This description relates to belt sanders.
Woodworkers often wish to smooth a surface of a workpiece prior to the completion of a woodworking project. For example, many workpieces require at least a minimal amount of sanding in order to remove any excess glue or rough edges, prior to completion of the project. Different types of sanders may be used for such sanding, e.g., to improve a surface quality and appearance of the workpiece. For example, such sanders may include a piece of sandpaper held in the woodworker's hand, or may include automated sanders, such as orbital sanders or quarter pad finishing sanders.
A belt sander is another example of a type of sander. Belt sanders generally include some mechanism for maintaining a sanding belt around two rollers. During operation, such belt sanders are designed to provide sufficient tension to the sanding belt to avoid skewing thereof, while avoiding excess tension that may lead to a breaking of the sanding belt.
According to one general aspect, a belt sander includes a sanding assembly having a first roller and a second roller, the sanding assembly being configured to receive a sanding belt around the first roller and the second roller to define a sanding surface therebetweeen. The belt sander also includes a motor operationally coupled to the sanding assembly and opposite the sanding surface, the motor being configured to rotate at least the first roller and thereby rotate the sanding belt around the first roller and the second roller, and a handgrip formed around at least a portion of the motor and substantially encasing the motor.
Implementations may include one or more of the following features. For example, the motor may be oriented in-line with a longitudinal axis along the belt sander and intersecting the first roller and the second roller. A center of gravity of the belt sander may be substantially centered over the sanding assembly. The motor may be included within a three-dimensional area defined by a perimeter of the sanding assembly and extending in a direction of the motor. The motor may include an alternating-current motor.
A gear train coupling the motor to the first roller may be included, the gear train including a cross-axis gearing configured to translate a rotation of a motor shaft of the motor into a rotation of a drive pulley shaft that is perpendicular to the motor shaft and parallel to an axis of the first roller. A platen may be disposed between the first roller and the second roller and between the sanding surface and the motor, and a center of gravity of the belt sander may be substantially centered over the platen. The platen may have a length that is approximately less than 150 mm.
An entry area for a power cord may be included at a rear of the belt sander and contoured for gripping during operation of the belt sander. A detachable auxiliary handle mounted at a front of the belt sander also may be included.
A length of the belt sander may be less than approximately 350 mm. A distance between a first axis of the first roller and a second axis of the second roller may be less than approximately 250 mm. A width of the handgrip may be less than approximately 100 mm. The motor may be configured to provide at least 0.25 hp in driving the sanding belt. The sanding belt may be at least 300 mm in length, and the motor may be configured to drive the sanding belt at a minimum of 600 sfpm.
A tracking mechanism may be included, and the tracking mechanism may include a sidewall of the belt sander, a yoke having a roller mount at a front end that is configured for mounting the front roller of the belt sander, the yoke being supported by the sidewall, a pivot pin mounted between the sidewall and the roller mount, and a tracking shaft extending through the sidewall and positioned to move against the yoke and pivot the yoke about the pivot pin. Additionally, or alternatively, a belt tracking mechanism may be included, the belt tracking mechanism including a frame supporting the second roller as an idle roller, said idle roller having an idle roller axle, said idle roller revolving about said idle roller axle, and a yoke supporting said idle roller axle, said yoke lying substantially orthogonal to said idle roller axis and allowing said idle roller and idle roller axis to freely translate along a longitudinal direction, while constraining said idle roller axis from movement along a vertical direction substantially orthogonal to said longitudinal direction.
A brush mounting system may be included that includes a concave brush card having a first brush box and a second brush box attached proximate a first end and a second end of the brush card, and at least one fastener attaching the brush card around a commutator of the motor of the belt sander with the first brush box and the second brush box positioned to provide contact to corresponding motor brushes and substantially opposing sides of the commutator.
According to another general aspect, a belt sander includes a sanding assembly including a rear roller, a front roller, the sanding assembly being configured to receive and rotate a sanding belt around the rear roller and the front roller during operation of the belt sander. The belt sander includes a motor mounted over the sanding assembly and balanced with respect to the sanding assembly in a direction substantially parallel to an axis of the rear roller, and a handgrip at least partially encasing the motor.
Implementations may include one or more of the following features. For example, the handgrip may substantially encase the motor above the sanding assembly. A lower portion of the handgrip may be at or below a bottom of the motor. A cross-axis gearing may be included that is operably connected to the motor and that may be operable to translate a motion of the motor into a rotation of the rear roller. The motor may include an alternating current motor.
According to another general aspect, a sanding assembly is attached to a gear housing, the sanding assembly being configured to receive a sanding belt and including a rear roller and a front roller. A motor is attached to the gear housing above the sanding assembly, the motor being mounted in-line with an axis that intersects the rear roller and the front roller. A handgrip is attached at least partially encasing the motor.
Implementations may include one or more of the following features. For example, in attaching the handgrip, the handgrip may be attached with a lower portion of the handgrip at or below a bottom of the motor, and/or the handgrip may be attached substantially encasing the motor above the sanding assembly. In attaching the sanding assembly, a tracking box may be attached that may include a tracking mechanism configured to provide a tracking of the sanding belt on the sanding assembly.
According to another general aspect, a belt sander includes a sanding assembly having a first roller and a second roller, the sanding assembly being configured to receive a sanding belt around the first roller and the second roller to define a sanding surface therebetweeen, a motor operationally coupled to the sanding assembly and opposite the sanding surface, the motor being configured to provide at least 0.25 hp to rotate at least the first roller and thereby rotate the sanding belt around the first roller and the second roller, and a handgrip having a width of less than approximately 100 mm.
Implementations may include one or more of the following features. For example, the handgrip may be formed around at least a portion of the motor and substantially encasing the motor.
According to another general aspect, a belt sander includes a sanding assembly having a first roller and a second roller, the sanding assembly being configured to receive a sanding belt around the first roller and the second roller to define a sanding surface therebetweeen, and a motor operationally coupled to the sanding assembly and opposite the sanding surface, the motor being configured to provide at least 0.25 hp to rotate at least the first roller and thereby rotate the sanding belt around the first roller and the second roller, wherein the belt sander has a length of less than approximately 350 mm.
Implementations may include one or more of the following features. For example, the handgrip may be formed around at least a portion of the motor and substantially encasing the motor.
According to another general aspect, a tracking mechanism for a belt sander includes a sidewall of the belt sander, and a yoke having a roller mount at a front end that is configured for mounting a front roller of the belt sander, the yoke being supported by the sidewall. A pivot pin is mounted between the sidewall and the roller mount, and a tracking shaft extends through the sidewall and is positioned to move against the yoke and pivot the yoke about the pivot pin.
