The present invention is directed to a benefit agent delivery system wherein the benefit agent is protected or stabilized by an ionic liquid. The benefit agent delivery system may be in the form of a concentrate, included in a product formulation, or on or associated with a substrate or package. The invention is also directed to detergent compositions including the benefit agent delivery system and to methods for cleaning a soiled substrate.
In recent years, ionic liquids have been extensively evaluated as environmental-friendly or “green” alternatives to conventional organic solvents for a broad range of organic synthetic applications. Ionic liquids offer some unique characteristics that distinguish them from conventional organic solvents, such as no effective vapor pressure, a broad liquid range, high polarity and charge density, can be either hydrophobic or hydrophilic, and unique solvating properties.
One widely studied class of ionic liquids includes imidazolinium salts, such as butylmethylimidazolinium hexafluorophosphate, also known as BMIM/PF6. Other well known ionic liquids include N-1-ethyl 3-methylimidazolinum chloride aluminum (III) chloride, which is usually referred to as [emim]Cl—AlCl3; and N-butyl pyridinium chloride aluminum (III) chloride, which is usually referred to as [Nbupy]Cl—AlCl3. A broad range of ionic liquids have also been investigated in the following references: U.S. Pat. Nos. 6,048,388; 5,827,602; US 2003/915735A1; US 2004/0007693A1; US 2004/0035293A1; WO 02/26701; WO 03/074494; WO 03/022812; and WO 04/016570.
Published PCT Application WO 2004/003120 discloses ionic liquid based products suitable for use in surface or air treating compositions, and ionic liquid cocktails containing three or more different and charged ionic liquid components. The products are particularly useful in various consumer product applications, such as home care, air care, surface cleaning, laundry and fabric care applications.
It is desirable to make advantageous uses of the various unique characteristics of the ionic liquid in additional applications.
Accordingly, the present invention is directed to benefit agent delivery systems which employ ionic liquids to protect or stabilize the benefit agent, wherein the benefit agent is releasable from the system to provide the benefit. In another embodiment, the invention is directed to compositions comprising a detersive component and the benefit agent delivery system. In yet another embodiment, the present invention is directed to a method of treating substrate surfaces with the compositions containing the present delivery system. In a further embodiment, the invention is directed to methods for cleaning a soiled substrate employing the present delivery system.
Additional embodiments of the benefit agent delivery systems, detergent compositions and methods are described in further detail in the following detailed description.
The benefit agent delivery system according to the invention comprises a benefit agent releasably associated with an ionic liquid, wherein the benefit agent is protected or stabilized by an ionic liquid and wherein the benefit agent is releasable from the system to provide the benefit. For example, the ionic liquid may be physically associated with the benefit agent, such as by coating, encapsulation, or co-crystallization, or may be chemically associated with the benefit agent, such as by chemical reaction. The benefit agent delivery system may be in the form of a concentrate, in a product formulation, or on or associated with a substrate or package.
The benefit agent may comprise one or more components which are conventionally added to a composition to provide a benefit, for example a surface treating benefit, a cleaning benefit, a scent benefit, an aesthetic benefit, or the like. Such benefit agents are well known in the art for use in detergent compositions and may include, but are not limited to, perfumes, dyes, dye fixative agents, sizings, skin conditioning actives, vitamins, enzymes, surfactants, antimicrobial agents, particulate builders (e.g., silica, zeolites, phosphates) polymeric builders (e.g., polyacrylates, poly(acrylic-maeic) copolymers), chelants, bleaches, bleach catalysts, bleach boosters, bleach activators, softeners, suds suppressants, radical initiators, ultraviolet protection agents, brighteners, and mixtures thereof. Additional examples of suitable benefit agents are disclosed in U.S. Pat. No. 6,488,943, Beerse et al.; U.S. Pat. No. 6,514,932, Hubesch et al; U.S. Pat. No. 6,548,470, Buzzaccarini et al.; U.S. Pat. No. 6,482,793, Gordon et al.; U.S. Pat. No. 5,545,350, Baker et al; U.S. Pat. No. 6,083,899, Baker et al; U.S. Pat. No. 6,156,722, Panandiker et al; U.S. Pat. No. 6,573,234, Sivik et al.; U.S. Pat. No. 6,525,012, Price et al.; U.S. Pat. No. 6,551,986, Littig et al; U.S. Pat. No. 6,566,323, Littig et al.; U.S. Pat. No. 6,090,767, Jackson et al.; and/or U.S. Pat. No. 6,420,326, Maile et al.
