Roller cone rock bits and fixed cutter bits are commonly used in the oil and gas industry for drilling wells.
As shown in
The bit body includes one or more legs, each having thereon a bearing journal. The most commonly used types of roller cone drill bits each include three such legs and bearing journals. A roller cone is rotatably mounted to each bearing journal. During drilling, the roller cones rotate about the respective journals while the bit is rotated. The roller cones include a number of cutting elements, which may be press fit inserts made of tungsten carbide and other materials, or may be milled steel teeth.
The cutting elements engage the formation in a combination of crushing, gouging, and scraping or shearing actions which remove small segments of the formation being drilled. The inserts on a cone of a three-cone bit are generally classified as inner-row inserts and gage-row inserts. Inner-row inserts engage the bore hole bottom, but not the well bore wall. Gage-row inserts engage the well bore wall and sometimes a small outer ring portion of the bore hole bottom. The direction of motion of inserts engaging the rock on a two or three-cone bit is generally in one direction or within a very small range of directions, i.e., within a range of 10 degrees or less.
When a roller cone bit is used to drill earth formations, the bit experiences strong forces acting on different locations on the bit. These forces result in bending moments that may potentially deform the drill bit or may even cause leg breakage. The intensity of the bending moment depends upon, among other factors, the hardness of the earth formation, the magnitude of the force acting on the bit, the location of the force, and the geometry of the cutting elements.
Drill bit life and efficiency are of great importance because drilling operations are very expensive. The rate of penetration of the bit through earth formations (i.e., drill bit efficiency) is related to the weight on bit, rotational speed of the bit, and drill bit characteristics. Bending moments may increase wear and fatigue on the drill bit, leading to premature failure of the bit. Excessive bending moments may also lead to leg breakage of the drill bit, which would require further expense in fishing operations to remove the broken leg from the borehole.
For the foregoing reasons, there exists a need for an effective method to design a drill bit by taking into account bending moments on a bit. What is needed are methods to analyze and optimize the bending moments on roller cone bits drilling earth formations.
In one aspect, the invention provides a method for design a drill bit. The method comprises selecting bit parameters, selecting parameters of an earth formation, and selecting drilling parameters. The method further comprises simulating drilling the earth formation, calculating a bending moment action on the drill bit, and varying at least one of the bit design parameters and repeating the simulating and the calculating until the bending moment meets a selected criterion. The method further comprises determining force acting on at least one of a cutting element, a cone, and a drill bit, and determining location of the force.
In another aspect, the invention provides a method further comprising determining the amplitudes of the bending moments. The method further comprises limiting the amplitude of the bending moments.
In another aspect, the invention provides a method further comprising determining the frequency of bending moments. The method further comprises limiting the frequency of bending moments. The method further comprises determining and limiting the frequency of a selected bending moment amplitude.
In another aspect, the invention provides a method for designing a drill bit further comprising converting bending moment into a visual representation.
In another aspect, the invention provides a drill bit designed by the method the method of selecting bit parameters, selecting parameters of an earth formation, and selecting drilling parameters. The method further comprises simulating drilling the earth formation, calculating a bending moment action on the drill bit, and varying at least one of the bit design parameters and repeating the simulating and the calculating until the bending moment meets a selected criterion. The method further comprises determining force acting on at least one of a cutting element, a cone, and a drill bit, and determining location of the force.
Other aspects and advantages of the invention will be apparent from the following description and the appended claims.
In one aspect, embodiments of the present invention relate to methods of simulating bending moments of a roller cone bit. Simulation of forces acting on roller cone bits would enable analyzing the effects of bending moments on proposed bit designs and permit studying the effect of bending moments on the drilling characteristics of a bit. Such analysis and study would enable the optimization of roller cone drill bit designs to produce bits which exhibit desirable drilling characteristics and longevity. Similarly, the ability to simulate roller cone bit performance would enable studying the effects of altering the drilling parameters on the drilling performance of a given bit design. Such analysis would enable the optimization of drilling parameters for purposes of maximizing the drilling performance of a given bit.