Implementations may include one or more of the following features. For example, a side-loaded spring may be loaded against the yoke on a side of the belt sander opposite to the sidewall, the pivot pin, and the tracking shaft. The tracking shaft may be movable against the yoke in response to a user rotation of a tracking knob attached thereto and exterior to the belt sander. Movement of the tracking shaft against the yoke may alter an angle of a front roller of the belt sander relative to a rear roller of the belt sander.
The sidewall may include a groove in which the pivot pin is mounted. The pivot pin may be fixed to the sidewall and slidable against the roller mount to allow longitudinal movement of the yoke relative to the sidewall. The pivot pin may be fixed to the roller mount and slidable against a groove of the sidewall to allow longitudinal movement of the yoke relative to the sidewall. A distance from the tracking shaft to the pivot pin may be within a range of 70-100 mm, e.g., may be within a range of 84-92 mm. A distance from the tracking shaft to the pivot pin may be maximized relative to one or more of a length of the belt sander, a length of the sanding belt, a distance between a front axis of the front roller and a rear axis of a rear roller of the belt sander, and/or a length of a platen disposed in contact with the sanding belt during operation of the belt sander.
A tracking box may be mounted on the sidewall that contains slots in which the yoke is mounted. A degree of movement of the tracking shaft may be selectable to provide a desired tracking of a sanding belt on the front roller and a rear roller of the belt sander.
According to another general aspect, a tracking mechanism for a belt sander includes a roller mount configured to hold a front roller of the belt sander, a pivot pin in contact with the roller mount and a sidewall of the belt sander, and a tracking shaft extending through the sidewall and movable against a yoke attached to the roller mount, for rotation of the roller mount about the pivot pin.
Implementations may include one or more of the following features. For example, A spring may be included on an opposite side of the yoke from the pivot pin and tracking shaft and may load the yoke against the pivot pin and tracking shaft. The yoke may be mounted within slots of a tracking box that is mounted on the sidewall. Rotation of the roller mount about the pivot pin may adjust a degree of parallelism between the front roller and a rear roller of the belt sander. The tracking shaft may extend through the sidewall between a rear roller of the belt sander and the front roller, and the tracking shaft may be located toward the rear roller.
According to another general aspect, a tracking mechanism of a belt sander is constructed. A sidewall of the belt sander is formed, the sidewall including a bore and a groove. A tracking shaft is inserted through the bore, a pivot pin is positioned in the groove, and a roller mount configured to hold the front roller is mounted against the pivot pin. A yoke attached to the roller mount is positioned against the tracking shaft, and the yoke and the roller mount are loaded against the tracking shaft and pivot pin, respectively.
Implementations may include one or more of the following features. For example, in loading the yoke and the roller mount a spring may be positioned against the yoke on a side of the belt sander opposite the sidewall. A tracking knob may be mounted on an end of the tracking shaft exterior to the belt sander, wherein rotation of the tracking knob may be translated into motion of the tracking shaft against the yoke and corresponding rotation of the roller mount about the pivot pin.
According to another general aspect, a belt tension control mechanism for a belt sander includes a yoke having a roller mount configured to support a front roller, the yoke having a surface extending away from the roller mount and being movable with respect to a rear roller, a flange attached to the surface and at an angle with the surface, a cam shaft having grooves formed therein and extending through the frame, the cam shaft having a cam extending therefrom in a vicinity of the flange, a knob having mated grooves formed therein and configured to allow sliding of the knob onto the cam shaft, and a belt tension knob that is exterior to a frame of the belt sander and configured for rotation thereof to provide contact between the cam and the flange and resulting motion of the yoke and the roller mount in a direction toward the rear roller.
Implementations may include one or more of the following features. For example, the motion of the roller mount toward the rear roller may be sufficient to permit installation of a sanding belt around the rear roller and the front roller for operation of the belt sander therewith. A spring loading the yoke and roller mount in a direction away from the rear roller also may be included.
According to another general aspect, a tracking box for a belt sander includes a frame attached to a sidewall of the belt sander between a front roller and a rear roller of the belt sander, the frame having a front portion and a bottom portion, and having at least one groove along a length of the front portion. A platen is included having a top surface, and having a flange formed above the top surface at one end thereof and inserted into the groove to maintain the top surface of the platen relative to the bottom portion of the frame.
Implementations may include one or more of the following features. For example, an adhesive pressure-sensitive surface may be attached to the platen and positioned between the top surface of the platen and the bottom portion of the frame. A tracking box cover may be attached to the frame and may maintain the platen in position with respect to the frame.
The frame may include a secondary groove on a back portion of the frame, the platen may include a secondary flange formed above the top surface of the platen at a second end thereof, and the secondary flange may be inserted into the secondary groove.
The groove and the flange may be substantially triangular in shape. The platen may extend beyond the frame in a direction toward the rear roller. Slots may be formed in the frame that are substantially parallel to an axis of the rear roller, and a yoke may be positioned within the slots, the yoke being attached to a roller mount configured to receive the front roller.
According to another general aspect, a frame is formed having a groove along a first surface thereof. The frame is mounted in front of a rear roller axle of a belt sander, a platen having a flange above a top surface thereof is formed, and the platen is joined to the frame by inserting the flange into the groove to thereby match the top surface of the flange to a bottom surface of the frame.
Implementations may include one or more of the following features. For example, in forming the frame, the frame may be extruded with the groove formed therein. In forming the platen, metal may be stamped into a desired shape of the platen, and/or the flange may be formed in a substantially concave shape.
According to another general aspect, a belt sander includes a first roller, a second roller, a motor operationally coupled to the first roller to cause rotation thereof, a groove formed in the first roller, and a band within the groove, the band being in contact with a sanding belt of the belt sander during operation thereof and configured to impart motion of the first roller to the sanding belt for rotation of the sanding belt around the first roller and the second roller.
Implementations may include one or more of the following features. For example, the groove may be formed substantially centered around a middle of the first roller. The band may include an elastimer and/or rubber material. The rear roller may include a crowning at a center portion thereof.
According to another general aspect, a rear roller of a belt sander is formed. A groove is formed in the rear roller, and a drive band is attached within the groove.
Implementations may include one or more of the following features. For example, in forming the rear roller the rear roller may be formed using Aluminum. In forming the groove, the groove may be formed substantially centered about a middle of the rear roller.
According to another general aspect, a drive mechanism for a belt sander includes a motor, a drive pulley operationally coupled to the motor and rotated by the motor, a driven pulley operationally coupled to a drive roller of the belt sander to rotate the drive roller, and a pre-tensioned drive belt around the drive pulley and the driven pulley to translate rotation of the drive pulley by the motor into rotation of the drive roller, the pre-tensioned drive belt having sufficient pre-tensioning to allow slippage of the pre-tensioned drive belt in response to a selected torque value of the motor.
