BELT TENSIONING MONITORING DEVICE

Information

  • Patent Application
  • 20210372883
  • Publication Number
    20210372883
  • Date Filed
    March 13, 2021
    3 years ago
  • Date Published
    December 02, 2021
    3 years ago
Abstract
Belt tensioning monitoring device for monitoring the belt tensioning of a belt of a belt drive system having a driving pulley and a driven pulley rotated by the driving pulley. The belt tensioning monitoring device is configured to determine the belt slip effect with at least one mark provided on the belt and a sensor configured to detect the mark and to send a signal to an electronic control unit.
Description
CROSS-REFERENCE TO RELATED APPLICATION(S)

This application claims priority to European Patent Application no. 20380018.0, filed Mar. 26, 2020, the contents of which is fully incorporated herein by reference.


TECHNICAL FIELD OF THE INVENTION

The present invention relates to the field of condition monitoring devices, and in particular to condition monitoring of belt tensioning.


BACKGROUND OF THE INVENTION

Condition monitoring devices allow for the monitoring of the condition of a system without the need for manual inspection. These devices may be particularly advantageous in remote locations or locations which are difficult and/or dangerous to access.


Insufficient belt tension results in inadequate power transmission, reduced efficiency, and premature belt damage due to belt slip.


Excessive belt tension leads to high specific surface pressure, a risk of cross flexing, increased flexing stress and increased strain on the tension members with consequent premature fractures and elongation.


The correct belt tension is just enough tension to keep the belt from slipping under normal load conditions.


Belt slip is generally defined in a built-in slip table according to the speed of the driven pulley.


The belt slip occurs on the driver pulley so the speed of all driven pulleys is influenced by the same slip.


Usual belt slip magnitude is comprised between 1% and 2% what results in a belt slip effect comprised between 0.01 and 0.02.


There is a need to estimate if a belt of a belt drive system is correctly tensioned meanwhile running.


SUMMARY OF THE INVENTION

The aim of the present invention is consequently to provide an improved belt condition monitoring device.


It is a particular object of the present invention to provide a belt tensioning monitoring device for monitoring the belt tensioning of a belt of a belt drive system comprising a driving pulley and a driven pulley rotated by the driving pulley thanks to the belt.


The belt tensioning monitoring device is configured to determine the belt slip effect with at least one mark provided on the belt and a sensor configured to detect the mark and to send a signal to an electronic control unit.


For example, the mark is a magnetized area such as a magnet or a magnetized rubber fixed on a surface of the belt, or a magnetic powder embedded in or on the belt, and the sensor is a Hall effect sensor.


Alternatively, the mark is an optical mark such as reflective area or a tape, and the sensor is an optical sensor.


According to an embodiment, the belt tensioning device comprises a second mark provided on the belt, the sensor being configured to detect the second mark.


For example, the second mark is a magnetized area such as a magnet or a magnetized rubber fixed on a surface of the belt, or a magnetic powder embedded in or on the belt.


Alternatively, the second mark is an optical mark such as reflective area or a tape.


According to another embodiment, the belt comprises a plurality of marks.


According to another embodiment, the marks of the belt are of the same type, for instance of the magnetic type or the optical type.


According to another embodiment, the belt tensioning device comprises at least one mark provided on a surface of one of the pulleys and a second sensor configured to detect the at least one mark and to send a speed signal to the electronic control unit.


The least one mark may be a reflective mark and the second sensor may be an optical sensor, such as, for example, an infrared sensor.


The at least one mark may be a magnet or a magnetized rubber fixed on a surface of the pulley and the second sensor may be a hall effect sensor.


According to another aspect, the invention concerns a belt drive system comprising a belt, a driving pulley, a driven pulley rotated by the driving pulley thanks to the belt and a belt tensioning monitoring device according to any of the preceding claims.





BRIEF DESCRIPTION OF THE DRAWINGS

The present invention and its advantages will be better understood by studying the detailed description of specific embodiments given by way of non-limiting examples and illustrated by the appended drawings on which:



FIG. 1 is a schematic view of a belt drive system comprising a belt tensioning monitoring device according to an embodiment of the invention; and



FIG. 2 is a schematic view of a belt drive system comprising a belt tensioning monitoring device according to another embodiment of the invention.





DETAILED DESCRIPTION OF THE INVENTION

Referring to FIG. 1, which illustrates an embodiment of a belt tensioning monitoring device 10 for monitoring the belt tensioning of a belt 2 of a belt drive system 1 comprising a driving pulley 3 and a driven pulley 4 rotated by the driving pulley 3 thanks to the belt 2. For example, the belt 2 is a V-shaped belt.


The belt tensioning monitoring device 10 comprises a first mark 11 provided on one of the pulleys, for example the driving pulley 3 and a first sensor 12 configured to detect the first mark 11.


The first mark 11 may be a reflective mark or tape and the first sensor 12 may be an optical sensor, such as an infrared sensor.


Alternatively, the first mark 11 may be a magnet and the first sensor 12 may be a hall effect sensor for measuring the magnitude of a magnetic field generated by the magnet when passing through the sensor 12.


The first sensor 12 is configured to send the signal of rotational speed of the pulley 3 to an electronic control unit 13 of the belt tensioning monitoring device 10.


The belt tensioning monitoring device 10 comprises a second mark 14 provided on the belt 2 The second mark 14 can be of the magnetic type or a magnetized area, such as for example a magnet or a magnetized rubber fixed on the surface of the belt or a magnetic powder embedded in or on the belt. Alternatively, the second mark 14 can be an optical mark such as a reflective area or a tape.


