Many conventional loudspeakers produce sound by inducing piston-like motion in a diaphragm. Panel audio loudspeakers, such as distributed mode loudspeakers (DMLs), in contrast, operate by inducing uniformly distributed vibration modes in a panel through an electro-acoustic actuator. Typically, the actuators are electromagnetic or piezoelectric actuators.
Conventional piezoelectric actuators often include toxic materials such as lead, while conventional EM actuators can include, pre-magnetized materials such as iron or neodymium, which can be heavy, brittle, and/or difficult to manufacture. In addition, pre-magnetized materials may become inoperable when heated above their Curie temperatures, therefore causing a conventional piezoelectric actuator that includes the pre-magnetized materials to stop operating.
Actuators are disclosed that include a rigid, elongate member (e.g., a beam or plate) of soft magnetic material that demonstrates bending modes in response to actuation by an electromagnet or electromagnets positioned close to, but displaced from, the member. In some embodiments, an elongate member is attached to a panel by a stub and has a free end that can vibrate. A pair of electromagnets are positioned on opposing sides of the member and, when the electromagnets are activated, they generate a magnetic field that causes the member to bend. In the absence of a magnetic field, a restoring force generated by the deflection of the member returns the member to its resting state. Various vibration modes can be activated in the member by suitably cycling current through the opposing electromagnets, and these vibrations are transferred to the plate via the stub.
In general, in a first aspect, the invention features a distributed mode loudspeaker that includes a flat panel extending in a panel plane. The distributed mode loudspeaker also includes a rigid, elongate member displaced from the flat panel and extending parallel to the panel plane, the elongate member being mechanically coupled to the flat panel at a first position along the elongate member and extending away from the first position to an end of the member free to vibrate in a direction perpendicular to the plane. The elongate member includes a soft magnetic material. The distributed mode loudspeaker also includes an electromagnet system including at least one electrically-conducting coil having an axis perpendicular to the panel plane and displaced from the elongate member. The distributed mode loudspeaker further includes an electronic control module electrically coupled to the electromagnet system and programmed to energize the electrically-conducting coil sufficient such that a magnetic field produced by the electrically-conducting coil displaces the free end of the elongate member perpendicular to the panel plane.
Implementations of the distributed mode loudspeaker can include one or more of the following features and/or one or more features of other aspects. For example, the electronic control module can be programmed to energize the electrically-conducting coil to vibrate the elongate member at frequencies and amplitudes sufficient to produce an audio response from the flat panel.
In some implementations, the electrically-conducting coil is a first electrically-conducting coil and the electromagnet system further includes a second electrically-conducting coil having a corresponding axis perpendicular to the panel plane, the first and second electrically-conducting coils being on opposing sides of the elongate member. The first and second electrically-conducting coils can be aligned along a common axis. The electronic control module can be programmed to simultaneously energize the first and second electrically-conducting coils to vibrate the elongate member.
In some implementations, the member is mechanically coupled to the flat panel by a rigid element that displaces the member from the face of the flat panel.
In other implementations, the distributed mode loudspeaker also includes a rigid frame and the electrically-conducting coil is mechanically coupled to the rigid frame. The rigid frame can mechanically ground the electrically-conducting coil.
In some implementations, the electrically-conducting coil is arranged between the flat panel and the elongate member. In other implementations, the elongate member is arranged between the electrically-conducting coil and the flat panel.
In some implementations, the flat panel includes a flat panel display.
In yet other implementations, the electrically-conducting coil is a first coil and the electromagnet system further includes a second electrically-conducting coil arranged on a common side of the elongate member as the first coil.
In some implementations, the end of the elongate member free to vibrate is a first end and the elongate member extends away from the first position to a second end of the member free to vibrate in a direction perpendicular to the plane, the second end being opposite the first end. The first coil can be arranged between the first position and the first end and the second coil can be arranged between the first position and the second end.
In some implementations, the elongate member has a dimension in a range from about 10 mm to about 50 mm and a thickness of 3 mm or less. In some implementations, the elongate member has a stiffness and dimensions so that the distributed mode loudspeaker has a resonance frequency in a range from about 200 Hz to about 500 Hz.
