The present application relates generally to belt tensioners and more particularly to a belt tensioner with a round wire spring.
A tensioner is frequently utilized in a belt system to tension an endless belt that transmits power to accessories in an automobile engine. Tensioners typically use a spring, such as a flat wire or round wire spring to bias a pivot arm toward the belt. In tensioners employing a round wire spring, the round wire spring is compressed axially during assembly and is used to apply an axial force to the pivot arm. This axial spring force is used to maintain pivot arm alignment during use.
In one aspect, tensioners for tensioning a belt are disclosed that include a support housing, an arm pivotably attached to the support housing, a spring operatively connected to the support housing and the arm, and a deflectable armplate seated on the arm and deflected into engagement with the support housing to provide an axial force that clamps the arm and the support housing together without axially compressing the spring. The spring biases the arm to pivot relative to the support housing.
In another aspect, tensioners for tensioning a belt are disclosed that include a support housing having a pivot arm rotatably mounted thereto to form a spring cavity, a spring disposed in the spring cavity and operatively connected to the arm and support housing, and a deflectable armplate seated on the arm and deflected into engagement with the support housing. The engagement of the armplate and support housing provides an axial force that clamps the arm and the support housing together. In this embodiment, the support housing and the pivot arm each have cooperating stops. Each stop includes a stop surface capable of engaging the other stop's stop surface to place the pivot arm in an unloaded position. The stop of the support housing extends from an upper surface thereof and includes a relatively flat surface region and a relatively angled surface region. The stop of the pivot arm includes a relatively flat surface region and a relatively angled surface region. The angled surface regions of both stops cooperate to allow the stop of the pivot arm to slide along the flat surface region of the stop of the support housing.
The details of one or more embodiments are set forth in the accompanying drawings and the description below. Other features, objects, and advantages will be apparent from the description and drawings, and from the claims.
Referring to
Referring also to
The pivot arm 14 includes a sleeve 44 sized to receive both the pivot bushing 40 and the alignment member 30, an upper wall 46 extending outwardly from the sleeve, an opening 74 sized to receive an end 76 of the alignment member 30 and a pulley support 52 connected to the upper wall at a location offset from the opening 74. Each of the pivot arm 14 and support housing 12 can be formed of any suitable material, including metal or polymer and can be formed by any suitable method, such as casting, machining and/or molding.
Positioned between the pivot arm 14 and the support housing 12 is a spring bushing 54 (e.g., formed of molded plastic). Spring bushing 54 has an upper surface 56 that can be placed in continuous (i.e., unbroken) annular contact with a lower edge 58 of the pivot arm 14 and a lower surface 60 that that can be placed in continuous annular contact with an upper edge 62 of the support housing 12. This continuous annular contact can maximize surface area contact between the spring bushing—pivot arm—support housing assembly, which can provide increased friction damping of the pivot arm during use. Alternatively, in other embodiments, contact between the upper surface 56 and lower edge 58 and/or contact between lower surface 60 and upper edge 62 may not be continuous.
A flange 64 extends about a periphery of the spring bushing 54. The flange 64 has inner surfaces 66 and 68 configured to extend over an outer surface 70 of the support housing 12 and an outer surface 72 of the pivot arm 14, respectively, e.g., to provide a labyrinth-type seal between the pivot arm and the support housing. This seal can inhibit passage of foreign agents, e.g., dirt, oil, etc. into the spring cavity, which can affect the tensioner's operation. In some embodiments, the spring bushing may not include a flange or the flange may extend over only one of the outer surfaces 70 or 72.
As noted above, round wire spring 18 biases the pivot arm 14 toward an unloaded position during use. Referring to
With the spring operatively connected to the pivot arm 14 and the support housing 12, biasing force can be applied to the pivot arm merely by rotating one of the pivot arm and support housing relative to the other. Referring to
Referring back to
As noted above, referring now to
A number of detailed embodiments have been described. Nevertheless, it will be understood that various modifications may be made. For example, while an armplate and plate bushing clamping arrangement has been described, other suitable compression devices may be used, such as a Belleville or wave spring. Accordingly, other embodiments are within the scope of the following claims.