Ionic liquid as used herein refers to a salt that has a melting temperature of about 100° C. or less, or, in an alternative embodiment, has a melting temperature of about 60° C. or less, or, in yet another alternative embodiment, has a melting temperature of about 40° C. or less. In other embodiments, the ionic liquids exhibit no discernible melting point (based on DSC analysis) but are “flowable” at a temperature of about 100° C. or below, or, in another embodiment, are “flowable” at a temperature of from about 20 to about 80° C., i.e., the typical fabric or dish washing temperatures. As used herein, the term “flowable” means that the ionic liquid exhibits a viscosity of less than about 10,000 mPa·s at the temperatures as specified above. The viscosities of the ionic fluids can be measured on a Brookfield viscometer model number LVDVII+ at 20° C., with spindle no. S31 at the appropriate speed to measure materials of different viscosities. The sample is pre-conditioned by storing the ionic liquids or cocktails in a desiccator containing a desiccant (e.g. calcium chloride) at room temperature for at least about 48 hours prior to the viscosity measurement. This equilibration period unifies the amount of innate water in the ionic liquid samples.
It should be understood that the terms “ionic liquid”, “ionic compound”, and “IL” encompass ionic liquids, ionic liquid composites, and mixtures (or cocktails) of ionic liquids. The ionic liquid can comprise an anionic IL component and a cationic IL component. When the ionic liquid is in its liquid form, these components may freely associate with one another (i.e., in a scramble). As used herein, the term “cocktail of ionic liquids” refers to a mixture of two or more, preferably at least three, different and charged IL components, wherein at least one IL component is cationic and at least one IL component is anionic. Thus, the pairing of three cationic and anionic IL components in a cocktail would result in at least two different ionic liquids. The cocktails of ionic liquids may be prepared either by mixing individual ionic liquids having different IL components, or by preparing them via combinatorial chemistry. Such combinations and their preparation are discussed in further detail in US 2004/0077519A1 and US 2004/0097755A1. As used herein, the term “ionic liquid composite” refers to a mixture of a salt (which can be solid at room temperature) with a proton donor Z (which can be a liquid or a solid) as described in the references immediately above. Upon mixing, these components turn into a liquid at about 100° C. or less, and the mixture behaves like an ionic liquid.
Thus, the ionic liquids suitable for use herein may have various anionic and cationic combinations. The ionic species can be adjusted and mixed such that properties of the ionic liquids can be customized for specific applications, so as to provide the desired solvating properties, viscosity, melting point, and other properties, as desired. These customized ionic liquids have been referred to as “designer solvents”. Examples of ionic liquids that are useful in the present invention are described in U.S. Pat. Nos. 6,048,388; 5,827,602; US 2003/915735A1; US 2004/0007693A1; US 2004/003120; US 2004/0035293A1; WO 02/26701; WO 03/074494; WO 03/022812; WO 04/016570; and co-filed P&G Case 9817P and 9818P.
Nonlimiting examples of anions and cations suitable for use in the ionic liquids for the present invention are discussed in further detail.
