This invention relates to a bending machine for the bending of tube, rod- or bar-shaped workpieces and especially of pipes and tubes. Such a bending machine has a base unit equipped with a collet as well as a tool assembly provided with at least one bending tool. The bending tool can be opened and closed in the transverse direction of the workpiece by the relative movement of tool components and forms at least one workpiece holder, and the tool assembly is mounted on and movable relative to a swivel support which is mounted on the machine base unit in such a fashion that it can be rotated around a swivel support axis of rotation extending in the longitudinal direction of the workpiece.
In bending machines of this type, it is necessary for various reasons to move the tool assembly relative to the machine base unit and/or relative to the workpiece held on it. For example, tool assemblies which for multi-level bending applications are equipped with several bending tools mounted one above the other, and they are moved relative to the machine base unit in a fashion so that each tool, as it is to be applied, can individually address the workpiece to be bent. Two-directional bending tool assemblies equipped with at least one bending tool for each bending direction are positioned relative to the machine base unit and to the workpiece held on it in a fashion so that, for each bending direction, the appropriate bending tool can be engaged. Finally, tool assemblies are also used for workpiece handling for which purpose they can be moved relative to the machine base unit.
A bending machine of the general type last mentioned is described in U.S. Pat. No. 5,927,126 granted Jul. 27, 1999. In that prior art design, the swivel support for the tool assembly is constituted of a platen that is mounted on a basic machine frame in a way to permit rotation around an axis that extends in the longitudinal direction of the workpiece. A slide on that platen guides the tool assembly in a linear direction perpendicular to the axis of rotation of the platen. Rotating the platen and linearly moving the slide allows the tool assembly of that earlier design, prior to or following the processing of the workpiece, to be moved into positions in which it can receive from a loading magazine workpieces to be processed using the components of a bending tool or in which these bending tool components can transfer processed workpieces to an unloading station.
The various positions of the tool assembly or of the work holder constituted by its bending tool can in each case be obtained by one single rotary position of the platen that linearly guides the slide of the tool assembly relative to the basic machine frame. For the linear movement of the slide on the platen, a powerful drive unit must be provided. The size of the linear drive system for the slide is a function of the length of travel of the slide and can be relatively bulky.
It is the objective of this invention to provide a novel bending machine which remedies the drawbacks of the prior art design.
It is also an object to provide such a bending machine which enables the forming of consecutive bends in an elongated workpiece without interference from the machine base as the workpiece is manipulated between positions and formed.
It has now been found that the foregoing and related objects and advantages can be readily attained in a bending machine for the bending of tubes, rods and bars (24, 24a), comprising a machine base unit (2); a collet (6) supported thereon for mounting a workpiece; and a tool assembly (15, 15a, 15b, 15c, 15d) with at least one bending tool (20; 40, 60; 80, 100; 40a, 60a). The bending tool (20; 40, 60; 80, 100; 40a, 60a) opens and closes in the transverse direction of the workpiece by the relative movement of tool components (21, 25; 41, 45; 61, 65; 81, 85; 101, 105) to form at least one workpiece holder (23, 26; 43, 46; 63, 66; 83, 86; 103, 106). A swivel support (10) is mounted on the machine base unit (2) for rotation around a swivel support axis of rotation (11) extending in the longitudinal direction (12) of the workpiece, and the tool assembly (15, 15a, 15b, 15c, 15d) is supported on the swivel support (10) for rotation around a tool axis of rotation (16) extending in the longitudinal direction (12) of the workpiece. The swivel support axis of rotation (11) and the tool axis of rotation (16) and the tool axis of rotation (16) and the workpiece holder (23, 26; 43,46;, 63, 66; 83, 86; 103, 106), are radially offset relative to one another.
The swivel support (10) is in the form of a swivel arm and the tool assembly (15b, 15d) includes multiple bending tools (40, 60; 40a, 60a) each comprising a bending die (41, 61; 41a, 61a) and a pressure element (45, 65). The bending dies (41, 61; 41a, 61a) of different bending tools (40, 60; 40a, 60a) are positioned one above the other, and each define a different tool plane. Rotation of the tool assembly (15b, 15d) around the tool axis of rotation (16) and rotation of the swivel support (10) around the swivel support axis of rotation (11), selectively move different bending tools (40, 60; 40a, 60a) into position for a bending operation.
The tool assembly (15) includes a plurality of bending tools (80, 100) consecutively positioned in the direction of rotation of the tool assembly (15c) around the tool axis of rotation (16). Rotation of the tool assembly (15c) around the tool axis of rotation (16) and rotation of the swivel support (10) around the swivel support axis of rotation (11) selectively moves different bending tools (80, 100) into position for a bending operation.