In another aspect, a mobile device or a wearable device includes a housing and a display panel mounted in the housing. The mobile device or wearable device also includes a flat panel extending in a panel plane. The mobile device or wearable device further includes a rigid, elongate member displaced from the flat panel and extending parallel to the panel plane, the elongate member being mechanically coupled to the flat panel at a first position along the elongate member and extending away from the first position to an end of the member free to vibrate in a direction perpendicular to the plane. The elongate member can include a soft magnetic material. The mobile device or wearable device also includes an electromagnet system including at least one electrically-conducting coil having an axis perpendicular to the panel plane and displaced from the elongate member. The mobile device or wearable device further includes an electronic control module electrically coupled to the electromagnet system and programmed to energize the electrically-conducting coil sufficient such that a magnetic field produced by the electrically-conducting coil displaces the free end of the elongate member perpendicular to the panel plane.
In some implementations the mobile device is a mobile phone or a tablet computer. In some implementations, the wearable device is a smart watch or a head-mounted display.
Among other advantages, embodiments feature electromagnet (EM) actuators having few moving parts. For example, EM actuators can include only a single moving part corresponding to the elongate member. Such actuators may be less susceptible to damage than, for example, conventional EM actuators. In particular, such actuators may be less susceptible to damage due to mechanical impact, e.g., from being dropped, than conventional EM actuators. Another advantage provided by the disclosed EM actuators is that they can be smaller and lighter than those that include permanent magnets. Additionally, the disclosed DMLs can be manufactured without the use of toxic materials such as lead. Another advantage provided by the disclosed EM actuators is that they can operate above the Curie temperatures of certain magnets and piezoelectric devices. Therefore, the disclosed EM actuators can be used as high-temperature actuators, e.g., ones that operate in extreme environments.
Other advantages will be evident from the description, drawings, and claims.
Like reference symbols in the various drawings indicate like elements.
The disclosure features actuators for panel audio loudspeakers, such as distributed mode loudspeakers (DMLs). Such loudspeakers can be integrated into a mobile device, such as a mobile phone. For example, referring to
Mobile device 100 also produces audio output. The audio output is generated using a panel audio loudspeaker that creates sound by causing the flat panel display to vibrate. The display panel is coupled to an actuator, such as a distributed mode actuator, or DMA. The actuator is a movable component arranged to provide a force to a panel, such as touch panel display 104, causing the panel to vibrate. The vibrating panel generates human-audible sound waves, e.g., in the range of 20 Hz to 20 kHz.
In addition to producing sound output, mobile device 100 can also produces haptic output using the actuator. For example, the haptic output can correspond to vibrations in the range of 180 Hz to 300 Hz.
Referring to
Electromagnet assemblies 310a and 310b each includes a corresponding support structure 312a and 312b that includes a central pole, which support conductive coils 314a and 314b, respectively. Coils 314a and 314b are axially aligned parallel to the z-axis.
Magnetic assemblies 310a and 310b can be relatively compact. For example, the width of the central pole can be approximately 3 mm to 8 mm when measured in the x-direction, while the width of the surrounding wall of the support structure can be approximately half the width of the central pole, when measured in the x-direction. The height of electromagnet assemblies 310a and 310b can be approximately 1 mm to 3 mm, e.g., 2 mm.
Generally, elongate member 330 has a dimension in the xy-plane that is significantly larger than its thickness (i.e., in the z-direction). For example, member 330 can be shaped as a beam (e.g., where the dimension along the x-direction is significantly larger than the y-dimension and the thickness) or a plate (e.g., where the x- and y-dimensions are comparable, and both are significantly larger than the thickness). The dimension in the x-dimension, for example, can be about 10 mm to about 50 mm (e.g., about 12 mm to about 20 mm) and the thickness can be about 3 mm or less (e.g., 2 mm or less, 1 mm or less, 0.5 mm less).
The material composition of member 330 are chosen such that the member can be magnetized, i.e., by magnetic fields generated by electromagnet assemblies 310a and 310b. Member 330 should also be sufficiently rigid to support vibrational modes introduced by displacements at the free end of the member. Member 330 can include a soft magnetic material. Examples of soft magnetic materials include certain alloys, such as nickel-iron alloys (permalloy), and soft ferrites (e.g., ferroxcube). In some embodiments, member 330 is made of steel, e.g., 1018 steel.