Anions
Anions suitable for use in the ionic liquids of the present invention include, but are not limited to, the following materials:
wherein x+y is an integer of at least 7, preferably at least about 9; x or y can be 0, M+ is a cation selected from the cations of the ionic liquids as described in detail herein; or C10-C20 secondary alkyl ethoxy sulfates having formula:
wherein x+y is an integer of at least 7, preferably at least about 9; x or y can be 0, M+ is a cation selected from the cations of the ionic liquids as described in detail herein; nonlimiting examples of alkoxy sulfate include sulfated derivatives of commercially available alkoxy copolymers, such as Pluronics® (from BASF);
Cations suitable for use in the ionic liquids of the present invention include, but are not limited to, the following materials:
In some specific embodiments, water immiscible ionic liquid may be employed, for example comprising anion and cation combinations having the formulae:
wherein R1-R4 are selected from among the group consisting of linear or branched, substituted or unsubstituted, alkyl, aryl, alkoxyalkyl, alkylenearyl hydroxyalkyl, or haloalkyl; X is an anion such as those described hereinabove; m and n are chosen to provide electronic neutrality; further wherein the ionic liquids are water immiscible when at least one of R1-R4 is C12 or higher; or at least two of R1-R4 are C10 or higher; or at least three of R1-R4 are C6 or higher.
In further embodiments, the water immiscible ionic liquids comprise a cation selected from the group consisting of trimethyloctyl ammonium cation, triisooctylmethyl ammonium cation, tetrahexyl ammonium cation, tetraoctyl ammonium cation, and mixtures thereof, and an anion selected from those described hereinabove.
In yet further embodiments, the water immiscible ionic liquids comprise amine oxide cations and an anion selected from those described hereinabove. In additional embodiments, the water immiscible ionic liquids comprise betaine cations and an anion selected from those described hereinabove.
As discussed herein, in specific embodiments, the ionic liquid may be substantially miscible or immiscible with water, as determined according to the following Ionic Liquid Water Miscibility Test:
A mixture of 0.5 g ionic liquid and 4.5 g de-ionized water are sonicated in a Bransonic Ultrasonic Bath, model no. 1210R-MTH, 50/60 Hz, 117 volts, 1.3 AMPS, according to the manufacturer's specifications for 1.5 hours. Thereafter, if a homogenous transparent system results within 15 minutes of standing without agitation, then the ionic liquid is water miscible. On the other hand, if the resulting mixture appears inhomogeneous, translucent or exhibiting separate phases/layers, the ionic liquid is water immiscible.
In a specific embodiment, the delivery system is substantially free of any water, organic solvents, and dry cleaning solvents (such as silicone solvents, hydrocarbon or halocarbon solvents). As used herein, “substantially free of” indicates that the delivery system contains less than about 10 weight %, more preferably less than about 5 weight %, even more preferably less than about 1 weight %, of the recited component.
The benefit agent is protected or stabilized by the ionic liquid. Within the present disclosure, “protected or stabilized” means that the benefit agent is in a form which maintains its intended activity for later release and use, for example when contacted with a wash system, including aqueous wash systems or dry cleaning systems (employing dry cleaning solvents such as chlorocarbons or silicones). Further, the benefit agent is releasable from the system to provide the benefit, for example when the delivery system is contacted with a wash system. The desired protection or stabilization is provided by associating the ionic liquid and the benefit agent. For example, the ionic liquid may be physically associated with the benefit agent, such as by coating, encapsulation, or co-crystallization, or may be chemically associated with the benefit agent, such as by chemical reaction, to provide such protection or stabilization. If the benefit agent is coated with the ionic liquid, any coating technique known in the art may be employed. Suitable coating methods are disclosed, for example, in WO 03/057871. Such methods comprise melting the ionic liquid suitable for coating the benefit agent at a temperature at or above its melting point, mixing the melted ionic liquid with the benefit agent, for example enzyme powders, and cooling the mixture to solidify the ionic liquid, thereby producing the ionic liquid-coated benefit agent. Finally, the solid product may be subjected to mechanical processing to provide small particles of a desired size. In specific embodiments, the benefit agent may be dissolved or dispersed in the ionic liquid which is in liquid form, whereby melting and/or cooling steps can be avoided. Another method is useful in co-crystallization of the ionic liquid and the benefit agent, wherein the ionic liquid and the benefit agent are dissolved in a common solvent or combination of solvents and, by changing the temperature, pH, ionic strength, and the like, they are precipitated together to produce the co-crystallized delivery system. Further, the ionic liquid and the benefit agent may be selected so as to react with one another without destroying the functionality of the benefit agent while providing an ionic liquid improvement, as discussed herein.
