall 32W of the base support 32 extend about at least part of the movable part 34. In other words, the wall 32W surrounds a substantial portion of the movable part 34. The wall 34W of the movable part 34 defines a periphery of the movable part 34. While walls 32W, 34W are shown as continuous walls, such walls may be segmented in other embodiments. For instance, a series of spaced apart pins may define interrupted walls 32W, 34W in other cases. In at least some embodiments, a substantial portion (more than 75%) of the full length L (i.e., full circumferential dimenison) of the belt 20 is located in a gap 36 defined between the opposite walls 32W, 34W. Less than 75% could be contemplated, e.g., between 50% and 75% in other cases. Such gap 36 has a gap distance which may be between 100% and 200%, in a particular case 125%±15% of the maximal thickness T of the belt 20 to receive the belt 20 therein and maintain the desired shape in the fixed position. The belt 20 naturally pushing against the outer surface OSB may provide a sufficient normal force to generate a static friction force maintaining the belt 20 in position. Because of an inherent stiffness of the belt 20, support of the belt 20 along a substantial portion of its length while it is maintained in the fixed position may better hold the shape of the belt 20 and stabilize it in the belt loading device 30 pending the belt loading process onto the machining tool 16 and/or cause less variation in the position of the belt 20 from one belt loading device 30 to another when a plurality of those are present in the work cell 10 for a polishing operation requiring a number of replacement of belts, for instance. The automated loading process may thus be performed more reliably.
In at least some embodiments, such as shown, the portion of the movable part 34 extending beyond the side of the base support 32 includes outer support walls 34W′ opposite the wall 34W facing the inner surface ISB of the belt 20. The outer support walls 34W′ face the outer surface OSB of the belt 20. The outer support walls 34W′ extend parallel to the walls 32W of the base support 32, in the embodiment shown. The gap 36 discussed above between walls 32W, 34W may extend between the walls 34W facing the inner surface ISB of the belt 20 and the outer support walls 34W′ of the movable part 34. The outer support walls 34W′ may be offset (slightly offset) relative to those walls 32W in other embodiments. The outer support walls 34W′ may provide additional lateral support on the outer surface OSB of the belt 20, which may even better hold the shape of the belt 20 in embodiments where the movable part 34 extend beyond the side of the base support 32. In an embodiment, with the walls 34W, 34W′ of the movable part 34 and walls 32W of the base support 32 as shown, at least 90% of the length L of the belt 20 may be supported laterally on both sides thereof. Such proportion of the length L may be less in other embodiments, for instance where the walls are segmented or where the walls are rather a series of spaced apart pins disposed along the profile of these walls.
In at least some embodiments, such as shown, a recess 37 is defined in an upper face 34U of the movable part 34 at an end 34B of the movable part 34. As shown, the end 34B with the recess 37 is on the closed end side of the belt loading device 30, opposite the open-ended end 33A of the slot 33. The recess 37 defines a space 37S (or empty volume) in which the driven idler 22B of the machining tool 16 may be inserted to engage the inner surface ISB of the belt 20 during the belt loading process. The space 37S is delimited at a bottom by the upper face 34U, at a top by a plane extending along a top surface of the base support 32, and surrounded by the wall 32W of the base support 32, as shown. The recess 37 may limit or avoid contact between the driven idler 22B and the movable part 34 when the machining tool 16 initiates engagement with the inner surface ISB of the belt 20. It may enable the driven idler 22B to be inserted behind the inner surface ISB of the belt 20 and to push it against the radius corner 20B before initiating the compression of the tensioner 24. This may limit or prevent movement of the movable part 34 at such stage of the process, which may limit displacement of the belt 20 at that stage. Wears of the machining tool 16 by repetitive contact with movable parts 34 of belt loading devices 30 may also be better controlled this way.
In at least some embodiments, such as shown, another recess 39 may be defined in the upper face 34U of the movable part 34, at the other end 34A of the movable part 34. As shown, the portion of the movable part 34 that extends beyond the open-ended end 33A of the slot 33 has such recess 39. Such recess 39 may limit interference between the machining tool 16 and the movable part 34 when the machining tool 16 initiates the engagement with the belt 20 at the closed end of the slot 33. A depth of such recess 39 may be minimized in some embodiment, so as to limit a propensity to have the belt 20 slipping into the recess 39 and getting stuck therein, between the driving idler 22A and the movable part 34 when the belt 20 is released from the device 30.
In the biased position, the movable part 34 is located in the tool engaging area circumscribed by the inner surface ISB of the belt 20. The movable part 34 has a length smaller than that of the tool engaging area, in a direction extending between the opposite radius corner 20A, 20B. In the depicted embodiment, a clearance 40A, 40B is defined between the inner surface ISB of the belt 20 in the radius corners 20A, 20B and the respective ends of the movable part 34. Such clearance 40A, 40B may facilitate the engagement of the idlers 22 of the machining tool 16 during the belt loading process and/or avoid undesirable pinching and/or squeezing of the belt 20 between the machining tool 16 and the belt loading device 30 during the belt loading process. In the depicted embodiment, the clearance 40A, 40B has a dimension taken along the length of the movable part 34 that is approximately equal to (±10%) the radius of the radius corner 20A, 20B of the belt 20. The dimension of the clearances 40A, 40B may be smaller, e.g., more than 10% smaller than the radius of the radius corner 20A in other embodiments. It may be desirable to minimize the dimension of the clearances 40A, 40B so as to hold the shape of the belt 20 and stabilize it over a maximized portion of its length L in the belt loading device 30 pending the belt loading process. In an embodiment, for instance such clearances 40A, 40B may have the same dimension as the gap distance between the opposite walls of the base support 32 and the movable part 34. This may apply to one or both of the clearances 40A, 40B. One or both of the clearances 40A, 40B may have a different dimension in other embodiments.