The tool assembly (15c) may encompass a plurality of bending tools (80, 100) each comprising one bending die (81, 101) and a clamping jaw (85, 105). The bending dies (81, 101) are situated along a axis (82) extending in the transverse direction of the workpiece on both sides of the tool axis of rotation (16). For bending a workpiece with the workpiece mounted in the workpiece holder (83, 86; 103, 106), the bending dies (81, 101) and the clamping jaw or jaws (85, 105) can be rotated or tilted around a neutral axis (82). By rotating the tool assembly (15c) around the tool axis of rotation (16) and rotating the swivel support (10) around the swivel support axis of rotation (11), the bending tools (80, 100) located on either side of the tool axis of rotation (16) can be selectively moved into position for a bending operation.
Rotation of the tool assembly (15, 15a, 15b, 15c, 15d) around the tool axis of rotation (16) and rotation of the swivel support (10) around the swivel support axis of rotation (11), moves a bending tool (20; 40, 60, 80, 100, 40a, 60a) into a workpiece pickup position for accepting a workpiece to be processed and/or into a workpiece transfer position for delivering a processed workpiece.
Generally, there is included a first rotary actuator for driving the rotational movement of the swivel support (10) around the swivel support axis of rotation (11) and/or the rotational movement of the tool assembly (15, 15a, 15b, 15c, 15d) with at least one bending tool (20; 40, 60, 80, 100, 40a, 60a) around the tool axis of rotation (16). A second rotary actuator drives the rotational movement of the workpiece (24, 24a) clamped in the collet (6) around a workpiece axis of rotation (67) that extends in the longitudinal direction of the workpiece; a drive control for controlling both the rotary tool actuator and the rotary workpiece actuator. The workpiece (24, 24a) is placed in a processing position in the associated work holder (23, 43, 63; 83, 103; 43a, 63a) of a bending tool (20; 40, 60; 80, 100; 40a, 60a) and the associated work holder (23; 43, 63; 83, 103; 43a, 63a). When in the processing standby mode, they have a predefined setpoint orientation around the workpiece axis of rotation (67). With the rotary workpiece actuator and the rotary tool actuator controlled by the drive control, the workpiece (24, 24a) and the associated work holder (23; 43, 63; 83, 103; 43a, 63a) can be reoriented in correlated fashion relative to the setpoint orientation concerned when the associated work holder (23; 43, 63; 83, 103; 43a, 63a) is moved for placing the workpiece (24, 24a) in position for processing in the associated work holder (23; 43, 63; 83, 103; 43a, 63a), and/or when the work holder (23; 43, 63; 83, 103; 43a, 63a) is moved for removing the workpiece (24, 24a) from its processing position in the associated work holder (23; 43, 63; 83, 103; 43a, 63a), with the orientation of the workpiece (24, 24a) being modifiable to the same degree as the orientation of the work holder (23; 43, 63; 83, 103; 43a, 63a).
The rotary tool actuator and the rotary workpiece actuator enable the associated work holder (23; 43, 63; 83, 103; 43a, 63a) to be moved relative to the workpiece (24, 24a). When the workpiece holder is moved for bringing the workpiece (24, 24a) into its processing position in the associated work holder (23; 43, 63; 83, 103; 43a, 63a). When the workpiece (24, 24a) is removed from its processing position in the associated work holder (23; 43, 63; 83, 103; 43a, 63a) in an operating phase in which the workpiece (24, 24a) and the associated work holder (23; 43, 63; 83, 103; 43a, 63a) are not in contact with each other, the rotary workpiece actuator is controlled by the drive control and an additional reorientation can be superimposed on the reorientation of the workpiece (24, 24a), correlated with the reorientation of the work holder (23; 43, 63; 83, 103; 43a, 63a).
Preferably, there is included a drive control in the form of a programmable computer-based controller (18).
The tool assembly is rotatably mounted on the swivel support and the swivel support is rotatably mounted on the machine base unit with their axes of rotation extending in the same direction. This enables the machine to provide different positions of the tool assembly and thus different positions of the tool holder itself and of the tool holder on the tool assembly, and different rotational relationships between the tool assembly and the swivel support and between the swivel support and the machine base unit.
