The invention relates generally to power-driven conveyors. In particular the invention relates to conveyor belt modules joined at hinges to form modular conveyor belts.
Modular plastic conveyor belts are used to convey products. The belts are constructed of rows of plastic belt modules joined by hinge rods at hinge joints. For repair and often for cleaning, a belt has to be partly disassembled for a broken module to be replaced or for the belt to be removed from the conveyor frame for remote cleaning. The first stage in disassembling a modular plastic conveyor belt is the removal of a hinge rod by plant maintenance personnel. When in a hurry or without a proper tool at hand, maintenance personnel may snip or otherwise break off an edge of belt to expose the end of a hinge rod for a better purchase to pull it out of its hinge joint. Once the hinge rod is extracted, the belt can be removed from the conveyor, or broken modules can be replaced. But the broken belt edge loses its effectiveness as a hinge-rod retainer and becomes a potential snag point.
One version of a conveyor belt module embodying features of the invention comprises a deck extending in length from a first end to a second end, laterally in width from a first side to a second side, and in thickness from a top side to a bottom side. First hinge elements are spaced apart laterally across the width of the deck along the first end, and second hinge elements are spaced apart laterally across the width of the deck along the second end. A rib protrudes from and extends laterally along the bottom side of the deck. The rib divides the bottom side of the deck into a first region forming a first channel between the rib and the first hinge elements and a second region forming a second channel between the rib and the second hinge elements. A module edge portion extends laterally outward from the first side of the deck to an outer edge. The module edge portion includes a top surface forming a continuation of the top side of the deck from the first side out to the outer edge and a bottom surface extending laterally inward from the outer edge short of the first side of the deck. The bottom surface forms with the top surface a thickened outer edge region thicker than the deck.
One version of a conveyor belt embodying features of the invention comprises a series of rows of one or more conveyor belt modules extending laterally in width from a first belt edge to a second belt edge and hingedly connected end to end at hinge joints between consecutive rows. Each of the rows includes a deck that extends in length from a first end to a second end, laterally across the row in width from a first side to a second side, and in thickness from a top side to a bottom side. First hinge elements are spaced apart laterally across the width of the deck along the first end, and second hinge elements are spaced apart laterally across the width of the deck along the second end. A rib protrudes from and extends laterally along the bottom side of the deck. The rib divides the bottom side of the deck into a first region forming a first channel between the rib and the first hinge elements and a second region forming a second channel between the rib and the second hinge elements. A first module edge portion extends laterally outward from the first side of the deck to an outer edge defining the first belt edge, and a second module edge portion extends laterally outward from the second side of the deck to an outer edge defining the second belt edge. Each of the first and second module edge portions includes a top surface forming a continuation of the top side of the deck from the first side out to the outer edge and a bottom surface extending laterally inward from the outer edge short of the deck. The bottom surface forms with the top surface a thickened outer edge region.
One version of a conveyor embodying features of the invention comprises a conveyor belt and a reversing element. The conveyor belt is constructed of a series of rows of one or more conveyor belt modules extending laterally in width from a first belt edge to a second belt edge and hingedly connected end to end at hinge joints between consecutive rows. Each of the rows includes a deck extending in length from a first end to a second end, laterally across the row in width from a first side to a second side, and in thickness from a top side to a bottom side. First hinge elements are spaced apart laterally across the width of the deck along the first end, and second hinge elements are spaced apart laterally across the width of the deck along the second end. A rib protrudes from and extends laterally along the bottom side of the deck. The rib divides the bottom side of the deck into a first region forming a first channel between the rib and the first hinge elements and a second region forming a second channel between the rib and the second hinge elements. A first module edge portion extends laterally outward from the first side of the deck to an outer edge defining the first belt edge, and a second module edge portion extends laterally outward from the second side of the deck to an outer edge defining the second belt edge. Each of the first and second module edge portions includes a top surface forming a continuation of the top side of the deck from the first side out to the outer edge and a bottom surface extending laterally inward from the outer edge short of the deck. The bottom surface forms with the top surface a thickened outer edge region thicker than the deck. The reversing element has a cylindrical periphery with a plurality of lateral grooves sized to receive the ribs and opening up at each end of the lateral grooves to edge recesses sized to receive the bottom surfaces of the thickened outer edge regions. The bottom surfaces are confined in the edge recesses to limit lateral wander of the conveyor belt along the reversing element.