Referring to
Movement of the movable part 34 relative to the base support 32 may be guided, for instance by one or more guiding pins or other guiding features, e.g., slots, rails, rollers. In the depicted embodiment, guiding pins PP (
The bias is provided via a biasing member 42 between the base support 32 and the movable part 34. In the depicted embodiment, the biasing member 42 includes a spring. There may be a plurality of biasing members 42 to bias the movable part 34 relative to the base support 32. For instance, in an embodiment, there is a pair of biasing members 42, aligned with respective ones of the guiding pins PP (discussed above). Different types of biasing member(s) may be contemplated. For example, one or more leaf spring(s) or blade(s), torsion spring(s), elastically deformable member(s), such as elastomeric bumper(s), etc. Other resilient components, or a plurality of resilient components forming parts of the biasing member(s) may be contemplated. A material of such biasing member(s) may be an elastomer, fiber-reinforced composite, metallic, as some possibilities. In
Referring to
As shown in
In at least some embodiments, the machining tool 16 does not contact the movable part 34 as the end 27 and/or driven idler 22B initiates engagement with the inner surface ISB of the belt 20. As described above, the end 27, which includes the driven idler 22B in the depicted embodiment, may be inserted in the recess 37, at least partially, as the driven idler 22B engages with the inner surface ISB. As shown, upon application of the pressure on the inner surface ISB, the belt 20 may contact the closed end 33B of the slot 33 in the base support 32 as the machining tool 16 engages the inner surface ISB of the belt 20 in the radius corner 20B. The driven idler 22B at the end of the extendable rod 26 of the machining tool 16 may abut against the closed end 33B of the slot 33, via contact with the belt 20, to retract the extendable rod 26 as the machining tool 16 initiates engagement with the belt 20 at the closed end 33B.
As shown in
As shown in
As shown in
A belt loading process/method 700 is represented in a flow chart at
In at least some embodiments, at least one of the engaging the first end portion and the engaging of the second end portion includes applying a pressure on the inner surface ISB of the belt 20 via an idler 22 of the machining tool.
In at least some embodiments, the engaging the first end portion includes engaging an idler 22 of the machining tool 16 at an angle θ between 0° and 45° relative to a projection line normal to the inner surface ISB of the belt 20.
In at least some embodiments, the engaging the first end portion includes inserting at least partially an idler 22 of the machining tool 16 in a space 37S defined by a recess 37 in the movable part.
In at least some embodiments, the engaging the first end portion includes retracting an extendable rod 26 of the machining tool 16 from an elongated state to a retracted state.
In at least some embodiments, the engaging the second end portion includes gaining an elongated state of an extendable rod 26 of the machining tool 16.
In at least some embodiments, the engaging the second end portion includes releasing a pressure at the first end portion of the machining tool 16 against the inner surface ISB of the belt 20.
In at least some embodiments, the displacing the movable part 34 from the biased position to the belt releasing position includes taking up a space left by the movable part 34 within a base support 32 of the loading device 30 with the machining tool 16.
In at least some embodiments, the displacing the movable part 34 from the biased position to the belt releasing position includes removing the movable part 34 from a tool engaging area circumscribed by the inner surface ISB of the belt 20 and inserting part of the machining tool 16 in the tool engaging area.
In at least some embodiments, the displacing the movable part 34 from the biased position to the belt releasing position includes moving the movable part 34 in a single degree of freedom in translation relative to a base support 32 of the belt load device 30.
The belt loading device 30 described herein with respect to various embodiments may be manufactured using one or more manufacturing technique, e.g., machining, casting, molding, additive manufacturing.
The belt loading device 30 as described herein may allow repeatability in use, facilitate handling and/or loading/unloading the belt 20 thereto/therefrom in an automated machining operation, such as a surface treatment operation mentioned herein, via suitable programming of the robot 12 to perform the movement of the machining tool 16 of the method described herein.
The embodiments described in this document provide non-limiting examples of possible implementations of the present technology. Upon review of the present disclosure, a person of ordinary skill in the art will recognize that changes may be made to the embodiments described herein without departing from the scope of the present technology. For example, while the present disclosure described the work cell 10 including the machining tool 16 in the context of a polishing process of a component, such as an aircraft engine component, the present disclosure may also apply to other practical applications involving an automated surface treatment or material removal process. As another example, while the belt loading device 30 is passive, i.e. unpowered, the belt loading device 30 may be actuated with one or more actuators, to displace the movable part 34 relative to the base support 32, for instance. In such case, the biasing member may not be present or be operatively coupled with the one or more actuators to bias the movable part 34 in the biased position and/or control movement of the movable part 34 relative to the base support 32. As another example, in other applications, the driving idler 22A could be in contact with the inner surface ISB while the tensioner 24 is being compressed and the driven idler 22B inserted last, during motion onto the mobile part 34.
Yet further modifications could be implemented by a person of ordinary skill in the art in view of the present disclosure, which modifications would be within the scope of the present technology.