In another aspect, embodiments of the invention relate to drill bits having optimized bending moment characteristics. In order to account for the effects of bending moments on drill bit performance, it is desirable to be able to analyze the bending moment in a drilling operation. After a detailed analysis, bit design parameters may be modified to minimize or compensate for bending moment. Therefore, a model of the bending moment has been designed and is described in detail below.
Significant expense is involved in the design and manufacture of drill bits. Therefore, having accurate models for simulating and analyzing the drilling characteristics of bits can greatly reduce the cost associated with manufacturing drill bits for testing and analysis purposes. For this reason, several models have been developed and employed for the analysis and design of 2, 3, and 4 roller cone bits. See, for example, U.S. Pat. Nos. 6,213,225, 6,095,262, 6,412,577, and 6,401,839. In addition, U.S. Pat. No. 6,516,293 (“the '293 patent”) discloses a simulation method for multiple cone bits, which is assigned to the assignee of the instant application and is incorporated by reference in its entirety.
The simulation model disclosed in the '293 patent is particularly useful in that it provides a means for analyzing the forces acting on individual cutting elements on the bit, thereby allowing for the design of, for example, faster drilling bits or the design of bits having optimal spacing and placing of cutting elements thereon. By analyzing forces and resulting moments acting on the individual cutting elements of a bit prior to making the bit, it is possible to avoid expensive trial and error in designing effective and long-lasting bits. Additionally, analyzing the bending moments induced on a drill bit and designing a bit in view of induced bending moments may prevent deformation of the bit and leg breakage.
Drilling parameters 310 that may be used include the axial force applied on the drill bit (commonly referred to as the weight on bit, “WOB”) and the rotational speed of the drill bit (typically provided in revolutions per minute, “RPM”). It should be understood that drilling parameters are not limited to these variables, but may include other variables, such as, rotary torque and mud flow volume. Additionally, drilling parameters 310 provided as input may include the total number of bit revolutions to be simulated, as shown in
Bit design parameters 312 used as input may include bit cutting structure information, such as the cutting element location and orientation on the roller cones, and cutting element information, such as cutting element size(s) and shape(s). Bit design parameters 312 may also comprise at least one of cutting element count, cutting element height, cutting element geometrical shape, cutting element spacing, cutting element orientation, cone axis offset, cutting element material, cutting element location, cone diameter profile, and bit diameter. The cutting element and roller cone geometry can be converted to coordinates and used as input for the invention. Preferred methods for bit design parameter inputs include the use of 3-dimensional CAD solid or surface models to facilitate geometric input.
Cutting element/earth formation interaction data 314 used as input may include data that characterize the interactions between a selected earth formation (which may have, but need not necessarily have, known mechanical properties) and an individual cutting element having known geometry.
Bottomhole geometry data 316 used as input may include geometrical information regarding the bottomhole surface of an earth formation, such as the bottomhole shape. As previously explained, the bottomhole geometry may be planar at the beginning of a simulation, but this is not a limitation on embodiments of the invention. The bottomhole geometry can be represented as a set of axial (depth) coordinates positioned within a defined coordinate system, such as in a Cartesian coordinate system. In accordance with one embodiment of the invention, the bottomhole surface may be represented as a mesh shape having a suitable mesh size, e.g. 1 millimeter.
As shown in
The first step in the simulation loop 320 in
Once the incremental rotation of each cone Δθcone,i is calculated, the new locations of the cutting elements, pθ,i, are computed based on bit rotation, cone rotation, and the immediately previous locations of the cutting elements pi−1. The new locations of the cutting elements 326 can be determined by any method for geometric calculations known in the art. In addition to new locations of the cutting elements, vertical displacements of the bit resulting from the incremental rotations of the bit may be, in one embodiment, iteratively computed in a vertical force equilibrium loop 330.
In the vertical force equilibrium loop 330, the bit is “moved” (axially) downward (numerically) a selected initial incremental distance Δdi and new cutting element locations pi are calculated, as shown at 332 in
However, upon subsequent contact of cutting elements with the earth formation during simulated drilling, each cutting element may have subsequent contact area less than the total available contact area on a cutting element. This less than full area contact results from the formation surface having “craters” (deformation pockets) made by previous contact with a cutting element. Fractional area contact on any of the cutting elements reduces the interference and axial force acting on the cutting element, which can be accounted for in the simulation calculations.