One version of conveyor belt modules having sturdy, thickened edges is shown in
One of the first hinge elements 22—the one closest to the first side 18 of the deck 12—is a laterally wider first hinge element 22A serving as an indexing hinge element. A corresponding wide space 24A at the first side 18 and the second end 15 is sized to receive the wide first hinge element 22A of an adjacent module 10. Because the wide hinge element 22A is too wide to fit in the other spaces 24 along the second end 15, the modules 10 can't be mistakenly misaligned during assembly: there is only one way to join them together. The wide hinge element 22A and the wide space 24A could alternatively be formed at other lateral positions along the groups of hinge elements 22, 23 to prevent the modules from being misaligned during assembly.
A rib 32 protruding from the bottom side 21 of the deck 12 extends laterally between the first and second sides 18, 19. The rib 32, which can serve as a drive bar for a drive sprocket or as an impact bar, divides the bottom side 21 of the deck 12 into a first region forming a first channel 34 between itself and the first hinge elements 22 and a second region forming a second channel 35 between itself and the second hinge elements 23.
A module edge portion 36 extends laterally outward from the first side 18 of the deck 12 to an outer edge 38. The edge portion 36 has a top surface 40 that forms a continuation of the top side 20 of the deck 12 out to the outer edge 38. A bottom surface 41 of the edge portion 36 extends laterally inward of the outer edge 38 short of the first side 18 of the deck 12. The bottom surface 41 forms a thickened outer edge region 42 with the top surface 40 and can be made wide enough to serve as a wear pad that slides along a carryway wearstrip. The thickened outer edge region 42 extends through the thickness of the module 10 on the module edge portion 36. A rib continuation 44 on the edge portion 36 extends from the bottom-side rib 32 at the first side 18 of the deck 12 to the bottom surface 41 to form extensions of the first and second channels 34, 35 onto the module edge portion out to the thickened outer edge region 42. The bottom surface 41 of the edge portion 36, the rib continuation 44, and the rib 32 extend to the same level 46 so as to be coplanar in this version. But they could extend to different levels in other versions.
The rib continuation 44 curves away from collinear alignment with the rib 32 to meet the bottom surface 41 at a first edge end 48 of the edge portion 36. The first edge end 48 is aligned with the first end 14 of the deck 12. An opposite second edge end 49 is outwardly offset in the length direction from the second end 15 of the deck 12. An edge hinge element 50 at the second edge end 49 has a rod hole 52 aligned with the rod holes 26 of the second hinge elements 23 along the second end 15 of the deck 12. The end of the hinge rod 28 normally resides between the edge hinge element 50 and the thickened outer edge region 42.
A web 54 extends from the thickened outer edge region 42 inward to the edge hinge element 50. The curved web 54 is continuous with the top surface 40 and extends around the circumference of the edge hinge element 50 to form a nose extending laterally along the second edge end 49 of the module edge portion 36. The web 54 extends circumferentially far enough to provide a guard preventing a finger from being pinched at the hinge joint 30. An inner wall 55 aligned with and facing the second hinge elements 23 and the edge hinge element 50 forms a stop for the hinge rod 28.
The end of the extension of the second channel 35 opens into a broader terminal space, a lacuna 56, bounded by the rib continuation 44, the thickened outer region 42, and the web 54. Cleaning fluid or water sprayed onto the bottom side of a conveyor belt in the belt return advances along the second channel 35 and into the lacuna 56, which exposes the edge hinge element 50, the inner side of the web 54, and the end of the hinge rod 28 to the cleaning fluid as indicated by the arrow 58. Cleaning fluid or water is guided by the first channel 34 to the first edge end 48 to clean between the edge portions 36 of adjacent modules 12, as indicated by the arrow 59.