In general, the placement of the electromagnet assemblies relative to the elongate member are chosen based on a number of considerations, including the amount of space available for the actuator within the chassis and the mechanical impedance of the elongate member. In some embodiments, so as to match the mechanical impedance of the resonant member to that of panel 104. In certain cases, the closer the electromagnets are to stub 350, the higher the mechanical impedance that beam 330 presents to the electromagnet system.
During the operation of actuator 302, electronic control module 220 energizes one of coils 314a and 314b by applying an AC current to each. In response, each coil generates a magnetic field that interacts with member 330, causing the free end of the member to vibrate. Generally, the frequency, amplitude, and relative phase of the AC currents supplied to the two coils are controlled to generate a desired frequency response in the member, and by the coupling of the member to the panel via the stub, the desired audio output of the panel. In some embodiments, coils 314a and 314b are driven with AC current having the same frequency but approximately 180° out of phase. When coils 314a and 314b are no longer energized, member 330 returns to a rest position, as shown in
Periodically energizing coils 314a and 314b can cause actuator 302 to excite various vibrational modes in panel 104, including resonant modes. For example, the touch panel display can have a fundamental resonance frequency in a range from about 200 Hz to about 600 Hz (e.g., at about 500 Hz), and one or more additional higher order resonance frequencies in a range from about 5 kHz to about 20 kHz.
Generally, while
Furthermore, while
Actuator 402 also includes a pair of frames 420a and 420b that support electromagnet assemblies 310a and 410a, respectively. Spacers 440a and 440b support electromagnet assemblies 310b and 410b. Electromagnet assemblies 310a and 310b are positioned on opposing sides of member 330 at one free end of the member, while assemblies 410a and 410b are positioned on opposing sides at the other free end of member 330. Like assemblies 310a and 310b, assembly 410a includes a support structure 412a and a coil 414a, while assembly 410b includes a support structure 412b and a coil 414b.
Just as electronic control module 220 drives actuator 302 such that only a subset, e.g., one of the two electromagnet assemblies 310a and 310b, is activated at a time, the electronic control module can drive actuator 402 such that only a subset of electromagnets 310a, 310b, 410a, and 410b are activated at a time. For example, electronic control module 220 can periodically activate one of the four electromagnets at a time and cycle through each of the four electromagnets. As another example, electronic control module 220 can periodically activate two of the four electromagnets at a time and cycle through two of the four electromagnets, e.g., such that electromagnets 310a and 410a are activated for part of the cycle, while electromagnets 310b and 410b are activated for the remaining part of the cycle.
While
In some embodiments, actuators can include multiple electromagnetic assembly pairs arrayed in two dimensions. For example, referring to
Upper and lower frames 504 and 506 both include multiple electromagnet assemblies (examples are labeled 310a and 310b, respectively). In particular, each frame includes eight electromagnet assemblies arrayed in a three by three grid (except for the central grid position, where aperture 508 located).
During operation, member 530 vibrates in response to a periodic activation of the electromagnet assemblies of upper frame 504 and lower frame 506. The force of the vibration is transferred to panel 104 by stub 350, causing panel 104 to vibrate and produce sound waves. Electronic control module 220 can selectively activate one or more of the electromagnets of upper frame 504 and lower frame 506. The arrangement of the electromagnetic assemblies in a two-dimensional array facilitates two-dimensional vibrational modes in member 530.
While
In general, the actuators described above are controlled by an electronic control module, e.g., electronic control module 220 in
Processor 610 may be implemented as any electronic device capable of processing, receiving, or transmitting data or instructions. For example, processor 610 can be a microprocessor, a central processing unit (CPU), an application-specific integrated circuit (ASIC), a digital signal processor (DSP), or combinations of such devices.
Memory 620 has various instructions, computer programs or other data stored thereon. The instructions or computer programs may be configured to perform one or more of the operations or functions described with respect to the mobile device. For example, the instructions may be configured to control or coordinate the operation of the device's display via display driver 630, signal generator 640, one or more components of I/O module 650, one or more communication channels accessible via network/communications module 660, one or more sensors (e.g., biometric sensors, temperature sensors, accelerometers, optical sensors, barometric sensors, moisture sensors and so on), and/or actuator 210.