The belt tensioning monitoring device 10 further comprises a second sensor 15 configured to detect the second mark 14 and to send the signal of the belt frequency to the electronic control unit 13 of the belt tensioning monitoring device 10.


In the case where the second mark 14 is a magnetic mark, the second sensor 15 is preferably a hall effect sensor for measuring the magnitude of a magnetic field generated by the second mark 14 when passing through the second sensor 15.


In the case where the second mark 14 is an optical mark, the second sensor 15 is preferably an optical sensor.


The electronic control unit 13 of the belt tensioning monitoring device 10 comprises an estimation module 13a configured to determine the slip effect of the belt 2 according to the speed of the pulley 12 and to the frequency of the belt.


Referring now to FIG. 2, which illustrates an embodiment of a belt tensioning monitoring device 20 for monitoring the belt tensioning of a belt 2 of a belt drive system comprising a driving pulley 3 and a driven pulley 4 rotated by the driving pulley 3 thanks to the belt 2. For example, the belt 2 is a V-shaped belt.


The belt tensioning monitoring device 20 comprises a first mark 21 provided on the belt 2, a second mark 22 provided on the belt 2 at a distance from the first mark and a first sensor 23 configured to detect the marks 21, 22.


Alternatively, and more generally, the belt may comprise a plurality of marks capable of being detected by the sensor 23. Advantageously, the plurality of marks is of the same type, for instance of the magnetic type or the optical type.


The marks 21, 22 on the belt may be of the magnetic type, that is a magnetized area such as a magnet or a magnetized rubber fixed on the surface of the belt or magnetized powder embedded in or on the belt, and the first sensor 23 may be a hall effect sensor for measuring the magnitude of a magnetic field generated by the magnet 21, 22 when passing through the sensor 23.


Alternatively, the marks on the belt may be of the optical type, for instance reflective marks or tapes, and the first sensor 23 an optical sensor.


Still referring to FIG. 2, the first sensor 23 is configured to send the signal of position of the marks of the belt to determine the belt frequency to the electronic control unit 23 of the belt tensioning monitoring device 20.


The electronic control unit 23 of the belt tensioning monitoring device 20 comprises an estimation module 23a configured to determine the slip effect of the belt 2 according to the measured distance, it is possible to know the degree of tensioning of the belt.


In a further embodiment of the invention, the belt tensioning monitoring device comprises a first mark provided on one of the driving and driven pulleys and a first associated sensor for reading the first mark, and a plurality of marks located on or in the belt and a second associated sensor for reading the plurality of belt marks.


In the embodiments of the invention where the belt comprises at least two marks, the analysis of the signals generated by the sensor which reads the belt marks can also be used to determine the elongation and the tension of the belt.


Thanks to the invention, slip effect of the belt may be efficiently estimated and thus the belt tensioning may be characterized.


The user may thus know if the tension of the belt is correct and adjust its tension or replace the belt if necessary.


It is to be understood for the present invention that belt means a single strand belt or a multibelt, and that the belt is for instance of the groove type or the V type, but not necessarily.

Claims
  • 1. A belt tensioning monitoring device for monitoring the belt tensioning of a belt of a belt drive system comprising: a driving pulley, anda driven pulley rotated by the driving pulley thanks to the belt, wherein the belt tensioning monitoring device is configured to determine the belt slip effect with at least one mark provided on the belt and a sensor configured to detect the mark and to send a signal to an electronic control unit.
  • 2. The belt tensioning monitoring device according to claim 1, wherein the mark is a magnetized area such as a magnet or a magnetized rubber fixed on a surface of the belt or magnetic powder embedded in or on the belt, and the sensor is a hall effect sensor.
  • 3. The belt tensioning monitoring device according to claim 1, wherein the mark is an optical mark such as a reflective area or a tape, and the sensor is an optical sensor.
  • 4. The belt tensioning monitoring device according to claim 1, further comprising a second mark of the same type of the first mark and provided on the belt, the sensor being configured to detect the second mark.
  • 5. The belt tensioning monitoring device according to claim 4, wherein the second mark is a magnetized area such as a magnet or a magnetized rubber fixed on a surface of the belt or magnetic powder embedded in or on a surface of the belt.
  • 6. The belt tensioning monitoring device according to claim 4, wherein the second mark is an optical mark such as a reflective area or a tape.
  • 7. The belt tensioning monitoring device according to claim 1, further comprising at least one mark provided on a surface of one of the pulleys and a second sensor configured to detect the at least one mark and to send a speed signal to the electronic control unit.
  • 8. The belt tensioning monitoring device according to claim 7, wherein the at least one mark is a reflective mark and the second sensor is an optical sensor.
  • 9. The belt tensioning monitoring device according to claim 7, wherein the at least one mark is a magnet or a magnetized rubber fixed on a surface of the pulley and the second sensor is a hall effect sensor.
  • 10. A belt drive system comprising: a belt,a driving pulley,a driven pulley rotated by the driving pulley thanks to the belt, anda belt tensioning monitoring device for monitoring the belt tensioning of the belt of the belt drive system configured to determine the belt slip effect with at least one mark provided on the belt and a sensor configured to detect the mark and to send a signal to an electronic control unit.
Priority Claims (1)
Number Date Country Kind
20380018.0 May 2020 EP regional