Additionally, any known encapsulation method may be employed to encapsulate the benefit agent, for example perfumes, or combination of benefit agents, within an ionic liquid.
The benefit agents may be included in the delivery system in any amount suitable for achieving the desired association. Typical systems may contain from about 0.0001 to about 40 weight % of the benefit agent(s). In more specific embodiments, such delivery systems may comprise from about 0.001 to about 20 weight %, and more specifically, from about 0.01 to about 10 weight %, of the benefit agent(s). In an alternate embodiment, the delivery system is a concentrate and comprises at least about 50 weight % of the benefit agent. In further embodiments, the delivery system comprises from about 60 to about 95 weight % of the benefit agent, and in further embodiments comprises from about 60 to about 80 weight % of the benefit agent.
In some embodiments, the ionic liquid is provided as a coating or encapsulation on the benefit agent. In a specific embodiment, the ionic liquid is miscible or dissolvable in water, non-aqueous solvents, or dry cleaning solvents, such that the delivery system is capable of releasing the benefit agent when the delivery system is contacted with those liquid media. Such embodiment of the delivery system is particularly suitable for use in granular products; non-aqueous applications, for example, in-home dry cleaning formulations or commercial dry cleaning formulations; and compositions comprising non-aqueous carrier, for example, fabric pre-treating compositions, dish pre-treating compositions, and oven cleaner compositions. In another embodiment, the ionic liquid is water immiscible; it is advantageous for the ionic liquid coating or encapsulation to have a melt temperature at or lower than the intended use temperature, for example, a wash temperature of from about 30° C. to about 80° C. for an automatic dish washer for domestic and commercial or institutional users, or from about 20° C. to about 60° C. for a laundry machine, to obtain release of the benefit agent during use. It is preferable in such embodiments that the ionic liquid exhibits storage stability (including no melting) up to a storage temperature of about 60° C., which is a typical storage temperature a product may experience in warehouse storage or in transit in the summer.
In further embodiments, a sensitive or unstable benefit agent is stabilized by dissolving or dispersing in the ionic liquid, which is in its liquid form and acts as a solvent for the benefit agent. For example, peracid bleach may be stabilized in the ionic liquid and thus will not lose its bleaching activity. Embodiments of the delivery system can be in the form of stabilized concentrates of bleaches that are particularly suitable for use in delivering bleaching benefits in laundry bleach concentrate, laundry or dish pre-treating compositions (typically in non-aqueous solvent carriers), and the like.
The protection or stabilization provided by the ionic liquid provides an improvement to the benefit agent and therefore the compositions and methods employing the delivery system. The improvement may be in the preparation of the benefit agent, in the delivery of the benefit agent, and/or in the performance of the benefit agent in the compositions. For example, the ionic liquid association may provide enhanced selectivity in organic synthesis of the benefit agent, enhanced stability of the benefit agent in the detergent composition carrier, for example in an aqueous or organic solvent, or enhanced stability of the benefit agent over a broad temperature range, or the like. Further, the ionic liquid association may provide enhanced stability and/or activity of the benefit agent in aqueous wash and/or rinse environments, and or in silicone wash systems. Additionally, the ionic liquid association can be selected to facilitate delayed release and/or controlled release of the benefit agent.
In a specific embodiment, the benefit agent comprises an enzyme and the enzyme is coated with or encapsulated by an ionic liquid. In another specific embodiment, the benefit agent comprises a perfume, and the ionic liquid encapsulates or is chemically reacted with the perfume. In a preferred embodiment of such a delivery system, the delivery system is included in a laundry detergent composition and the ionic liquid not only acts as a carrier for the perfume but improves deposition of the perfume on garments washed with the detergent composition. Additionally, the ionic liquid may allow delayed release of the perfume during drying of the garments washed with the detergent.