Implementations may include one or more of the following features. For example, the selected torque value may be outside of a torque range of the motor. An amount of the slippage provided by the pre-tensioned drive belt may be determined to provide time for stoppage of the belt sander in response to a jamming of the belt sander. The selected torque value may be determined based on a torque value that is potentially damaging to the motor and/or associated gears. The selected torque value may be determined based on one or more of: a length of the pre-tensioned drive belt, a diameter of the drive pulley and/or the driven pulley, and/or a center distance between the drive pulley and the driven pulley.
According to another general aspect, a belt sander protection mechanism includes a housing having a sidewall and a topwall joined to the sidewall, the topwall having a slot formed therein that is proximate to a surface of the sidewall, a wear plate having a first end positioned within the slot and maintained against the sidewall, and a tracking box fastened to the housing and trapping a second end of the wear plate between the tracking box and the surface of the sidewall.
Implementations may include one or more of the following features. For example, the wear plate may extend from the sidewall and may contact a sanding belt of the belt sander when the sanding belt skews in a direction of the sidewall. The topwall may be substantially perpendicular to the sidewall. A secondary slot formed in the topwall adjacent to the sidewall may be included, and a secondary wear plate may be maintained against the sidewall by the secondary slot and by the tracking box.
The wear plate may include a ceramic material. The wear plate may be substantially rectangular in shape. Side-locating ribs may be formed in the sidewall and may restrict a motion of the wear plate in a direction parallel to the sidewall.
According to another general aspect, a gear box of a belt sander includes a seal assembly through which a shaft is inserted, the shaft being attached to a gear portion, wherein the seal assembly and gear portion are slip-fit into a bore of the gear box with the gear portion being interior to the seal assembly within the gear box, and a bearing through which the shaft is inserted, the bearing being slip-fit into the bore and exterior to the seal assembly.
Implementations may include one or more of the following features. For example, the gear portion may be positioned relative to the seal assembly to contact the seal assembly and thereby remove the seal assembly from the bore in response to a retraction of the shaft from the gear box.
The seal assembly may include a seal holder having a bore formed therein and containing a lip seal. The gear portion may be positioned relative to the seal assembly to contact the seal holder and thereby remove the seal assembly from the bore in response to a retraction of the shaft from the gear box, substantially without damaging the lip seal. A smallest diameter on a flange of the gear portion may be larger than a diameter of the lip seal. The seal assembly may include a seal holder having a groove formed around an outer perimeter thereof, and the groove may contain an O-ring or a rubber gasket.
The gear portion may include a gear and the shaft may include a jackshaft of a drive pulley that is configured to rotate a drive belt of the belt sander. The gear portion may include a pinion and the shaft may include a motor shaft. The shaft may include a drive pulley shaft and a motor shaft that may be positioned substantially perpendicularly to one another within the gear box.
According to another general aspect, a seal assembly is assembled, and a shaft is inserted through a bearing, the seal assembly, and a gear portion. The gear portion, seal assembly, and bearing are inserted into a bore of a gearbox of a belt sander.
Implementations may include one or more of the following features. For example, in assembling a seal assembly a lip seal may be positioned into a seal holder, and a ring may be placed within a groove formed around an outer perimeter of the seal holder. In inserting a shaft, a drive pulley shaft may be inserted through the bearing, the seal assembly, and the gear portion. In inserting a shaft, a motor shaft may be inserted through the bearing, the seal assembly, and the gear portion.
According to another general aspect, brush mounting system for a belt sander includes a concave brush card having a first brush box and a second brush box attached proximate a first end and a second end of the brush card, and at least one fastener attaching the brush card around a commutator of a motor of the belt sander with the first brush box and the second brush box positioned to provide contact to corresponding motor brushes and substantially opposing sides of the commutator.
Implementations may include one or more of the following features. For example, the brush card may be accessible by removal of a side portion of a handgrip of the belt sander. The brush card may include a first spring associated with the first brush box and loading associated brushes against the commutator to maintain electrical contact therebetween. The brush card may include a second spring associated with the second brush box and loading associated brushes against the commutator to maintain electrical contact therebetween. The first brush box may be mounted onto the brush card with mounting tabs. Electrical contacts may be associated with the first brush box and the second brush box and may be positioned to transmit electrical energy to the brushes when a power switch of the belt sander is turned on. The fastener may include a screw inserted through a substantially center portion of the brush card. The fastener may include at least one mounting tab at an end of the brush card that snaps into a mated opening proximate to the motor.
According to another general aspect, a dust collection system for a belt sander includes an opening formed in a rear of a casing of the belt sander, and a detachable vacuum attachment nozzle that is configured to snap into the opening using tabs at a first end thereof, and configured to receive a vacuum attachment at a second end thereof.
Implementations may include one or more of the following features. For example, the tabs may include detents, and the opening may include detent ribs against which the detents may be snapped into place by an insertion and rotation of the vacuum attachment nozzle.
According to another general aspect, a belt tracking mechanism for a belt sander includes a frame supporting an idle roller, said idle roller having an idle roller axle, said idle roller revolving about said idle roller axle, and a yoke supporting said idle roller axle, said yoke lying substantially orthogonal to said idle roller axis and allowing said idle roller and idle roller axis to freely translate along a longitudinal direction, while constraining said idle roller axis from movement along a vertical direction substantially orthogonal to said longitudinal direction.
Implementations may include one or more of the following features. For example, a side wall of said frame may contain a hollow groove, said yoke may have a protrusion received by said groove to allow said idle roller axis to freely translate along said longitudinal direction while constraining said idle roller axis from movement along a vertical direction substantially orthogonal to said longitudinal direction.
A longitudinally extending compression spring may be included to bias said idle roller along said longitudinal direction, said longitudinally extending compression spring parallel with said yoke. A laterally extending compression spring substantially perpendicular to said longitudinally extending compression spring may be included, said laterally extending compression spring may be connected to a post fixed to said side wall of said frame, and said laterally extending compression spring may be biasing said yoke towards said side wall.
A drive roller may be included having a drive roller axle and supported by said frame, said drive roller and said idle roller receiving a belt for said belt sander. A side wall of said frame may be included, said side wall longitudinally extending, and a mechanism for adjusting the angle formed between said longitudinally extending yoke which supports said idle roller axis, and said longitudinally extending side wall of said frame.
The mechanism for adjusting the angle may include a threaded post fixedly embedded in said side wall, said threaded post spacing the longitudinally extending yoke from said side wall, and said threaded post, in response to rotation of said threaded post within said side wall, extending a lateral distance between said yoke and said side wall, said lateral distance being substantially orthogonal to said longitudinal and vertical directions. Said threaded post may include a rotatable thumbscrew, and said yoke may contact said side wall at a protrusion contact point received by said side wall, and said post may extend along said lateral distance and may be located at a position longitudinal to said protrusion contact point.
