This invention relates to internal combustion engines, and more particularly to, testing spark plugs used with such engines.
In an internal combustion engine, the “ignition system” is the mechanism that ignites the fuel consumed by the engine. Most engines use either an electrical spark or a compression heating ignition system. Typical electrical spark ignition systems rely on a battery, an induction coil, and a spark igniter to provide an electrical spark to ignite the air-fuel mix in the engine's cylinders. Compression heating ignition systems inject fuel into the engine's cylinders and rely on the heat created in the air by compression in the cylinders to ignite the fuel.
In the case of electrical spark ignition systems, the spark igniter is typically a spark plug having electrodes that extend into the combustion chamber. The plug provides a spark and a gap for that spark to jump across. The plug also conducts heat from the combustion process to the cylinder head and into the cooling system.
To meet these performance requirements and to provide long life and superior engine performance, a large amount of technology goes into the design and manufacture of spark plugs. The spark plug manufacturing industry is particularly interested in developing spark plugs that last for longer periods of time.
Currently there is no standard for spark plug durability, Society of Automotive Engineers (SAE) or otherwise. Thus, different manufacturers develop their own standards and tests. For example, many manufacturers have a self-imposed requirement that a spark plug be capable of performing in an automotive engine for at least 100,000 miles before a plug change or tune up is required.
Conventional spark plug testing is achieved by using the spark plugs in a real engine. A typical spark plug test consists of 400 to 500 hours of engine testing running a specified test cycle. An example of a test cycle is 30 seconds at full load followed by 30 seconds at idle, repeated for the test duration. Continuous full load testing is not feasible because of engine durability issues. This method of testing is also expensive because it requires an engine, a dynamometer, and large amounts of fuel.
The following description is directed to a system and method for durability testing of spark plugs. The system simulates the adverse conditions to which spark plugs are exposed in a running engine, but eliminates the time and costs associated with operating an actual engine. The system provides “accelerated” testing in the sense that spark plugs can be aged as they would be aged in an engine, but in a substantially shorter amount of time.
Burner 101 is essentially a fuel combustion chamber that provides exhaust simulating that of a fuel-burning engine. Burner 101 receives pressurized input air via an air intake port, with the air input being controlled by intake valve 102. A fuel injector 103 is used to inject fuel into the burner 101. A mixture of fuel and air is ignited by an igniter 105 that extends into burner 101.
Burner 101 burns gasoline or any other fuel appropriate for an internal combustion engine. It provides burned gas and air, as an exhaust flow into chamber 107.
Burner 101 may be spark ignited or pilot ignited. The input fuel and air may be adjusted to result in rich, lean, or stoichiometric combustion. The exhaust from burner 101 and into chamber 107 will reflect the type of combustion.
Burner 101 provides hot burnt gases to simulate the effects of combustion and to achieve the temperatures found in an engine operating at a specified load. The use of a fuel burner 101 ensures that spark plugs within test chamber 107 are exposed to engine-like combustion gases, which may contain water, reactive chemicals, and other contaminants.
Various alternative designs of burner 101 are possible. The burner design can reflect various engine designs, such as by using pre-combustion chambers, different types of injectors, and the like.
Test chamber 107 is an enclosure for holding a number of spark plugs. It has a number of spark plug slots for inserting the spark plugs, such that the spark plug electrodes extend into the chamber similar to the manner in which they would extend into a combustion chamber such as an engine cylinder. Test chamber 107 is sealable, so as to be capable of providing a pressurized volume for running the spark plugs at ignition pressures.
Chamber 107 is essentially a hollow tube made from a material having high thermal conductivity, such as steel or aluminum. In the example of this description, chamber 107 is installed at an open end of burner 101, but any form of fluid connection may be used.
Temperature (T) and pressure (P) sensors 23 and 25 may be installed within chamber 107. Measurement signals from these sensors may be for test monitoring. As explained below, control unit 120 may be used to acquire data from these sensors and evaluate the testing process.
In the example of
Referring again to
The gas from test chamber 107 is exhausted into the flow line, and passed through heat exchanger 109. Heat exchanger 108 cools the exhaust by using a coolant flow passageway around the exhaust flow line. Heat exchanger 109 receives coolant, circulates the coolant, and discharges the coolant to waste.
Relief valve 110 is placed downstream of test chamber 107. It is adjustable to control the pressure inside chamber 107. In the example of this description, relief valve 110 is placed along an exhaust flow line leading from test chamber 107, which accommodates the installation of heat exchanger 109. However, it is also possible to install the relief valve directly into test chamber 107.
As an example of operation of system 100, the duty cycle of the spark plugs, as well as the period and amplitude of temperature and pressure changes within test chamber 107, can be adjusted to simulate different engine operating conditions. More specifically, injector 103 may be operated on a duty cycle to provide a quasi-steady flow of hot gases to the test chamber 107. This duty cycle is adjusted to achieve a target temperature in the test chamber 107. The target temperature can be altered to simulate different load conditions, with higher temperatures simulating high loads and lower temperatures simulating idle or low loads. Pressure valve 110 is also adjusted to simulate load changes. The coils 108 can operate at varied dwell times on different duty cycles.
The above-described test procedures can be automated using a control system 120, which receives input from various sensors associated with system 100 and delivers control signals to its various actuators. Control unit 120 may be implemented with conventional computing equipment, including processors and memory. It is equipped with suitable input devices, a monitor, and a multi-function data acquisition card, connected to an digital relay module to monitor and record system information, and to control system electronics.
Control unit 120 is programmed to run various simulation programs. Control unit 120 is electrically connected to the various actuators discussed above, such as injectors, heaters, coolers, and relief valve.
More specifically, control unit 120 can be programmed to control the pressure within chamber 107 by means of valves 102 and 110. It controls fuel injector 103, thereby controlling temperature by controlling the amount of fuel ignited and burned, as affected by air flow into burner 101. That is, temperature in chamber 107 is a function of both a specific air flow rate and an amount of injected fuel. As described below in connection with
Temperature and pressure may be controlled and cycled independently of each other and may be cycled rapidly. Any factor affecting spark plug durability may be introduced, and the time and magnitude of exposure to that factor may be precisely controlled.
After a test cycle is run, spark plugs 21 are removed from test chamber 107. They may then be evaluated, and in particular, their durability characteristics recorded. If desired, spark plugs may be “aged” using system 100, and then tested with real engines.
In the example of
Referring again to
As illustrated in
An advantage of system 100 is that spark plug testing is not constrained by factors such as engine friction and durability. The system can generate sparks at a much higher rate than systems that rely on a real engine. For example, system 100 is expected to achieve spark rates of at least 100 Hz (one spark event every 10 ms). At this rate, system 100 can generate 45 million sparks in 125 hours. This is one-quarter the time required for engine-based testing, at an average engine speed of 3000 rpm.
System 100 substantially reduces the time and expense of spark plug durability testing. It can be implemented as a compact benchtop system, and will permit more spark plugs to be tested in a shorter time, as compared to engine-based test systems.
This application claims the benefit of U.S. Provisional Application No. 60/713,467, filed Sep. 1, 2005 and entitled “Benchtop Test System For Testing Spark Plug Durability.”
Number | Date | Country | |
---|---|---|---|
60713467 | Sep 2005 | US |