Once the cutting element/earth formation interaction is determined for each cutting element, the vertical force, fV,I, applied to each cutting element may be calculated based on the calculated penetration depth, the projection area, and the cutting element/earth formation interaction data 312. This is shown at 336 in
If the total vertical force FV,i on the cutting elements is less than the WOB, the resulting incremental distance Δdi applied to the bit is smaller than the incremental axial distance that would result from the selected WOB. In this case, the bit is moved further down, and the calculations in the vertical force equilibrium loop 330 are repeated. The vertical force equilibrium loop 330 calculations iteratively continue until a proper axial displacement for the bit is obtained that results in a total vertical force on the cutting elements substantially equal to the selected WOB, or within a selected error range.
Once proper axial displacement, Δdi, of the bit is obtained, the lateral movement of the cutting elements may be calculated based on the previous, pi−1, and current, pi, cutting element locations, as shown at 340. Then, the lateral force, fL,i, acting on the cutting elements is calculated based on the lateral movement of the cutting elements and cutting element/earth formation interaction data, as shown at 342. Next, the cone rotation speed is calculated based on the forces on the cutting elements and the moment of inertia of the cones, as shown at 344.
Finally, the bottomhole pattern is updated, at 346, by calculating the interference between the previous bottomhole pattern and the cutting elements during the current incremental drilling step, and based on cutting element/earth formation interaction, “removing” the formation as a result of the incremental rotation of the selected bit with the selected WOB. In this example, the interference can be represented by a coordinate mesh or grid having 1 mm grid blocks.
This incremental simulation loop 320 can then be repeated by applying a subsequent incremental rotation to the bit 322 and repeating the calculations in the incremental simulation loop 320 to obtain an updated bottomhole geometry. Using the total bit revolutions to be simulated as the termination command, for example, the incremental displacement of the bit and subsequent calculations of the simulation loop 320 will be repeated until the selected total number of bit revolutions to be simulated is reached. Repeating the simulation loop 320 as described above will result in simulating the performance of a roller cone drill bit drilling earth formations with continuous updates of the bottomhole pattern drilled, simulating the actual drilling of the bit in a selected earth formation. Upon completion of a selected number of operations of the simulation loops 320, results of the simulation can be programmed to provide output information at 348 characterizing the performance of the selected drill bit during the simulated drilling, as shown in
Referring back to the embodiment of the invention shown in
In one embodiment of the invention, cutting element/earth formation interaction data 314 may comprise a library of data obtained from actual tests performed using selected cutting elements, each having known geometry, on selected earth formations. In this embodiment, the tests include impressing a cutting element having a known geometry on the selected earth formation with a selected force. The selected earth formation may have known mechanical properties, but it is not essential that the mechanical properties be known. Then, the resulting grooves formed in the formation as a result of the interaction between the inserts and the formation are analyzed. These tests can be performed for different cutting elements, different earth formations, and different applied forces, and the results analyzed and stored in a library for use by a simulation method of the invention. These tests can provide good representation of the interactions between cutting elements and earth formations under selected conditions.
In one embodiment, these tests may be repeated for each selected cutting element in the same earth formation under different applied loads, until a sufficient number of tests are performed to characterize the relationship between interference depth and impact force applied to the cutting element. Tests are then performed for other selected cutting elements and/or earth formations to create a library of crater shapes and sizes and information regarding interference depth/impact force for different types of bits in selected earth formations.
Alternatively, single insert tests, such as those described in U.S. Pat. No. 6,516,293, may be used in simulations to predict the expected deformation/fracture crater produced in a selected earth formation by a selected cutting element under specified drilling conditions.
In another embodiment of the invention, techniques such as Finite Element Analysis, Finite Difference Analysis, and Boundary Element Analysis may be used to determine the cutting element/earth formation interaction. For example, the mechanical properties of an earth formation may be measured, estimated, interpolated, or otherwise determined, and the response of the earth formation to cutting element interaction may be calculated using Finite Element Analysis.