According to another general aspect, a belt tracking mechanism includes a frame supporting an idle roller, revolving about an idle roller axis, a drive roller, revolving about a drive roller axis and a platen disposed between said idle and drive rollers. The belt tracking mechanism includes a longitudinally extending side wall of said frame, a longitudinally-extending yoke slideably supported by said side wall, said yoke supporting said idle roller, said idle roller axis substantially orthogonal to said yoke. Said yoke is freely translatable along said longitudinal direction while being substantially constrained from movement along a vertical direction orthogonal to said longitudinal direction.
Implementations may include one or more of the following features. For example, a mechanism for adjusting a degree of parallelism between said idle roller axis and said drive roller axis may be included, where said mechanism may be connected to said frame and configured to adjust a degree of angular separation between the side wall of said frame and said longitudinally extending yoke. Said degree of angular separation may be formed by said mechanism moving said yoke in a lateral direction relative to said side wall, said lateral direction substantially orthogonal to said longitudinal and vertical directions.
Said mechanism for adjusting the degree of parallelism between said idle roller axis and said drive roller axis may include a threaded thumbscrew extending along said lateral direction, with a fork slideably supporting said yoke and attached to said thumbscrew. Said yoke may contact said side wall at a protrusion contact point received by said side wall, and said threaded thumbscrew may be located at position longitudinal to said protrusion contact point. Said side wall of said frame may contain a hollow groove, and said yoke may have a protrusion received by said groove to allow said idle roller axis to freely translate along a longitudinal direction while constraining said idle roller axis from movement along a vertical direction substantially orthogonal to said longitudinal direction.
A longitudinally extending compression spring biasing said idle roller along said longitudinal direction may be included. A laterally extending compression spring substantially perpendicular to said longitudinally extending compression spring may be included, and said laterally extending compression spring may be connected to a post connected to said side wall of said frame, said laterally extending compression spring biasing said yoke towards said side wall.
The details of one or more implementations are set forth in the accompanying drawings and the description below. Other features will be apparent from the description and drawings, and from the claims.
In the example of
During rotation, the sanding belt may be pressured against the surface being sanded by a force applied by the user of the belt sander 100, and by a platen 106 disposed between the rear roller 102 and the front roller 104. That is, during rotation, at least a part of the sanding belt is continuously disposed between the platen 106 and the surface being sanded. In some implementations, the platen 106 may be formed from stamped metal, such as, for example, Aluminum or stainless steel.
The platen 106 may be attached to a tracking box 108. As described in more detail below, the tracking box 108 may include one or more tracking mechanisms for ensuring that the sanding belt is maintained between the rear roller 102 and the front roller 104 with proper tension and in a proper position. For example, in a case where the user notices that the sanding belt skews to a particular side during operation of the belt sander 100, such tracking mechanisms may allow the user to adjust a position of the front roller 104 relative to the rear roller 102, in order to counter such skewing.
The tracking box 108 includes, or is associated with, a tracking box cover 110. The tracking box cover 110 may be removable, for access to, and/or repair of, the tracking mechanism(s) or other internal components of the tracking box 108.
Thus, some or all of the components 102-110, and associated components, may be considered to form a sanding assembly 112 for performing the various sanding operations referenced herein, or other sanding operations. As described in more detail below, the sanding assembly 112 may be operated by, and in conjunction with, a motor that is partially or wholly contained within a handgrip 114. The handgrip 114 may thus be grasped during operation of the belt sander 100 by the user, using a single hand if desired/preferred, for use and control of the belt sander 100.
In the implementation of
In some implementations, the handgrip 114 may be formed of contoured, overmolded plastic, and/or using glass-filled nylon. Accordingly, the handgrip 114 provides a convenient, reliable, and comfortable gripping surface for the user during operation of the belt sander 100.
Further in
Further in
A casing 122 is illustrated that may be formed of, for example, cast Aluminum. In some implementations, the casing 122 may be formed integrally with the handgrip 114a/114b.
In
A belt tension knob 126 may be used to load or unload the sanding belt. For example, as described in more detail below with respect to
Also in
Thus, in
In the example of
Thus, both the sanding assembly 112 and the motor 202 may be substantially centered with respect to one another along the longitudinal axis 204, so that the handgrip 114 also may be centered along the longitudinal axis 204. As a result, for example, a weight of the motor 202 may be evenly-distributed from left to right, and may be substantially centered over the sanding assembly 112. Put another way, a center of gravity of the motor 202 may be located substantially over a center of the sanding assembly 112. Accordingly, the belt sander 100 may be very well-balanced during operation, even when the belt sander 100 is operated upside-down, or sideways (e.g., along a vertical surface).
Further, the motor 202 may be contained, or substantially contained, within an area defined by the sanding assembly 112, and/or within an area defined by the platen 106. That is, for example, the sanding assembly 112 may define a two-dimensional area extending from one side of the rear roller 102 to the other (i.e., perpendicularly to the axis 204 along an axis of the rear roller 102), and extending from a back edge of the rear roller 102 to a front edge of the front roller 104. In the example of
Finally in
In
Finally in
In the examples of
The motor 202 may be configured to provide at least 0.25 hp, and, for example, may be configured to drive a 2.5×14 in sanding belt at a minimum of 600 sfpm (surface feet per minute), e.g., at 800 sfpm. Of course, all such characteristics, e.g., length, width, or power, are merely intended as examples, and many other values and quantities also may be used, and, moreover, various ratios or relationships between these characteristics, or other characteristics, also may be used.
In
Such movement of the yoke 302 may be constrained, e.g., by a front load spring 304 and a side load spring 306. That is, the front load spring 304 may be loaded against a portion of the tracking box 108 (the portion not shown in
The front load spring 304 loads the yoke 302 against a cam shaft 310 associated with the belt tension knob 126, which thus restricts motion of the yoke 302 (and the front roller 104) in a direction away from the rear roller 102. More specifically, a flange 312 (which may be formed using a hardened stamping to prevent wear) of the yoke 302 is maintained in pressure against the cam shaft 310. In this way, as referenced above and described/illustrated in more detail below with respect to
Consequently, the flange 312 is pushed toward the rear roller 102, causing a motion of the yoke 302 (and the front roller 104) in the same direction (thereby temporarily further loading the front load spring 304). In this way, since the front roller 104 and the rear roller 102 move closer to one another, a belt tension on the sanding belt is reduced, so that the sanding belt may be removed and/or installed or re-installed. Conversely, motion of the belt tension knob 126 in the opposite direction after removal and subsequent (re-)installation of the sanding belt re-establishes tension of the sanding belt, for subsequent operation of the belt sander 100.