The flat bottom surface 41 extends inward of the outer edge 38 to a ramp 57 that slopes further inward to the bed of the lacuna 56. The curved ramp 57, which forms an inner wall bounding the lacuna 54, prevents a pliers from getting a good purchase on the module edge portion 36 and snapping it off.
Another version of conveyor belt modules is shown in
As shown in
The rows are reconnected by first interleaving their first and second hinge elements 22, 23 into alignment. Then the end portion of the hinge rod 28 is bent and slid along a depression 82 in the outer edge portion 68 and into the rod hole in the edge hinge element 50. The hinge rod 28 is then pushed through the lateral passageway formed by the interleaved hinge elements 22, 23 to rejoin the two adjacent belt rows.
A modular conveyor belt 84 constructed of rows 86 of belt modules 10 (
Another version of a belt edge module usable in a conveyor belt as in
Yet another version of an edge module 110 with a thickened outer region 112 and usable in a conveyor belt as in
Although the invention has be described in detail with respect to a few illustrative versions used to describe features of the invention, other versions are possible. For example, the lateral ribs or drive bars on the bottoms of the belt modules are shown as continuous and joining the thickened outer edge portions in all the versions. But the ribs could be divided into segments across gaps or could be separated from the thickened outer edge portions by gaps. And complementary reversing-element peripheries that mate with the bottoms of belt modules other than those in
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2020/026683 | 4/3/2020 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2020/219255 | 10/29/2020 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4832187 | Lapeyre | May 1989 | A |
4925016 | Lapeyre | May 1990 | A |
4934517 | Lapeyre | Jun 1990 | A |
4949838 | Lapeyre et al. | Aug 1990 | A |
4953693 | Draebel | Sep 1990 | A |
4971191 | Lapeyre | Nov 1990 | A |
4974724 | Lapeyre | Dec 1990 | A |
5105938 | Tan | Apr 1992 | A |
5377819 | Horton et al. | Jan 1995 | A |
5507383 | Lapeyre et al. | Apr 1996 | A |
5598916 | Horton et al. | Feb 1997 | A |
5850902 | Hicks et al. | Dec 1998 | A |
5921379 | Horton | Jul 1999 | A |
6345715 | Palmaer | Feb 2002 | B2 |
6814223 | Verdigets et al. | Nov 2004 | B1 |
6859516 | Verdigets | Feb 2005 | B2 |
7073662 | Neely et al. | Jul 2006 | B2 |
7575113 | Sedlacek et al. | Aug 2009 | B2 |
7832549 | Honeycutt | Nov 2010 | B2 |
7980385 | Guernsey | Jul 2011 | B2 |
8464862 | Honeycutt et al. | Jun 2013 | B2 |
8579104 | Weiser et al. | Nov 2013 | B2 |
8776998 | Weiser et al. | Jul 2014 | B2 |
8863944 | MacLachlan | Oct 2014 | B2 |
9254964 | Oertling | Feb 2016 | B2 |
9550628 | Wunsch | Jan 2017 | B2 |
20030136647 | Knott et al. | Jul 2003 | A1 |
20100258410 | Wunsch | Oct 2010 | A1 |
20130248326 | Ruge et al. | Sep 2013 | A1 |
Number | Date | Country |
---|---|---|
2017062430 | Apr 2017 | WO |
Entry |
---|
Extended European Search Report, European Patent Application No. 20795282.1, dated May 30, 2023, European Patent Office, Munich, Germany. |
Number | Date | Country | |
---|---|---|---|
20220212874 A1 | Jul 2022 | US |
Number | Date | Country | |
---|---|---|---|
62837819 | Apr 2019 | US |