After the simulation phase is complete, the data collected from the simulation may be used to analyze bending moment encountered by cutting elements, cones, and/or bits (Step 352 in
The bending moment, as used herein, is a function of the force acting on a drill bit and the distance between a pivot point and the location of the force exerting on the bit. The bending moment may be calculated relative to any location (pivot point) on the drill bit. As shown in
Those of ordinary skill in the art will recognize that the bending moment may be calculated in a number of ways. In one embodiment, an expression for the bending moment produced by the force (Fx) with respect to a neutral axis through the pivot point (P) is simply the sum of the force times the perpendicular distance (y) to the neutral axis, or:
The force F, may alternatively be expressed as:
Fx=σdA Equation 2
where the force acting on any cutting element (dA) is the product of axial stress at that point and the amount of area (dA). This simply comes from the definition of axial stress=Force/Area.
Thus, the expression for the bending moment may be written as follows:
During a drilling operation, forces are typically exerted on the cutting elements. Thus, bending moments exerting on these cutting elements may be individually calculated in the manner described above, or in some other fashion, and then summed to give a total bending moment acting on a cone. Similarly, bending moments acting on a drill bit may be calculated by summing all bending moments acting on individual cones. The maximum, median, and average moment encountered by a cutting element in a given row, and the maximum, median, and average moment encountered by each cone may be displayed.
In accordance with some embodiments of the invention, the bending moment encountered by the cutting elements may be displayed in tabular form, as shown in
The drill bit may be analyzed to determine the amplitude of bending moments with respect to various locations on the bit. The designer can also determine the bending moment at a selected location on the drill bit. Additionally, the designer may implement an amplitude control, that is, pre-select limits of allowable bending moments encountered by different areas of the drill bit. By pre-selecting limits of allowable bending moments, the design of the drill bit may be optimized. The optimized design may be configured to reduce the risk of deformation of the bit or leg breakage.
The drill bit may also be analyzed to determine the frequency of bending moments during the drilling operation. The designer may determine the frequency at which a cutting element, cone, or drill bit encounters bending moment. The designer may also determine the frequency of a given bending moment amplitude encountered by different areas of the drill bit. Additionally, the designer may implement a frequency control, that is, pre-select limits of allowable frequency of bending moments encountered by different areas of the drill bit. By pre-selecting limits of allowable frequency of bending moments, the design of the drill bit may be optimized. The optimized design may be configured to reduce the risk of fatigue or deformation of the bit, or leg breakage.
In accordance with some embodiments of the invention, multiple drill bit designs are simulated and analyzed. For example, the amplitude, frequency, and location of the bending moments encountered by the cutting elements, cones, and/or drill bit for each design are determined and analyzed. A relative comparison of bending moments among different designs is then performed to select a bending moment optimized design. In some embodiments, the design with the smallest bending moments is preferred. In other embodiments, the design with bending moments within a preferred selected limit of, for example, frequency or amplitude, is preferred.
In one embodiment, the bending moments of interest are the bending moments acting on the backface of the leg. Referring back to
Thus, the above methodology provides a method for simulating a drill bit drilling a formation. Some embodiments of the invention include graphically displaying the simulation of the drill bit, and other embodiments relate to methods for designing drill bits having improved bending moment characteristics. In one embodiment, a method of the invention includes selecting an initial bit design, calculating the performance of the initial bit design, then adjusting one or more design parameters and repeating the performance calculations until an optimal set of bit design parameters is obtained. In another embodiment, this method can be used to analyze relationships between bit design parameters and bending moment performance of a bit. In another embodiment, the method can be used to design roller cone bits having enhanced drilling characteristics. For example, the method can be used to analyze row spacing optimization, intra-insert spacing optimization, tracking, and forces acting on rows and cutting elements.
Output information that may be considered in identifying bit designs possessing enhanced drilling characteristics includes bending moment. This output information may be in the form of visual representation parameters calculated for the visual representation of selected aspects of drilling performance for each bit design, or the relationship between values of a bit parameter and the drilling performance of a bit. Alternatively, other visual representation parameters may be provided as output as determined by the operator or system designer. Additionally, the visual representation of drilling may be in the form of a visual display on a computer screen. It should be understood that the invention is not limited to these types of visual representation, or the type of display. The means used for visually displaying aspects of simulated drilling is a matter of convenience for the system designer, and is not intended to limit the invention.