Further in
In
As a result of the structure of
In some example implementations, a tracking distance from the tracking shaft 318 to the pivot point 316 may be maximized relative to and/or as a function of other parameters of the belt sander 100. For example, the tracking distance may be maximized with respect to one or more of a length of the belt sander, a length of the sanding belt, a distance between a front axis of the front roller and a rear axis of a rear roller of the belt sander, and/or a length of a platen disposed in contact with the sanding belt during operation of the belt sander. In some implementations, the tracking distance from the tracking shaft 318 to the pivot point 316 may be within a range of 70-100 mm, e.g., may be within a range of 84-92 mm, such as, for example, 88 mm. To give specific but non-limiting examples of resulting ratio(s) of the tracking distance to other parameters of the belt sander 100, an example of a first ratio of the tracking distance to the overall tool length may be at least 0.2 (e.g., a ratio of 0.352 when the respective measurements are 88 mm to 250 mm). An example of a second ratio of the tracking distance to the sanding belt length may be at least 0.14 (e.g., a ratio of 0.247 when the respective measurements are 88 mm to 355.6 mm). An example of a third ratio of the tracking distance to the distance between axes of the rear roller 102 and the front roller 104 may be at least 0.45 (e.g., a ratio of 0.657 when the respective measurements are 88 mm to 134 mm). An example of a fourth ratio of the tracking distance to the platen length may be at least 1.3 (e.g., a ratio of 1.426 when the respective measurements are 88 mm to 61.7 mm).
As should be understood from the above description, however, appropriate rotation of the belt tension knob 126 (e.g., here, in a direction toward the rear roller 102) causes rotation of the cam shaft 310, and thus of the cam 314. Thus, the cam 314 exerts pressure on the flange 312, causing motion of the yoke 302 (and thus the front roller 104) toward the rear roller 102.
By rotating the belt tension knob 126, then, tension of the sanding belt may be decreased or increased, as needed, for a desired removal, adjustment, installation, or re-installation of the sanding belt. In
Further in
In this way, reliable and easy rotation of the belt tension knob 126 may be maintained during a lifetime of the belt sander 100. Further, the various components just described may be manufactured and assembled in a quick and cost-effective manner. For example, the cam shaft 310 may be formed using powdered metal, and may be formed near net shape, i.e., may be formed during a manufacturing process that results in the cam shaft 310 having the illustrated form (including the grooves 404a), without generally requiring secondary operations on the cam shaft 310 (although secondary operations are not necessarily excluded; for example, as just referenced, a tapped hole at an end of the cam shaft 310, through which the screw 412 is inserted, may be formed as part of a secondary operation on the camshaft 310). For example, injection molding may be used, in which the metal powders are injection molded with a polymer or other binder, which is then removed for fusing of the metal powder into the shape of the cam 314 and cam shaft 310.
In the example of
More specifically, a cork 508 is used that has a pressure-sensitive or pressure-absorbing adhesive surface for attaching to the platen 106a. Then, the cork/platen assembly may together be attached to the tracking box 108a, simply by sliding the flanges 506a/506b into respective receiving slots 504a/504b. With the tracking box 108a joined to the gear housing 214 on one side, and with the tracking box cover 110 attached to the other (see
In some implementations, the tracking box 108a itself may be formed as an Aluminum extrusion (i.e., metal shaped by flowing through a shaped opening in a die), with the slot 502 for the yoke 302 being machined after the extrusion occurs. The platen 106a may be, for example, stamped metal, or any other material suitable for applying and withstanding pressure against the sanding belt (and thereby a sanding surface). In this way, the assembly of
In
In this way, then, a secure attachment of the cork board/platen assembly to the tracking box 108b may be obtained, using only the single flange 512 and slot 510. That is, the triangular shape of the flange 512 (and corresponding shape of the slot 510) provide a more secure attachment than would the single, curved flange 506b and slot 504b of
Moreover, the design of
In some implementations, the drive band 602 may include rubber (or other elastomer and/or polymer) that provides sufficient friction against the sanding belt that rotation of the rear roller 102 is reliably translated into rotation of the sanding belt around the rear roller 102 and the front roller 104. In other words, the drive band 602 provides sufficient torque-carrying ability to drive the sanding belt during operation of the belt sander 100. As a result, the belt sander 100 is provided with a robust, cost-effective drive mechanism.
The rear roller 102 may include a die cast Aluminum wheel with the groove 604 formed therein. In some implementations, the rear roller 102 may be die cast so as to include a crown at a center of the wheel, e.g., at a center of the groove 604 when the groove 604 is centered on the wheel. In these implementations, the drive band 602 may thus protrude slightly above an outer edge(s) of the rear roller 102, so as to establish improved contact between the drive band 602 and the sanding belt as compared to implementations without the crowning (or other raising of the drive belt 602 relative to the other surface(s) of the rear roller 102).
In
In addition to consistent driving of the sanding belt, this pre-tensioning allows the slippage referenced above, according to which a certain torque value experienced by the drive belt 208 results in slippage of the belt and corresponding prevention of damage to the motor 202 (e.g., due to lock-up of the motor 202) and/or damage to the gears of the gearbox 206. Thus, the drive belt 208 acts as a clutch during operation of the belt sander 100, so that, for example, if an object is accidentally sucked into the sanding belt, a jamming of the belt sander 100 is avoided due to the described slippage of the drive belt 208. This clutch effect may be designed to be sufficient to allow the user to stop the belt sander 100, e.g., using the on/off switch 116, so that the user may then remove the object and resume use of the belt sander 100.
For example, the belt sander 100 may experience an accidental intake of the power cord 120, such as when the user mistakenly backs over the power cord 120 during operation of the belt sander 100. In the implementation of
Accordingly, the implementation of
The wear plates 802, 804 may be made of, for example, ceramic, and may have an easily and inexpensively-manufactured shape, such as, for example, rectangular or square. As shown in
In
Accordingly, first (e.g., top) ends of the wear plates 802, 804 may be inserted into the corresponding undercuts 806, 808, and partially held in position there by side-locating ribs 810 and 812. Then, as referenced above and shown more clearly in
By trapping each of the wear plates 802, 804 in at least two places, as shown, and by restricting a sideways motion of the wear plates 802, 804 with the side-locating ribs 810, 812, the wear plates 802, 804 may reliably be maintained in position and may thus protect the gear housing 214 from damage caused by the sanding belt. Further, the simple assembly provided by the implementations just described may result in a cost reduction associated with avoidance of any additional fasteners and/or assembly methods.