Thus, the machine offers great flexibility in terms of the movements made by the tool assembly relative to the machine base unit for various functional procedures and also in terms of the orientation of the tool assembly and the swivel support relative to the machine base unit and relative to the workpiece to be processed. For example, the positioning of the swivel support can be adapted to the position of the workpiece in a manner to avoid any collision with the workpiece. When the tool assembly is suitably balanced relative to the axis of rotation of the tool, the rotational movement of the tool assembly requires only a drive system of limited power and small dimensions, provided by a small sized electric drive system. Similarly, guiding the tool assembly during its rotational movement is possible with structurally simple and space-saving elements. The bending tools of the tool assemblies may be of different designs. These may include for instance bending tools for uncoiled blank bending and/or for coil bending.
The swivel support is constituted of a swivel arm which, appropriately dimensioned, ensures the necessary reach of the tool assembly it supports notwithstanding the simplicity of its implementation. Moreover, a swivel arm of that type has a relatively small intrinsic weight and is a structural element of relatively small bulk. The swivel arm covers only part of the machine base unit.
As described above, the rotatability of the tool assembly relative to the swivel support and the rotatability of the swivel support relative to the machine base unit are utilized for selectively moving bending tools at different tool operating planes into position for a bending operation.
The rotary mounting of the tool assembly and of the swivel support is utilized for selectively moving consecutive bending tools in the direction of rotation of the tool assembly around the axis of rotation of the tool into a position in which they can perform the bending operation on the workpiece concerned. Workpieces can be selectively bent in different directions without requiring an external tool change.
The tool assembly is also used for picking up workpieces to be processed and/or for transferring workpieces that have been processed. A corresponding rotary movement of the swivel support and the tool assembly allows the latter to be placed in the workpiece pick-up position and, once a workpiece to be processed has been picked up, to be moved into a position for the bending operation in which position the workpiece picked up by the tool assembly can be clamped in place in the work holder on the machine base unit. Following one or several subsequent bending operations, the processed workpiece can be unloaded from the bending machine by an appropriate movement of the tool assembly into a workpiece transfer position.
The kinematics are derived from the principle of two axes of rotation in this invention, and the movement of a collet in the workpiece holder relative to the workpiece mounted in the work holder. The changes in the orientation of the workpiece and the collet ensure that the workpiece reliably arrives in its processing position in the appropriate collet with the predefined orientation. Equally reliable is the removal of the workpiece from the collet upon completion of the processing operation.
Preferably, the reorientation of the workpiece associated with the reorientation of the collet can be superimposed by an additional reorientation function. This superposition allows for the orientation required for subsequent workpiece processing simultaneously with the mutually coupled, coordinated reorientation of the workpiece and the collet, thus optimizing the throughput time of the workpiece processing.
The following describes implementation examples of this invention in more detail with reference to highly simplified schematic illustrations in which—
As shown in
At the opposite end, the machine base unit 2 supports a swivel support 10 which, in the case of the embodiment shown, is in the form of an angled swivel arm. The swivel support 10 can be rotated relative to the machine base unit 2 around a swivel support axis of rotation 11. This swivel support axis of rotation 11 extends in a longitudinal direction 12 of the workpiece, as indicated by a dot-dash line in FIG. 1.
A radial swivel support leg 13 extends in a perpendicular direction relative to the swivel support axis of rotation 11 and serves to connect the swivel support 10 to the machine base unit 2 while a tool assembly 15 is mounted on a swivel support leg 14 that extends parallel to the swivel support axis 11. The tool assembly 15 mounted on the swivel support 10 can be rotated around a tool axis of rotation 16. The tool axis of rotation 16 extends in the longitudinal direction 12 of the workpiece and thus parallel to the swivel support axis of rotation 11 relative to which the tool axis of rotation 16 is radially offset.
Components of the tool assembly 15 include bending tools, (not illustrated in FIG. 1), which are mounted on a tool holder 17 at a radial distance from the tool axis of rotation 16. All functional operations of the pipe bending machine 1 are controlled by a programmable computer-based controller 18. All movements of the pipe bending machine 1 are motorized and effected by electric motor drives.
The bending tools (not shown in
A tool assembly 15a is illustrated in
Associated with the bending die 21 as another component of the bending tool 20 is a pressure element in the form of a clamping jaw 25 which has an arcuate channel 26 a cross section cooperating with that of the pipes 24. By means of a clamp drive (not shown), the clamping jaw 25 can be moved in the direction of the double arrow 27 relative to the bending die 21 for opening and closing the bending tool 20. At the same time the clamping jaw 25 can be rotated around the axis 22 by the swivel arm 28 of the tool holder 17a. When the bending tool 20 is closed, the arcuate channels 23, 26 of the bending die 21 and of the clamping jaw 25 constitute a tool holder with a recess of essentially circular cross section in which a pipe 24 is clamped.
