This invention relates to a drive arrangement for hemming steels that are driven by a common actuator for hemming the beltline and the outside perimeter of a vehicle door panel.
In the field of automobile manufacture, hemming is the process of folding over the edge of a body panel to form a finished edge. Hemming is also used to join two body panels together, such as the inner and outer panels of a door. The hem provides a secure mechanical joint, and the resulting edge of the hemmed joint is neat and finished.
The lower edge of a window opening in a vehicle door panel is called the beltline. A reinforcing plate, normally called a beltline reinforcement, is usually attached to the inside of the outer panel along the beltline. The beltline reinforcement provides added strength to the door in the event of a side impact. Until the present time, the beltline reinforcement was attached to the outer panel by a series of spot welds. Although spot welds provide a secure mechanical connection between the beltline reinforcement and the outer panel, the welds show through on the Class A surface of the outer panel. As automobile fit and finish has become more refined, it has become increasingly important to mask over or otherwise obliterate any marks or indentations caused by the spot welding process so that they will not be visible on the outside panel surface. The normal solution is to cover welds of the beltline joint with a piece of trim material that is usually in the form of a chrome or rubber strip.
Hemming would be a desirable way to join the beltline reinforcement to the outer panel, since the hemming process inherently leaves the outer panel without impressions or marks that need to be masked over with trim material. A beltline hemming mechanism would be less expensive than weld guns, and if the beltline hemming could be performed at the same time as other hemming operations were being performed on the same panel, the overall processing time for the panel could be reduced. Until recently, hemming has not been used to join the beltline reinforcement to the outer panel, and there are various reasons for this. If hemming is being used to hem the inside perimeter of the window opening, the space in the window opening is already occupied by that hemming mechanism, and there is not enough room for a separate beltline hemming machine. If the beltline hemming mechanism is combined with the mechanism for hemming some other portion of the window opening or the door panel, the timing and synchronization of the motion of all of the hemming steels, if they are driven by a single actuator, becomes an almost impossible task, and it is very difficult to set-up the hemming steels so that they all reach a Final Hem Complete position at the same time. Even if the steels are perfectly timed relative to one another, any variation in the thickness of the workpiece in a production run, or in the stroke or timing of the steels, results in a final hem that is not completely closed, or a hemming mechanism that becomes overly stressed because it is being driven past the Final Hem Complete position. One solution is to provide a second hemming machine at its own station in order to do the beltline hemming. This eliminates the timing and synchronization issues between the beltline hemming steels and the other hemming steels and allows the beltline hemming machine to be set up and tuned independently of the other hemming machines. The second hemming machine requires additional floor space however, and, because a second dedicated drive is required, the second hemming machine represents a substantial additional cost.
It would accordingly be desirable to provide a hemming machine that would hem the beltline of a vehicle door panel in the same station that is performing other hemming on the panel, using a single machine and a single drive mechanism, but would allow the hemming tools to finish their respective hemming strokes at different times.
It is accordingly an object of the invention to provide hemming mechanism for hemming the beltline of a vehicle door panel in the same machine that hems the outside perimeter of the panel.
It is another object of the invention to provide a hemming mechanism for hemming the beltline and the outside perimeter of a vehicle door panel in which the beltline hem steel and the outside perimeter hem steel are driven by the same mechanism, but are able to have independent movements.
It is another object of the invention to provide a hemming mechanism for both the beltline and the outside perimeter of a vehicle door panel in which the beltline hem is finished prior to the time that the outside perimeter hem is finished.
According to the invention, a pressure plate is used to drive hem steels that pre-hem and hem the beltline of a vehicle door panel. The same pressure plate drives the steel that is used to final hem the outside perimeter of the panel. The beltline hemming steels and the outside perimeter hemming steels are actuated at different times, providing reduced interaction or sensitivity between the steels. The different actuation times allows the entire hemming apparatus to be more easily tuned during the set-up and run-off process, and to be less sensitive to variations in workpiece thickness.
These and other objects, features and advantages of this invention will be apparent from the following detailed description, appended claims and accompanied drawings in which:
Turning now to the drawing figures,
An angled cam surface 23 that acts as a first actuator and a vertical cam surface 24 are formed on the side of a first extension foot 26 on the pressure plate 15. A pressure pad 27 that acts as a second actuator is slideably mounted in a pressure pad pocket 28 on the underside of the pressure plate 15. A spring 29 such as nitrogen gas spring is located in the pressure pad pocket 28 between the pressure pad 27 and the pressure plate 15. The stiffness of the spring is chosen so that it will drive the pressure pad 27 into the beltline hem flange 21 with sufficient force to fold the flange and complete the hem, but will allow the pressure pad 27 to be driven into the pressure pad pocket 28 in response to continued downward motion of the pressure plate 15. An outside perimeter hemming tool or steel 31 is mounted on the bottom of a second extension foot 32 on the pressure plate 15 in vertical alignment with the outside perimeter flange 33 on the outer panel 18.
A beltline hemming tool 35 is mounted on a fixture head 36 that is attached to a rocker arm 37. The hemming tool 35 comprises a pre-hem tool surface 38 and a final hem tool surface 39. The two surfaces 38 and 39 may be formed on a single piece of tool steel, or may be formed on two separate pieces of tool steel that are mounted adjacent to one another on the fixture head 36. The rocker arm 37 is pivotably mounted on a pivot 41, and a compression spring 42 is used to bias the rocker arm and fixture head to the left against a stop 43 as shown in the drawing figure. The pivot 41 for the rocker arm 37 is supported by a spring 44 so that the fixture head 36 and the rocker arm can be driven downward in order to close the beltline hem as described more fully below. The pivot 41 is mounted on a base 46 by means of a post 47 with an end stop 48 that is slideably received in the base 46. A roller 51 or other cam follower mechanism is mounted on one end of the fixture head 36, and the angular position of the rocker arm 37 and the fixture head 36 is determined by the portion of the cam surface 23 and 24 that is in contact with the cam follower 51.
Through the use of the invention, the beltline hem in a vehicle door panel can be bent to the Pre-Hem Complete and Final Hem Complete positions in one operation and using the same drive mechanism that is used to hem the outside perimeter hem to the Final Hem Complete position, by driving both hemming tools with a common pressure plate. In addition, variations in workpiece thickness or high spots on the workpiece are accommodated by coupling at least one of the hemming tools to the pressure plate through a spring. The spring between the pressure plate and the pressure pad provides a lost motion and allows the pressure plate to continue its downward stroke to bend the outside perimeter hem to the Final Hem Complete position, although the beltline hem flange is already bent to the Final Hem Complete position. This also allows the beltline hemming steels to be set-up independently of the outside perimeter hemming steels, thus simplifying the set-up process, and the making the mechanism less sensitive to variations in the workpiece thickness, since the position of one of the hemming steels in the Final Hem Complete position is not dependent on the position of the other hemming steel. For this reason, the invention is also applicable to any hemming operation where it is desired to hem two distinct areas of a workpiece, such as the inside and outside of a window opening, using two hemming mechanisms that are driven by a single press.
Having thus described the invention, various alterations and modifications will occur to those skilled in the art, which modifications and alterations will be deemed to be within the scope of the invention as defined by the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
6295858 | Torito | Oct 2001 | B1 |
Number | Date | Country |
---|---|---|
61-216818 | Sep 1986 | JP |
61-216819 | Sep 1986 | JP |
5-169163 | Jul 1993 | JP |
2000-237830 | Sep 2000 | JP |