In a further specific embodiment, the benefit agent comprises a bleach, and the ionic liquid is co-crystallized with the bleach to improve stability of the bleach. In a more specific embodiment, the bleach comprises a preformed peracid, such as phthalimido-peroxy-caproic acid (“PAP”), nononoylamide of either peroxysuccinic acid (“NAPSA”) or peroxyadipic acid (“NAPAA”), N,N′-terephthaloyl-di(6-aminoperoxycaproic acid) (“TPCAP”), N-lauroyl-6-aminoperoxycaproic acid (“LAPCA”), N-decanoyl-aminoperoxycaproic acid (“DAPCA”), N-nonanoyl-6-aminoperoxycaproic acid (“NAPCA”) and/or 6-decylamino-6-oxoperoxycaproic acid (“DAPAA”). Such preformed peracids are described in more detail in U.S. Pat. Nos. 5,487,818, 5,310,934, 5,246,620, 5,279,757, 5,132,431, 4,634,551 and U.S. Pat. No. 5,770,551. In a more specific embodiment, the benefit agent comprises PAP.
The delivery systems and compositions containing the systems of the present invention may be aqueous or non-aqueous, as desired. Many ionic liquids are hygroscopic, thus, may contain appreciable amounts of water (referred to herein as the “innate” or “bound” water) ranging from about 0.01% to about 50% by weight of the ionic liquid. It should be noted that “free water” or “added water” may be added in making the delivery system and compositions of the present invention. A person of ordinary skill in the art would recognize that once the components (e.g., innate water and free water) are mixed in a composition, the components can no longer be distinguished by their origin and will be reported in totality as percentage of the overall composition. Thus, in one embodiment, the delivery system and/or compositions of the present invention may comprise water, regardless of its origin, ranging from about 0.01% to about 99%, preferably from about 1% to about 75%, more preferably from about 5% to about 50% by weight of the composition. The compositions may optionally include a co-solvent. Typical examples of co-solvents include, but are not limited to, linear or branched C1-C10 alcohols, diols, and mixtures thereof. In specific embodiments, co-solvents such as ethanol, isopropanol, propylene glycol are used in some of the compositions of the present invention. In additional specific embodiments, the ionic liquid composition is substantially free of any water and/or organic solvents. These compositions will contain less than about 10 weight percent, more specifically less than about 5 weight percent, even more specifically less than about 1 weight percent, any water and/or organic solvents.
In some embodiments, the delivery systems further comprise a carrier, which is a sheet substrate (for example, woven, nonwoven or knitted webs or foam webs), a granular material (for example, silicas, aluminas, clays) or a liquid carrier (such as water, dry cleaning solvents, co-solvents disclosed above). The delivery systems and/or compositions containing the same may be formulated in the form of liquid, gel, paste, foam, or solid. When the delivery systems or compositions are in the solid form, they can be further processed into granules, powders, tablets, or bars. The composition may also be provided in a unit dose form, which comprises the delivery system of the present invention or a substantially non-aqueous composition comprising the delivery system and a water soluble package comprising a polymeric film that readily dissolves or disperses in use.
The delivery system according to the present invention may be employed in a detergent composition comprising a detersive component. Such compositions may be used for cleaning hard surfaces, for example, including but not limited to, household hard surfaces (such as kitchen surfaces, bathroom surfaces, floors, windows, mirrors and countertops), car hard surfaces (such as automobile interiors, automobile exteriors, metal surfaces and windshields), household articles (such as dishware, cookware, utensils, tableware and glassware), textile surfaces, for example, including, but not limited to, carpets, fabrics (such as woven textiles, nonwoven textiles, knitted textiles and the like, in the form of upholstery, drapes, garments, and/or linens), and/or other soiled surfaces.