Thus, in one embodiment of the invention, as shown in
After analyzing the performance of the bit, specifically, the bending moment of the cutting elements and the cones, the design may be accepted or rejected 668. In one embodiment of the invention, the designer may determine a “stop” point for the design. That is, the individual designer makes a determination as to when a bit is optimized for a given set of conditions. In other embodiments, however, the process may be automated to reach a pre-selected end condition. If the bit is rejected, the bit may be redesigned. The bit design may be modified 676, for example, by modifying the initial bit parameters. For example, the orientation, spacing, number, material, location of the cutting elements and/or rows may be modified. Those having skill in the art will appreciate that bit designs may be changed in a variety of ways, and no limitation on the scope of the present invention is intended by listing specific changes. If the design is accepted, the design process is halted.
As described above, the invention can be used to analyze the bending moment encountered by the cutting elements, roller cones, and drill bits, or as a design tool to simulate and optimize the performance of roller cone bits drilling earth formations. The invention enables the analysis of drilling characteristics of proposed bit designs prior to their manufacturing, thus, minimizing the expense of trial and error designs of bit configurations. The invention enables the analysis of the effects of adjusting drilling parameters on the drilling performance of a selected bit design. Further, the invention permits studying the effect of bit design parameter changes on the drilling characteristics of a bit and can be used to identify a bit design which exhibits desired drilling characteristics. Furthermore, use of the invention leads to more efficient designing and use of bits having enhanced performance characteristics and enhanced drilling performance of selected bits.
While the invention has been described with respect to a limited number of embodiments, those skilled in the art, having benefit of this disclosure, will appreciate that other embodiments can be devised which do not depart from the scope of the invention as disclosed herein. For example, while embodiments of the invention are illustrated with a roller cone drill bit, those of ordinary skill in the art would appreciate that embodiments of the invention are not limited to roller cone bits. Accordingly, the scope of the invention should be limited only by the attached claims.
This application is a continuation-in-part of U.S. patent application Ser. No. 09/635,116 (“the '116 application”), now U.S. Pat. No. 6,873,947, which was filed on Aug. 9, 2000 as a continuation of U.S. Pat. No. 6,516,293 (“the '293 patent”), filed on Mar. 13, 2000. This application claims benefit, pursuant to 35 U.S.C. §120, from both the '116 application and the '293 patent. The disclosures of the '116 application and the '293 patent are expressly incorporated by reference in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
4187922 | Phelps | Feb 1980 | A |
4408671 | Munson | Oct 1983 | A |
4815342 | Brett et al. | Mar 1989 | A |
5213168 | Warren et al. | May 1993 | A |
5787022 | Tibbitts et al. | Jul 1998 | A |
5864058 | Chen | Jan 1999 | A |
5868213 | Cisneros et al. | Feb 1999 | A |
5950747 | Tibbitts et al. | Sep 1999 | A |
6021377 | Dubinsky et al. | Feb 2000 | A |
6095262 | Chen | Aug 2000 | A |
6213225 | Chen | Apr 2001 | B1 |
6241034 | Steinke et al. | Jun 2001 | B1 |
6276465 | Cooley et al. | Aug 2001 | B1 |
6290006 | Crawford | Sep 2001 | B1 |
6349595 | Civolani et al. | Feb 2002 | B1 |
6401839 | Chen | Jun 2002 | B1 |
6412577 | Chen | Jul 2002 | B1 |
6516293 | Huang et al. | Feb 2003 | B1 |
Number | Date | Country |
---|---|---|
933932 | Jun 1982 | SU |
1461855 | Feb 1989 | SU |
1654515 | Jul 1991 | SU |
1691497 | Nov 1991 | SU |
WO-0012859 | Mar 2000 | WO |
WO-0012860 | Mar 2000 | WO |
Number | Date | Country | |
---|---|---|---|
20050165589 A1 | Jul 2005 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09635116 | Aug 2000 | US |
Child | 11009954 | US | |
Parent | 09524088 | Mar 2000 | US |
Child | 09635116 | US |