As shown in
In the operating or bending phase shown in
From the position of the parts shown in
For exactly the same position of the pipe 24, the tool assembly 15a and the swivel support 10 can be set up in different ways. This in turn makes it possible to adapt the positioning of the tool assembly 15a and of the swivel support 10 to the configuration of the pipe 24 at the forward end of the pipe bending machine 1. If, for example, the pipe 24 as it is processed is bent toward the machine base unit 2, the swivel support 10 can be reoriented so that a collision between it and the pipe 24 is avoided. Overall, it is possible to place the interference field created by the tool assembly 15a and/or the swivel support 10 in such a fashion that the pipe 24 will be positioned outside this interference field, thus eliminating any possible obstruction in the workpiece processing.
The bending process itself can take place without any collision between the workpiece and the machine, but so can the preceding and/or following alignment of the pipe in the direction of its circumference as the collet 6 is turned around its axis. This latter aspect is particularly important when producing multiple bends in the same workpiece, i.e., in cases where one or several bends already produced on a workpiece must be kept outside the interference field on the machine side as the workpiece is being manipulated. In summary, the kinematic concept of the pipe bending machine 1, described above, provides substantial freedom in the configuration of machine bent pipes and especially those with multiple bends. All of the procedural steps are controlled by the programmable computer-based controller 18.
Once the pipe 24 to be processed is in the position depicted in
This is followed by several conventional bending operations. For each bending operation, the swivel arm 28 with the clamping jaw 25 rotates around the axis 22 while, at the same time, the bending die 21 rotates around the axis 22. In the process, the pipe 24, clamped between the bending die 21 and the clamping jaw 25, follows that movement and is bent. After each individual bending operation, the bending tool 20 is opened while the workpiece feed mechanism 3 advances the pipe 24 in the longitudinal direction 12 of the workpiece. During that advance in the longitudinal direction 12 of the workpiece, the pipe 24 is turned, if and as needed, by a controlled rotation of the collet 6 around the longitudinal directional axis 12 of the workpiece. On completion, the processed pipe 24 has the shape illustrated in FIG. 8.
When the swivel arm 28 of the tool holder 17a is swiveled back into its home position and the bending tool 20 remains closed, the bent pipe 24 is locked in place in the tool assembly 15a. Next, the collet 6 is opened and, as the feed slide 5 is moved in the direction of the rearwardly cantilevered portion 9 of the machine base unit 2, the machine side end of the pipe 24 is released.
Following that operation, the tool assembly 15a holding the pipe 24 can be rotated around the tool axis of rotation 16 while the swivel support 10 is rotated around the swivel support axis of rotation 11. This moves the tool assembly and pipe into a workpiece transfer position illustrated in
In its workpiece transfer position shown in
When one single bending tool 20 is used, the tool assembly 15a shown in
To that effect, the tool assembly 15b in
By using the pair of bending tools 40, 60, bends with varying radii of curvature can be produced.
Another work holder on the tool assembly 15b consists of an arcuate channel 63 in the bending die 61 and an arcuate channel 66 in the clamping jaw 65. In the operating state illustrated in
If, for example, the pipe 24 which is already bent with the bending tool 40 is also to be bent by the bending tool 60, it is first necessary to open the bending tool 40 as seen in FIG. 15. This will automatically open the bending tool 60 as well. Next, by turning the tool assembly 15b around the tool axis of rotation 16 and the swivel support 10 around the swivel support axis of rotation 11, the bending tool 60 is moved into position for a bending operation.
In
When, with the starting positions shown in
Now, if, for example, the same pipe 24 is to be bent to the left as well, the bending tool 100 must be brought into position for the bending operation. To that effect, based on the conditions of
When, from the positions shown in
In addition to left and right bending operations, the tool assembly 15c can also be used for handling workpieces, i.e. picking up pipes 24 to be processed and delivering processed pipes 24. The tool assembly 15b of
Operationally proper orientation of the pipes 24 in the longitudinal direction 12 of the workpiece is effected for all processing steps by a workpiece rotating actuator with the collet 6 rotation controlled by the computer-based controller 18. In addition to the individually described tool components, the bending tools 20, 40, 60, 80, 100 include all the usual ancillary components such as slide rails and/or a smoothing tool. For the workpiece processing, the mandrel bar 8 of the pipe bending machine 1 is used in traditional fashion.