Detersive components are known in the art and any detersive component, or combination thereof, as desired may be employed in the compositions of the invention. For example, the detersive component may comprise anionic, nonionic, cationic, zwitterionic and/or amphoteric surfactant. Suitable anionic surfactants include the alkyl benzene sulfonic acids and their salts as well as alkoxylated or non-alkoxylated alkyl sulfate materials; alkyl ether sulfates; and alkyl polyethoxylate sulfates. The linear alkyl benzene sulfonates are known as “LAS” and preferred embodiments contain C11-C14 alkyls. Suitable nonionic surfactants include amine oxide surfactants and alkoxylated fatty alcohols, preferably have a hydrophilic-lipophilic balance (HLB) which ranges from about 3 to 17, more preferably from about 6 to 15, most preferably from about 8 to 15. In a more specific embodiment, the detergent composition comprises anionic surfactant, nonionic surfactant, or mixtures thereof, with the weight ratio of anionic to nonionic in such mixtures typically ranging from 10:90 to 95:5, more typically from 30:70 to 70:30. Cationic surfactants are well known in the art and nonlimiting examples of these include quaternary ammonium surfactants, which can have up to 26 carbon atoms. Nonlimiting examples of zwitterionic surfactants include: derivatives of secondary and tertiary amines, derivatives of heterocyclic secondary and tertiary amines, or derivatives of quaternary ammonium, quaternary phosphonium or tertiary sulfonium compounds, betaines, and amine oxides. Nonlimiting examples of ampholytic surfactants include: aliphatic derivatives of secondary or tertiary amines, or aliphatic derivatives of heterocyclic secondary and tertiary amines in which the aliphatic radical can be straight- or branched-chain.
Surfactants or other detersive components will be employed in the detergent composition in an amount sufficient to provide desired cleaning properties. In one embodiment, the composition comprises, by weight, from about 5% to about 90% of the detersive component, and more specifically from about 5% to about 70% of detersive component, and even more specifically from about 5% to about 40% of detersive component.
Alternatively, the detergent composition may comprise carriers such as linear or cyclic silicones, such as decamethylcyclopentasiloxane (D5). Such compositions are particularly suitable for dry-cleaning applications, both in commercial and in-home dry-cleaning methods. Typical compositions for silicone wash system will contain a silicone component in amounts of from about 1 to 99% by weight of the composition, preferably from about 5 to about 95% by weight of the composition, more preferable from about 20 to about 80% by weight of the composition.
The detergent compositions of the present invention can also include any number of additional optional ingredients and/or benefit agents which are not associated with an ionic liquid. These include conventional detergent composition components such as detersive builders, enzymes, enzyme stabilizers (such as propylene glycol, boric acid and/or borax), suds suppressors, soil suspending agents, soil release agents, other fabric care benefit agents, pH adjusting agents, chelating agents, smectite clays, solvents, hydrotropes and phase stabilizers, structuring agents, dye transfer inhibiting agents, optical brighteners, perfumes and coloring agents. The various optional detergent composition ingredients, if present in the compositions herein, should be utilized at concentrations conventionally employed to bring about their desired contribution to the composition or the laundering operation. Frequently, the total amount of such optional detergent composition ingredients can range from about 0.01% to about 50%, more preferably from about 1% to about 30%, by weight of the composition. The benefit agent of the delivery system can range from about 0.0001% to about 40% by weight of the composition.
The compositions of the present invention may be provided in various application forms, including, but not limited to, hand dishwashing detergents, automatic dishwashing detergents, pretreating dish or laundry compositions, hand laundry detergents, automatic laundry detergents, household surface cleaners, car surface cleaners, and the like.
The composition may be employed as a component of another cleaning product, for example by application to an absorbent substrate to provide a wipe for use in various applications. Any suitable absorbent substrate may be employed, including woven or nonwoven fibrous webs and/or foam webs. It is preferred that such an absorbent substrate should have sufficient wet strength to hold an effective amount of the detergent composition according to the present invention to facilitate cleaning.
To facilitate provision of a hand-washing composition, in one embodiment it is preferred that the composition is high-foaming. It should therefore be insured that the second ionic liquid phase does not inhibit foam formation or duration significantly. On the other hand, to facilitate provision of automatic washing detergents in another embodiment, it is preferred that such compositions are low-foaming to avoid foam formation which is typically unmanageable in automatic washing machines. Thus, such compositions may advantageously further include a suds suppressant.