This application is a continuation of U.S. patent application Ser. No. 11/040,283 filed Jan. 20, 2005.
Number | Name | Date | Kind |
---|---|---|---|
4351636 | Hager | Sep 1982 | A |
4473362 | Thomey et al. | Sep 1984 | A |
4698049 | Bytzek et al. | Oct 1987 | A |
4826471 | Ushio | May 1989 | A |
4917655 | Martin | Apr 1990 | A |
4971589 | Sidwell | Nov 1990 | A |
5011460 | Ouchi et al. | Apr 1991 | A |
5083984 | Quintus et al. | Jan 1992 | A |
5795257 | Giese et al. | Aug 1998 | A |
5967919 | Bakker | Oct 1999 | A |
6004235 | Ohta et al. | Dec 1999 | A |
6206797 | Quintus | Mar 2001 | B1 |
6264578 | Ayukawa | Jul 2001 | B1 |
6422963 | Kurose | Jul 2002 | B2 |
6682452 | Quintus | Jan 2004 | B2 |
7186196 | Quintus | Mar 2007 | B2 |
7497794 | Lannutti et al. | Mar 2009 | B2 |
7887445 | Quintus et al. | Feb 2011 | B2 |
8123640 | Quintus et al. | Feb 2012 | B2 |
20020119850 | Dutil | Aug 2002 | A1 |
20030083164 | MacNaughton et al. | May 2003 | A1 |
20040063531 | Cura et al. | Apr 2004 | A1 |
20060100050 | Crist et al. | May 2006 | A1 |
20100323833 | Quintus et al. | Dec 2010 | A1 |
Number | Date | Country |
---|---|---|
1502023 | Jun 2004 | CN |
2230319 | Oct 1990 | GB |
7364692 | Jun 1992 | JP |
1725293 | Mar 1993 | JP |
02068841 | Sep 2002 | WO |
Entry |
---|
CN, Notification of First Office Action, Chinese Application No. 201110157914.5 (Mar. 23, 2012). |
CA, Office Action, Canadian Application No. 2,595,515 (Nov. 24, 2011). |
KR, Notice of Preliminary Rejection, Korean Application No. 7018277/2007 (Feb. 28, 2012). |
AU, Examiner's First Report, Application No. 2006206578, 2 pages (Nov. 4, 2010). |
CN, First Office Action, Chinese Application No. 200680002766.7, 8 pages (Oct. 10, 2008). |
CN, Second Office Action, Chinese Application No. 200680002766.7, 2 pages (Nov. 6, 2009). |
CN, Third Office Action, Chinese Application No. 200680002766.7, 7 pages (Oct. 12, 2010). |
EP, Communication regarding Intention to Grant, European Application No. 06718706.2, 7 pages (Jun. 13, 2008). |
EP, Supplementary European Search Report, European Application No. 06718706.2, 6 pages (Jan. 23, 2008). |
PCT, International Preliminary Report on Patentability, International Application No. PCT/US2006/001670, 3 pages (Oct. 1, 2007). |
PCT, International Search Report, International Application No. PCT/US2006/001670, 3 pages (mailed Mar. 28, 2007; published Jun. 7, 2007). |
PCT, Written Opinion, International Application No. PCT/US2006/001670, 3 pages (Mar. 28, 2007). |
US, Office Action, U.S. Appl. No. 11/040,283 (Mar. 13, 2008). |
US, Office Action, U.S. Appl. No. 11/040,283 (Oct. 16, 2008). |
US, Advisory Action, U.S. Appl. No. 11/040,283 (Dec. 31, 2008). |
US, Office Action, U.S. Appl. No. 11/040,283 (Aug. 4, 2009). |
US, Office Action, U.S. Appl. No. 11/040,283 (Jan. 12, 2010). |
US, Office Action, U.S. Appl. No. 11/040,283 (May 11, 2010). |
US, Notice of Allowance, U.S. Appl. No. 11/040,283 (Oct. 27, 2010). |
JP, Office Action, Japanese Application No. 2007-552222 (Jun. 14, 2011). |
Number | Date | Country | |
---|---|---|---|
20110152023 A1 | Jun 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11040283 | Jan 2005 | US |
Child | 12986472 | US |