A child safety system is also housed in the locking side shell 16. This has a stepped gear 18 (see
A belt webbing withdrawal measurement arrangement 30, which likewise uses the control disk 26 in order to determine how much belt webbing is or is being withdrawn from the belt spool 12, is likewise arranged in the locking side shell 16. For this purpose, the control disk 26 has additional encircling teeth 32 which transfer the rotary movement of the control disk 26 via an intermediate wheel 34 to a magnetic cogwheel 36. The magnetic cogwheel 36 is constructed as a separate part and may consist of a plastic bonded magnetic material or, as shown in the figures, may be a conventional cogwheel with a magnet 38 embedded therein.
The magnet 38 is arranged in such a way that its poles lie diametrically opposite each other (in relation to the centre of the magnetic cogwheel 36). Immediately opposite the magnetic cogwheel 36, a magnetic sensor element 40 is housed in the locking side shell 16, the sensor element 40 being arranged radially outside the control disk 26. The sensor element 40 is arranged flat in relation to the direction of view of
Deviating from the development shown in the figures, the sensor element 40 (including an associated plate) can form a pre-assembly group with the magnetic cogwheel 36 and a shared support piece, this group being inserted into the locking side shell 16 during assembly, brought into engagement with the (existing) child safety teeth, and secured. The support piece here is preferably magnetically neutral. An advantage of this development is the ability of the pre-assembly group to be checked separately, this group being additionally able to be calibrated with a corresponding wiring of the plate. In addition, the material of the support piece is independent of the shell material, which has a favorable effect on the temperature resistance, the accuracy of positioning, the continuous running behavior and the structural space.
Depending on the sensor element 40 which is used, different possibilities exist for connecting the sensor element and evaluating the signals emitted by the sensor element. As can be seen from
An alternative development according to
In the embodiment according to
The evaluating electronics 44 can be constructed as an independent control apparatus, but advantageously an existing control apparatus (ACR, vehicle seat control apparatus, gas bag module control apparatus, combination control apparatus etc.) is used, in order to read in the signals of the sensor element 40 and determine therefrom the belt webbing withdrawal. The information concerning the belt webbing withdrawal can be transferred for example via a vehicle bus system to further control apparatus which require this information.
The differential signal Y1-Y2 produces a sine vector of the magnetic field, whereas the differential signal X1-X2 produces a cosine vector orthogonal thereto. The angle φ between the magnet 38 and the sensor element 40 can be calculated with the following equation:
The belt webbing withdrawal is determined in the evaluating electronics 44 by means of the angle φ between the magnet 38 and the sensor element 40.
In
Alternatively, a so-called GMR sensor or AMR sensor can be used, which detects the absolute angle of the magnetic field via its sensor element and therefore detects the absolute belt webbing withdrawal. In both cases, a diametral magnet is used here. The horizontal magnetic field lines are used here to evaluate the angle.
In order to obtain reliable measured values, a rare earth magnet (Nd—Fe—B+binding agent) is used, for example.
The information determined by the belt webbing withdrawal measurement arrangement 30 concerning the belt webbing withdrawal (or respectively the belt webbing position) existing at a particular moment can be used for various applications. Thus, by determining the belt webbing withdrawal and comparison with a defined belt webbing position (which is regularly checked for example), an assessment can be made as to whether the vehicle occupant is bending forward. This information can be used in order to control or adapt restraint systems present in the vehicle, for instance a two-stage gas bag. Likewise, the information concerning the belt webbing withdrawal can be used to make plausible the signals of a video detection system, a weight sensor or another system for personal identification and positioning.
A further application lies in ascertaining the weight of the occupant, which can be determined with sufficient accuracy by an absolute measurement of the belt webbing withdrawal, in so far as data is available concerning the sitting position and a belt height adjuster.
The information on belt webbing withdrawal can be used in addition for motor-assisted comfort functions. In belt retractors, particularly with a reversible belt tensioner, the driving spring force can be reduced if a motor is switched on when the belt webbing is being taken off, which assists the driving spring in its retracting action.
If, for instance, in the case of a driving spring with a reduced force, the belt webbing is withdrawn without the occupant fastening the belt, the signal of belt webbing withdrawal can serve to activate the motor assistance.
A further case of application is as follows. If the motor control arrangement experiences a deceleration of the motor speed during the winding of the belt webbing after unfastening the belt, this may be the end position of the insert tongue or a deceleration of the belt webbing caused by the vehicle occupant or the vehicle geometry. By detecting the belt webbing withdrawal (or its change), various possibilities result for controlling or regulating. Thus, when belt webbing is withdrawn again, it can be deduced that the occupant would like to fasten the belt again. When the belt webbing is stationary, this may be a deceleration of the belt webbing on a seat contour. In this case, the retraction process can be repeated by the motor as often as required, until the end position is reached.
The information on the belt webbing withdrawal can also be used in the case of a standard driving spring with motor assistance according to requirements, which is used for example at low temperatures or in order to compensate for aging effects. If the sensor element does not detect any movement of belt webbing after unfastening (i.e. a change in the belt webbing withdrawal), the motor assistance is activated, which brings the insert tongue into its final position.
a) SENSOR sin x MICRO CONTROLLER Position Signal cos x
b) SENSOR angle MICRO CONTROLLER Position Signal with integrated x angle calculation analog
c) SENSOR angle MICRO CONTROLLER
Position Signal
with integrated x angle calculation digital
d) SENSOR diagnostic signals MICRO CONTROLLER Position Signal angle information
Number | Date | Country | Kind |
---|---|---|---|
10 2006 032 066.2 | Jul 2006 | DE | national |