One method of the present invention is directed to cleaning a soiled surface. The method comprises contacting a soiled surface with a composition as described herein, and removing soil from the surface.
Another method of the present invention is directed to treating a substrate surface. The method comprises contacting a substrate surface with a delivery system as described herein or a composition containing the same, and releasing the benefit agent to the substrate surface.
All documents cited in the Detailed Description of the Invention are, in relevant part, incorporated herein by reference; the citation of any document is not to be construed as an admission that it is prior art with respect to the present invention.
While particular embodiments of the present invention have been illustrated and described, it would be obvious to those skilled in the art that various other changes and modifications can be made without departing from the spirit and scope of the invention. It is therefore intended to cover in the appended claims all such changes and modifications that are within the scope of this invention.
This application claims priority under 35 U.S.C. §119(e) from Provisional Application Ser. No. 60/624,051, filed on Nov. 1, 2004.
Number | Name | Date | Kind |
---|---|---|---|
3075921 | Brocklchurst et al. | Jan 1963 | A |
3282728 | Lacroux et al. | Nov 1966 | A |
3896033 | Grimm, III | Jul 1975 | A |
4126573 | Johnston et al. | Nov 1978 | A |
4170453 | Kitko | Oct 1979 | A |
4189311 | Laqua et al. | Feb 1980 | A |
4348292 | Ginn | Sep 1982 | A |
4606838 | Burns | Aug 1986 | A |
4634551 | Burns et al. | Jan 1987 | A |
4681592 | Hardy et al. | Jul 1987 | A |
4689168 | RequeJo et al. | Aug 1987 | A |
4717507 | Schwadtke et al. | Jan 1988 | A |
4756850 | Nayar | Jul 1988 | A |
4783278 | Sanderson et al. | Nov 1988 | A |
5250121 | Yamamoto et al. | Oct 1993 | A |
5290475 | Wixon | Mar 1994 | A |
5476660 | Somasundaran et al. | Dec 1995 | A |
5545350 | Baker et al. | Aug 1996 | A |
5705466 | Baillely | Jan 1998 | A |
5731101 | Sherif et al. | Mar 1998 | A |
5798329 | Taylor et al. | Aug 1998 | A |
5827602 | Koch et al. | Oct 1998 | A |
5908820 | Oakes et al. | Jun 1999 | A |
6048388 | Schwarz et al. | Apr 2000 | A |
6086785 | Roesler et al. | Jul 2000 | A |
6165448 | Joiner et al. | Dec 2000 | A |
6180587 | Fuller et al. | Jan 2001 | B1 |
6274539 | Kacher et al. | Aug 2001 | B1 |
6277808 | Tcheou et al. | Aug 2001 | B1 |
6280883 | Lamanna et al. | Aug 2001 | B1 |
6288281 | Nemeth et al. | Sep 2001 | B1 |
6339182 | Munson et al. | Jan 2002 | B1 |
6372829 | Lamanna et al. | Apr 2002 | B1 |
6416557 | Ona et al. | Jul 2002 | B1 |
6440924 | Jeschke et al. | Aug 2002 | B1 |
6472360 | Beggs et al. | Oct 2002 | B1 |
6479446 | Sherry et al. | Nov 2002 | B1 |
6489286 | Lukenbach et al. | Dec 2002 | B1 |
6521584 | Soldanski et al. | Feb 2003 | B1 |
6569344 | Hubesch et al. | May 2003 | B1 |