As described in more detail below with reference to
Similarly, on an armature side of the gearbox 206, associated with the motor 202, a shaft 916 of an armature assembly is inserted through the seal assembly 900b (lip seal 904b, seal holder 902b, and O-ring 906b), and against a pinion 918 of the gear train (shown in more detail in
Accordingly, an oil or fluid grease may be used in such gear trains, and the seal assembly 900a may prevent such oil or fluid grease from leaking from the gearbox 206. For example, the seal assembly 900a (and the bearing 908) may be inserted into respective bore(s) 922, and the O-ring 906a may prevent leakage around an outer edge of the seal assembly 900a, while the lip seal 904a may prevent leakage around the jackshaft of the drive pulley 210.
In the design of
Thus, as just described, the seal assembly 900b prevents leakage of oil or grease from the gearbox 206. Moreover, during removal of the shaft 916, a back shoulder of the pinion 918 may contact, and exert pressure on, the seal assembly 900b, and, more specifically, on the seal holder 902b. In this way, the shaft 916 may easily be removed, e.g., for servicing, without damaging the lip seal 904b.
By using the seal assembly 900 that is, in at least some implementations, a slip fit into the same sized bore(s) 922, 926 of the bearings 908, 924, assembly may be performed easily and reliably, and leakage may be prevented. Moreover, disassembly (and subsequent servicing; e.g., replacing of the gear 910) may be performed quickly and easily, without damaging the lip seal 904, thereby facilitating subsequent re-assembly, as well.
In this way, as should be apparent from
Further, the C-shaped design of the brush card 1002 allows for easy installation and removal to/from the belt sander 100. For example, brushes of the brush card 1002 may wear out over time and may need to be replaced. Accordingly, the right clamshell 114a of the handgrip 114 (as well as the casing 122, where the casing 122 may be formed integrally with the right clamshell 114a, as referenced above and as shown in
Springs 1018a and 1018b may be used to load the brushes (not shown) during operation of the motor. The springs 1018a and 1018b may be pulled back to allow the brushes to retract into the brush boxes 1012a and 1012b for installation onto the motor 202 (and/or for removal of the brush card 1002, although if the brushes are sufficiently worn down there may be little or no need to retract the brushes using the springs 1018a and 1018b, and the brush card 1002 may simply be slid off of the motor 202).
Thus, contacts 1020a and 1020b may be properly positioned to establish or remove electrical power with/from the motor 202, depending on a selected position (i.e., “on” or “off”) of the switch 116. Further, mounting of the brush card 1002 for proper positioning of the brush boxes 1012a/1012b and the contacts 1020a/1020b may be obtained using additional or alternative fasteners or mounting elements, as shown in more detail with reference to
A similar implementation is illustrated in
During operation, dust may be swept up, e.g., from a bottom of the belt sander 100 and between a rear of the rear roller 102 and the casing 122, and into the vacuum associated with the vacuum attachment nozzle 1102a/1102b. Further, the vacuum attachment nozzle 1102a (and vacuum) may easily be removed, e.g., for use of the belt sander 100 in a small space that does not permit attachment of the vacuum.
A sanding assembly may be constructed and attached to the gear housing (1304). For example, the sanding assembly 112, including the rear roller 102, the front roller 104, the tracking box 108 (and the tracking mechanism(s) contained therein), and the platen 106 may be formed, assembled, and attached to the gear housing 214.
A motor and gear train may be attached (1306). For example, the motor 202 and a gear train associated with the gear box 206 may be attached. For example, the motor 202 may be attached in-line with the belt sander 100, and substantially over a center and/or center of gravity of the belt sander. In using a worm gear or cross-axis helical gear for translating rotation from the motor 202 to the rear (drive) roller 102, the sealing assembly 900 may be used to reduce or eliminate leakage of oil or grease, while minimizing or preventing damage to the a seal for the oil/grease, particularly during removal of the seal.
A handgrip may be formed and attached (1308). For example, the handgrip 114 may be formed of overmolded plastic that allows easy and comfortable one-handed operation of the belt sander 100. The handgrip 114 may include two or more sub-parts, such as the right and left clamshells 114a/114b, and may partially or wholly encase or otherwise surround the motor 202. As described herein, placement of the motor 202 in-line with and substantially above the sanding assembly (and within an area above the sanding assembly), along with the encasing of the motor 202 by the handgrip 114, allows for a well-balanced, small, yet powerful belt sanding device.
Finally in
In constructing the gear housing 214, an initial casting of the gear housing may be formed (1402). For example, a mold or die in a general shape of the gear housing 214 may be used to shape molten metal into the desired shape of the gear housing.
Holes may be formed in the gear housing 214 for attaching the tracking box 108, motor 202, and drive pulley 210 (1404). For example, screw holes may be formed for attaching the tracking box 108 and the motor 202, using screws. Similarly, holes may be formed for attaching the tracking knob 124 and the belt tension knob 126. For example, the hole 408 may be formed.
A pivot groove/point, e.g., the groove 320, may be formed in the gear housing 214 (1408). In this way, as described above, the pivot pin 316 may be inserted into the grove 320, and used as a rotation point for adjusting a position of the front roller 104 with the tracking knob 124.
Cam shaft stops may be formed (1410). For example, the cam shaft stops 402a and 402b may be formed that are used to restrict a motion of the cam 314 to, e.g., about ninety degrees when moving the flange 312 (and thus the front roller 104).
Wear plate attachment points (including an undercut for inserting a top end of a wear plate(s)) and side-locating plates) may be formed (1412). For example, the undercuts 806, 808 may be formed in the topwall 214a of the gear housing 214, and the side-locating ribs 806, 808 may be formed.
A gear box, e.g., the gear box 206, may be formed, as well as bores, e.g., the bores 922, 926 (1414). Finally, a rear roller axle may be formed (1416), e.g., the axle for the rear roller 102.
As should be understood from the description herein and from general manufacturing principles and techniques, the above description of
In the example of
Then, an extrusion, e.g., an aluminum extrusion, may be formed for the tracking box 108 (1508). As should be understood from the above description, as well as with reference to
A tracking/mounting yoke, e.g., the yoke 302, may be formed (1510), e.g., using stamped metal and including the cam flange 312 and a mount for the front roller 104, so that, accordingly, the front roller 104 may then be mounted thereon (1512). The tracking knob 124 and the belt tension knob 126 may then be slip-inserted into their corresponding holes (1514) formed in the gear housing 214 (as described with respect to
Then, the tracking box 108 may be attached (e.g., screwed) to the gear housing 214, thereby trapping the wear plates 802, 804 in position (1518). As already described, such techniques for mounting the wear plates 802, 804 thus do not require additional screws or mounts, and yet still allow the wear plates 802, 804 to be formed in a simple (e.g., rectangular or square) shape.