The machine side end of the pipe 24a is locked in the collet 6 of the pipe bending machine. In usual fashion the collet 6 can be rotated by means of a workpiece rotation actuator. Linked to the rotation of the collet 6 is a rotary movement of the pipe 24a, held by the collet 6, around a workpiece axis of rotation 67 that extends in a perpendicular direction from the plane of projection in
By a continued movement of the bending die 41a relative to the pipe 24a which remains stationary in the direction transverse to the workpiece axis of rotation 67, the pipe is inserted in the pipe channel 43a of the bending die 41a. Due to the implementation of the principle of two axes of rotation the swivel support axis of rotation 11, and the tool axis of rotation 16, the bending die 41a with its pipe channel 43a follows a path along which the orientation of the pipe channel 43a changes in comparison with the orientation in FIG. 31. In order to permit a reliable and especially non-skewed entry of the pipe 24a into the pipe channel 43a, it is necessary to change the orientation of the pipe 24a around the workpiece axis of rotation 67 to adapt its orientation to the reorientation of the pipe channel 43a. This is accomplished because the computer based controller of the pipe bending machine positively couples the reorientation of the pipe 24a to the reorientation of the pipe channel 43a, changing the orientation of the pipe 24a to the same degree as that of the pipe channel 43a.
In
Following the operating state shown in
Upon completion of the second processing step, the bending tool 40a is opened and the pipe 24a removed from the pipe channel 43a as the pipe channel 43a, i.e., the bending die 41a, is moved in the transverse direction of the pipe. Following the condition of
Additional processing steps can be performed for so long as the pipe 24a remains clamped in the collet 6.
If the pipe 24a is to be bent once more along the same bending plane as in the preceding processing step using the tool 40a of the tool assembly 15d, it is necessary to first advance the pipe 24a by moving the collet 6 toward the front as viewed in
If, on the other hand, the tool 40a of the tool assembly 15d is to produce another bend but along a bending plane other than that of the preceding processing step, the orientation of the pipe 24a must be changed in adaptation to the changed angle of the bending plane before the bending die 41a can be reapplied to the pipe 24a. This reorientation, required in addition to the reorientation of the pipe 24a, coordinated and positively coupled with the reorientation of the pipe channel 43a, can be made when the pipe 24a and the pipe channel 43a are not in contact. At that point, when the pipe channel 43a moving away from the pipe 24a is reoriented by virtue of the positively coupled reorientation of the pipe 24a, the additional reorientation causing a shift in the bending plane can be superimposed with the aid of the rotary workpiece actuator controlled by the programmable computer-based controller 18. Thereafter, if the bending die 41a, i.e., the pipe channel 43a, is moved back against the pipe 24a, the bending die 41a, i.e., the pipe channel 43a, will find the pipe 24a already in the desired orientation by virtue of which the pipe 24a, when moved into its processing position, will have the orientation specified for the desired new direction of the bending plane.
A reorientation of the pipe 24a in addition to its reorientation positively coupled with that of the pipe channel 43a will in any event be necessary whenever, after the pipe 24a has been processed with a bending tool 40a or 60a of the tool assembly 15d, another processing step is to be performed with the respective other bending tool 40a or 60a. This applies when the location of the bending plane of the preceding bending operation coincides with the location of the bending plane of the subsequent bending operation.
A reorientation of the type described may also be advisable when tool assemblies are used that differ in design from the tool assembly 15d, being identical for instance to the tool assemblies 15a as shown in
Thus, it can be seen from the foregoing detailed description and attached drawings that the novel bending machine of the present invention overcomes problems with the prior art machine and enables facile multiple bending of workpieces and machine loading and unloading of the workpiece.
Number | Date | Country | Kind |
---|---|---|---|
02007294 | Apr 2002 | EP | regional |
Number | Name | Date | Kind |
---|---|---|---|
4945747 | Yogo | Aug 1990 | A |
5010758 | Togoshi | Apr 1991 | A |
5927126 | Biella | Jul 1999 | A |
5946960 | Lanticina | Sep 1999 | A |
6185968 | Kanamori | Feb 2001 | B1 |
6189353 | Kanamori | Feb 2001 | B1 |
6237380 | Kanamori | May 2001 | B1 |
Number | Date | Country |
---|---|---|
3620151 | Feb 1987 | DE |
0446819 | Sep 1992 | EP |
62267021 | Aug 1994 | JP |
2001212624 | Aug 2001 | JP |
Number | Date | Country | |
---|---|---|---|
20030213278 A1 | Nov 2003 | US |