6593285 | Scheibel et al. | Jul 2003 | B1 |
6689223 | Meine et al. | Feb 2004 | B1 |
6767882 | Jagannath et al. | Jul 2004 | B1 |
6808557 | Holbrey et al. | Oct 2004 | B2 |
6824599 | Swatloski | Nov 2004 | B2 |
6900313 | Wasserscheid et al. | May 2005 | B2 |
20010014654 | Davister et al. | Aug 2001 | A1 |
20020016269 | Noda et al. | Feb 2002 | A1 |
20020133886 | Severns et al. | Sep 2002 | A1 |
20020137657 | Lant et al. | Sep 2002 | A1 |
20030027473 | Kakiuchi et al. | Feb 2003 | A1 |
20030045440 | Van der Hoeven et al. | Mar 2003 | A1 |
20030060378 | Hsu et al. | Mar 2003 | A1 |
20030109405 | Kellar et al. | Jun 2003 | A1 |
20030119709 | Scheper | Jun 2003 | A1 |
20030139312 | Caswell et al. | Jul 2003 | A1 |
20040005286 | Giroud | Jan 2004 | A1 |
20040007693 | Moulton et al. | Jan 2004 | A1 |
20040035293 | Davis, Jr. | Feb 2004 | A1 |
20040054231 | Abbott et al. | Mar 2004 | A1 |
20040077519 | Price | Apr 2004 | A1 |
20040096932 | Kragl et al. | May 2004 | A1 |
20040097755 | Abbott et al. | May 2004 | A1 |
20040133058 | Arlt et al. | Jul 2004 | A1 |
20040142840 | de Buzzaccarini et al. | Jul 2004 | A1 |
20040167265 | Thompson et al. | Aug 2004 | A1 |
20040198629 | Raehse et al. | Oct 2004 | A1 |
20040198902 | Yui et al. | Oct 2004 | A1 |
20050143269 | Wei et al. | Jun 2005 | A1 |
20060079418 | Wagner et al. | Apr 2006 | A1 |
20060079421 | Wagner et al. | Apr 2006 | A1 |
20060090777 | Hecht | May 2006 | A1 |
20060094615 | Hecht | May 2006 | A1 |
20060094616 | Hecht | May 2006 | A1 |
20060094617 | Price et al. | May 2006 | A1 |
20060094620 | Jordan, IV | May 2006 | A1 |
20060094621 | Jordan, IV | May 2006 | A1 |
20060166856 | Petrat et al. | Jul 2006 | A1 |
20060240727 | Price et al. | Oct 2006 | A1 |
20060240728 | Price et al. | Oct 2006 | A1 |
Number | Date | Country |
---|---|---|
1081629 | Jan 2000 | CN |
3 740 899 | Jun 1989 | DE |
101 37 047 | Feb 2003 | DE |
0 267 175 | May 1988 | EP |
0 334 427 | Sep 1989 | EP |
0 723 006 | Jul 1996 | EP |
0 895 777 | Feb 1999 | EP |
1 222 865 | Jul 2002 | EP |
1 454 978 | Sep 2004 | EP |
1296756 | May 1962 | FR |
2 101 710 | Mar 1972 | FR |
1 014 539 | Dec 1965 | GB |
1 269 677 | Apr 1972 | GB |
3064368 | Mar 1991 | JP |
5178798 | Jul 1993 | JP |
2915208 | Jan 1994 | JP |
06009767 | Jan 1994 | JP |
10265674 | Jun 1998 | JP |
11084603 | Mar 1999 | JP |
WO 9605802 | Feb 1996 | WO |
WO 9832822 | Jul 1998 | WO |
WO 9855581 | Dec 1998 | WO |
WO 0001793 | Jan 2000 | WO |
WO 0119200 | Mar 2001 | WO |
WO 0177486 | Oct 2001 | WO |
WO 0226701 | Apr 2002 | WO |
WO 0234722 | May 2002 | WO |
WO 0238784 | May 2002 | WO |
WO 0250366 | Jun 2002 | WO |
WO 03002702 | Jan 2003 | WO |
WO 03057871 | Jul 2003 | WO |
WO 03074494 | Sep 2003 | WO |
WO 2004022670 | Mar 2004 | WO |
WO 2004035018 | Apr 2004 | WO |
WO 2004067739 | Aug 2004 | WO |
Number | Date | Country | |
---|---|---|---|
20060094617 A1 | May 2006 | US |
Number | Date | Country | |
---|---|---|---|
60624051 | Nov 2004 | US |