Signal generator 640 is configured to produce AC waveforms of varying amplitudes, frequency, and/or pulse profiles suitable for actuator 210 and producing acoustic and/or haptic responses via the actuator. Although depicted as a separate component, in some embodiments, signal generator 640 can be part of processor 610. In some embodiments, signal generator 640 can include an amplifier, e.g., as an integral or separate component thereof.
Memory 620 can store electronic data that can be used by the mobile device. For example, memory 620 can store electrical data or content such as, for example, audio and video files, documents and applications, device settings and user preferences, timing and control signals or data for the various modules, data structures or databases, and so on. Memory 620 may also store instructions for recreating the various types of waveforms that may be used by signal generator 640 to generate signals for actuator 210. Memory 620 may be any type of memory such as, for example, random access memory, read-only memory, Flash memory, removable memory, or other types of storage elements, or combinations of such devices.
As briefly discussed above, electronic control module 600 may include various input and output components represented in
Each of the components of I/O module 650 may include specialized circuitry for generating signals or data. In some cases, the components may produce or provide feedback for application-specific input that corresponds to a prompt or user interface object presented on the display.
As noted above, network/communications module 660 includes one or more communication channels. These communication channels can include one or more wireless interfaces that provide communications between processor 610 and an external device or other electronic device. In general, the communication channels may be configured to transmit and receive data and/or signals that may be interpreted by instructions executed on processor 610. In some cases, the external device is part of an external communication network that is configured to exchange data with other devices. Generally, the wireless interface may include, without limitation, radio frequency, optical, acoustic, and/or magnetic signals and may be configured to operate over a wireless interface or protocol. Example wireless interfaces include radio frequency cellular interfaces, fiber optic interfaces, acoustic interfaces, Bluetooth interfaces, Near Field Communication interfaces, infrared interfaces, USB interfaces, Wi-Fi interfaces, TCP/IP interfaces, network communications interfaces, or any conventional communication interfaces.
In some implementations, one or more of the communication channels of network/communications module 660 may include a wireless communication channel between the mobile device and another device, such as another mobile phone, tablet, computer, or the like. In some cases, output, audio output, haptic output or visual display elements may be transmitted directly to the other device for output. For example, an audible alert or visual warning may be transmitted from the mobile device 100 to a mobile phone for output on that device and vice versa. Similarly, the network/communications module 660 may be configured to receive input provided on another device to control the mobile device. For example, an audible alert, visual notification, or haptic alert (or instructions therefore) may be transmitted from the external device to the mobile device for presentation.
The actuator technology disclosed herein can be used in panel audio systems, e.g., designed to provide acoustic and/or haptic feedback. The panel may be a display system, for example based on OLED of LCD technology. The panel may be part of a smartphone, tablet computer, or wearable devices (e.g., smartwatch or head-mounted device, such as smart glasses).
Other embodiments are in the following claims.
This application is a continuation of U.S. application Ser. No. 16/289,567, filed Feb. 28, 2019, the contents of which are incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
1490702 | Koester | Apr 1924 | A |
3111563 | Carlson | Nov 1963 | A |
3247925 | Warnaka | Apr 1966 | A |
4272654 | Carlson | Jun 1981 | A |
6853735 | Imahori | Feb 2005 | B2 |
7174025 | Azinna | Feb 2007 | B2 |
7391879 | Beer | Jun 2008 | B2 |
8139814 | Rottenberg et al. | Mar 2012 | B2 |
10631091 | Beckett | Apr 2020 | B1 |
Number | Date | Country |
---|---|---|
653677 | Mar 1929 | FR |
191309904 | Apr 1914 | GB |
WO 2007028980 | Mar 2007 | WO |
Entry |
---|
PCT International Search Report and Written Opinion in International Appln No. PCT/US2019/061223, dated Feb. 5, 2020, 12 pages. |
Number | Date | Country | |
---|---|---|---|
20200322729 A1 | Oct 2020 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16289567 | Feb 2019 | US |
Child | 16839546 | US |