The yoke 302 may be slid into the slots 502 of the tracking box 108, and mounted against the tracking knob 124 (and/or associated compression spring) and the pivot pin 316 (the other end of which is inserted into the groove 320 (1520). As should be apparent from
The platen 106, which also may be formed from stamped metal, may be formed with, in this example, the triangular flange 512 (1522). Of course, as should be apparent, and as referenced above, forming of the stamped platen 106 need not be performed in the order shown, and may have been performed at a much earlier stage of the process(es). The self-adhesive cork 508 may be attached to the platen 106 as shown in
A side spring, e.g., the side spring 306, may be attached (1526). As described above, e.g., with respect to
In
With reference to
Similarly, and with reference to
One the gear trains are constructed and mounted as just described, so that the motor 202 also is appropriately mounted, a housing of the motor 202 (visible, for example, in
In the example of
Each clamshell 114a, 114b may then be attached over and/or around the motor 202 (1704). Although the examples of
The pre-tensioned drive belt 208 may then be attached around the drive pulley 210 and the driven pulley 212 (1706). For example, specifications for an amount of pre-tensioning to be applied to the drive belt 208 may be provided to a supplier of the drive belt 208, where, as already described, the specifications may be selected based on, for example, a torque of the motor 202 when some or all of the sanding assembly 112 is jammed (e.g., a torque higher than a rated torque range of the motor 202), a length of the drive belt, a diameter of the drive pulley 210/driven pulley 212, and/or a center distance between the drive pulley 210 and the driven pulley 212. In this way, a desired amount of slippage of the drive belt 208 may be obtained during an accidental jamming of the belt sander 100, so that the user of the belt sander 100 is provided with time to turn off power applied thereto and reduce or prevent damage to the motor 202. Finally in
In some example implementations, which may be additional or alternative to the implementations discussed above with respect to
In some example implementations discussed below in association with
Referring in general to
Referring specifically to
As illustrated by
In example embodiments, the housing is formed of materials which may include the desired rigidity, machinability and impact resistance such as polyvinyl chloride (PVC), acrylonitrate-butadiene-styrene (ABS), ultra high molecular weight polyethylene (UHMW) plastic, and the like. In additional embodiments, soft grip sides 1808 and top 1809 are included to reduce vibration transferred to the user and allow a user to maintain efficient control over the sander 1800 by providing an easy-to-grip surface. In such embodiments, the soft grip sides 1808 may be formed of elastomeric material such as foam, rubber, rubber impregnated with gel, or the like. It is contemplated that gripping pads may be included in addition to or instead of soft grips sides.
In further additional example embodiments, the belt sander 1800 may include a power cord 1834 and switch 1810 to control power transmission to the motor 1802 and motor components. In an example embodiment, the power cord 1834 is located on the rear of the motor housing 1806 to allow operation of the belt sander 1800 without interference of the power cord 1834. The rear of the motor housing 1806 may include a part of the sander 1800 which is covered by the a user's wrist and the lower edge of a user's palm during operation of the belt sander 1800. In further example embodiments, the power switch 1810 may be located on the front of the housing 1806 relative to the power cord 1834. Such configuration allows a user to grip the belt sander 1800 via the side grips 1808, gripping pads or the like while minimizing inadvertent manipulation of the power switch 1810 (as illustrated in
In additional example embodiments, the belt sander 1800 may include a mechanism to allow for speed variation. For example, in some example embodiments, the power switch 1810 may be a multi-positional switch allowing a user to vary motor speed as desired. Use of the HVDC motor, as described above, allows the belt sander to be capable of operating at various speeds. In an example embodiment, the switch 1810 may be located on the front of the motor housing 1806 relative to the power cord 1834, allowing a user to alter the speed of the sander without the user having to vary gripping position orientation. In further example embodiments, the belt sander 1800 may include a separate switch/dial for speed variation. In such embodiments, the additional switch/dial also may be located on the front of the motor housing 1806 relative to the power cord 1834. Such a configuration may allow motor speed to be varied without the user having to vary gripping position orientation. For example, the switch/dial may be configured so that it may be manipulated by a user's index finger. Further, the dial may denote pre-defined increments of variations in speed. In addition, the dial also may allow for smaller incremental variations in speed within the pre-defined increments.
In an example embodiment(s), the belt sander 1800 includes the sanding assembly 1804. Such assembly 1804 may be enclosed by a skirt 1812 of the motor housing 1806. In example embodiments, the skirt 1812 may be formed of materials which include the desired rigidity, machinability and impact resistance such as polyvinyl chloride (PVC), acrylonitrate-butadiene-styrene (ABS), ultra high molecular weight polyethylene (UHMW) plastic, and the like. In an example embodiment, the skirt 1812 is light weight and contoured to the general size of the motor housing 1806. Further, the skirt 1812 may protect the components within the sanding assembly 1804 from damage, and may prevent dust and debris from entering the assembly 1804.
As illustrated in
In additional example embodiments, the sanding assembly 1804 may include a pulley system which transmits the torque provided from the motor 1802 to the sanding assembly 1804. The pulley system may include a plurality of pulleys and belts. As illustrated in
In further example embodiments, as illustrated in
Additionally, as demonstrated in
In additional example embodiments, the sanding assembly 1804 may include a belt tensioning adjuster 1830 allowing a user to apply or release tension to the sanding belt 1828. For example, the sanding assembly 1804 may include an extending platen to extend or shorten the path of travel of the sanding belt or to extend an idle roller forward and back. Further, an additional belt tracking adjuster 1832 also may be included to allow for tool-free alignment of the sanding belt 1828. In an example embodiment(s), the belt tracking adjuster 1832 may be included within the front of the sanding assembly 1804. For example, if the sanding belt 1828 starts to track to one side of the sander 1800, a user may adjust the belt tracking by rotating the belt tracking adjuster 1832, so that clockwise movement of the belt tracking adjuster may move the belt to the right when facing the sander 1800, while counterclockwise movement moves the belt to the left.
In use, the motor provides torque to the sanding assembly 1804 via a gearing system 1826 (e.g. a cross helical or worm drive gearing system) wherein such system transmits power to the drive belt pulley 1818. In turn, the pitch belt 1822 then transfers rotation from the drive belt pulley 1818 to the driven pulley 1820 and the rear sanding belt roller 1816. The instant configuration thereby allows a user to operate the belt sander 1800 vertically, horizontally or at various angles in-between.
In additional example embodiments, the belt sander 1800 may include mechanisms designed to minimize or eliminate dust generated by fast sanding action. For example, in one embodiment, the belt sander 1800 may include an integrated dust collection system which allows dust to be collected within a receptacle during operation. In an additional embodiment, the belt sander 1800 may include a dust outlet allowing the belt sander 1800 to be directly connected to a conventional shop vacuum hose or a centralized vacuum system. In further example embodiments, a dust collection skirt may be included for managing dust generated during use. In an example embodiment, the dust collection skirt may be located towards the rear of the sander 1800 towards the power cord 1834 in order to not interfere with the operation of the sander 1800 and to direct dust away from the workpiece.
Thus, a sander comprised of a high voltage direct current motor for providing rotational torque to the sander is disclosed. In an example embodiment, a motor housing generally encompasses the motor for enclosure of the motor. The motor housing may be generally contoured to be received by a human hand, and sized to a generally sized human hand. Further, a sanding assembly may be operationally coupled to the motor housing for providing an abrasive surface to be used to sand a desired surface.
With reference to
The belt sander tracking mechanism 10 for the belt sander of
Referring to
As explained more fully herein, one goal of the belt sander tracking mechanism 10 is to avoid as much as possible movement by the idle roller in the vertical direction along the Z axis; to allow movement of the idle roller relative to the drive roller in the longitudinal or X axis; and to allow the degree of parallelism between the drive and idle roller axes to be adjusted by varying the direction the axes point to in the lateral or Y axis.
Turning attention to the figures, with like numbered reference numbers referring to the same element, there is shown perspective top and topside view of the belt tracking mechanism 10, having a yoke 30, which may be made of, for example, sintered iron, holding the idle roller 20 at its end thereof, and having a protrusion 35 protruding from the back side of the yoke 30. The protrusion 35 may be coaxial with the axle 29 of the idle roller 20 and has a rounded or pointed tip 37 to minimize friction as it slideably traverses and translates along the X axis, along with the yoke 30. The protrusion is received by a longitudinally extending groove 40 built into a sidewall frame or sidewall body 45 of the frame of the belt sanding tracking mechanism 10. As may be appreciated, while in example embodiments the protrusion 35 may be part of the yoke 30, and may be received by a longitudinally extending groove 40 in the sidewall body 45 of the tracking mechanism 10, the groove 40 may be part of the yoke 30 and the protrusion 35 may be part of the side wall, or, to have the protrusion offset from being coaxial with the idle roller axis. The yoke protrusion 35 received by the groove 40 helps keep the idle roller 20 from rotating and torquing in the Z (vertical) direction. The idle roller 20 may be mounted about the idle roller axle 29 with antifriction bearings, to allow the idle roller to roll freely and still be firmly and rigidly attached to the axle and yoke assembly.
Opposing the yoke 30 are two springs designed to keep the yoke 30 in proper alignment. A longitudinally extending compression spring 50, which may be concentric and/or in parallel with yoke 30, biases the yoke in the X axis direction to properly tension the belt passing over the rollers, and allows the yoke 30 to move back and forth in the X axis direction while the sander is under power. The longitudinally extending compression string 50 may be received between two supports, a U-shaped buttress or fork 52 built into sidewall 45, which is fixed but laterally adjustable along an axis by threaded thumbscrew or threaded post 54, and a shoulder 55 integral with yoke 30. A laterally extending compression spring 56, which may be tightened in compression by shoulder bolt 60, keeps the yoke 30 pressed and aligned next to the sidewall 45. The yoke 30 may have a longitudinally extending slot 58 which receives the shaft of the shoulder bolt 60 and extends to a hexagonal shaft 62.
To keep the belt from wandering off the rollers the parallelism of the axes of the drive roller axis and idle roller axis can be adjusted. Turning attention now to
Although described in terms of the example embodiments above, numerous modifications and/or additions to the above-described example embodiments would be readily apparent to one skilled in the art. For example, the pivot point “A” may be moved by having the protrusion 35 not coaxial with the idle roller axis 29, or the groove and protrusion may be interchanged, as explained above, or a different parallelism adjustment mechanism thumbscrew may be employed. In addition, other changes may be made, such as, for example, constructing a mechanism that straddles the outside of yoke 30 rather than have a shall of the shoulder bolt 60 pass through the slot 58 in the yoke 30.
Thus, a belt tracking mechanism for a power belt sander having spring biased support that allows the idle roller to move in a longitudinal direction in the direction the sand belt is traveling is described, while constraining movement of the idle roller in a vertical direction perpendicular to the longitudinal direction. A hand-tightened mechanism allows for adjustment of the degree of parallelism between the idle roller and power roller axes, to allow proper belt tracking.
While certain features of the described implementations have been illustrated as described herein, many modifications, substitutions, changes and equivalents will now occur to those skilled in the art. It is, therefore, to be understood that the appended claims are intended to cover all such modifications and changes as fall within the true spirit of the embodiments of the invention.
This application claims priority under 35 U.S.C. §120 to and is a continuation of U.S. application Ser. No. 11/701,105 filed Feb. 1, 2007, now U.S. Pat. No. 8,075,374 and entitled “BELT SANDER”, which claims priority under 35 U.S.C. §120 to, and is a continuation of, U.S. application Ser. No. 11/334,960, filed Jan. 19, 2006, now U.S. Pat. No. 7,410,412 and entitled, “BELT SANDER,” which (i) claims priority under 35 U.S.C. §120 to, and is a continuation-in-part of, U.S. application Ser. No. 11/089,447, filed Mar. 24, 2005, now U.S. Pat. No. 7,235,005 and entitled, “BELT SANDER,” and which (ii) claims priority under 35 U.S.C. §119 to both of U.S. Provisional Application Ser. No. 60/645,632, filed Jan. 21, 2005, and entitled “IMPROVED BELT TRACKING MECHANISM FOR BELT SANDER,” and U.S. Provisional Application Ser. No. 60/757,818, filed Jan. 11, 2006, and entitled “BELT SANDER.” The above-identified applications are incorporated by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
2742741 | Frostad | Apr 1956 | A |
2893176 | Bruck | Jul 1959 | A |
3176436 | Anton | Apr 1965 | A |
3465479 | Botefuhr et al. | Sep 1969 | A |
3497336 | Buschman | Feb 1970 | A |
4115957 | Porth et al. | Sep 1978 | A |
4742649 | Fuchs | May 1988 | A |
4896462 | Farmerie | Jan 1990 | A |
6544112 | Fuchs | Apr 2003 | B1 |
8075374 | Wall et al. | Dec 2011 | B2 |
Number | Date | Country | |
---|---|---|---|
20110275292 A1 | Nov 2011 | US |
Number | Date | Country | |
---|---|---|---|
60645632 | Jan 2005 | US | |
60757818 | Jan 2006 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11701105 | Feb 2007 | US |
Child | 13187569 | US | |
Parent | 11334960 | Jan 2006 | US |
Child | 11701105 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11089447 | Mar 2005 | US |
Child | 11334960 | US |