Benzamide derivatives as antagonists of orexin receptors

Information

  • Patent Application
  • 20050020584
  • Publication Number
    20050020584
  • Date Filed
    October 30, 2002
    22 years ago
  • Date Published
    January 27, 2005
    20 years ago
Abstract
This invention relates to certain benzamide derivatives and their use as pharmaceuticals.
Description

This invention relates to benzamide derivatives and their use as pharmaceuticals.


Many medically significant biological processes are mediated by proteins participating in signal transduction pathways that involve G-proteins and/or second messengers.


Polypeptides and polynucleotides encoding the human 7-transmembrane G-protein coupled neuropeptide receptor, orexin-1 (HFGAN72), have been identified and are disclosed in EP-A-875565, EP-A-875566 and WO 96/34877. Polypeptides and polynucleotides encoding a second human orexin receptor, orexin-2 (HFGANP), have been identified and are disclosed in EP-A-893498.


Polypeptides and polynucleotides encoding polypeptides which are ligands for the orexin-1 receptor, e.g. orexin-A (Lig72A) are disclosed in EP-A-849361.


Orexin receptors are found in the mammalian host and may be responsible for many biological functions, including pathologies including, but not limited to, depression; anxiety; addictions; obsessive compulsive disorder; affective neurosis/disorder, depressive neurosis/disorder; anxiety neurosis; dysthymic disorder; behaviour disorder; mood disorder; sexual dysfunction; psychosexual dysfunction; sex disorder; sexual disorder; schizophrenia; manic depression; delerium; dementia; severe mental retardation and dyskinesias such as Huntington's disease and Gilles de la Tourett's syndrome; feeding disorders, such as anorexia, bulimia, cachexia, and obesity; diabetes; appetite/taste disorders; satiety; vomiting/nausea; asthma; cancer; Parkinson's disease; Cushing's syndrome/disease; basophil adenoma; prolactinoma; hyperprolactinemia; hypopituitarism; hypophysis tumor/adenoma; hypothalamic diseases; Froehlich's syndrome; adrenohypophysis disease; hypophysis disease; hypophysis tumor/adenoma; pituitary growth hormone; adrenohypophysis hypofunction; adrenohypophysis hyperfunction; hypothalamic hypogonadism; Kallmnan's syndrome (anosmia, hyposmia); functional or psychogenic amenorrhea; hypopituitarism; hypothalamic hypothyroidism; hypothalamic-adrenal dysfunction; idiopathic hyperprolactinemia; hypothalamic disorders of growth hormone deficiency; idiopathic growth hormone deficiency; dwarfism; gigantism; acromegaly; circadian rhythms; and sleep disturbances associated with such diseases as neurological disorders, neuropathic pain and restless leg syndrome, heart and lung diseases; acute and congestive heart failure; hypotension; hypertension; urinary retention; osteoporosis; angina pectoris; myocardial infarction; ischaemic or haemorrhagic stroke; subarachnoid haemorrhage; head injury such as sub-arachnoid haemorrhage associated with traumatic head injury; ulcers; allergies; benign prostatic hypertrophy; chronic renal failure; renal disease; impaired glucose tolerance; migraine; hyperalgesia; pain; enhanced or exaggerated sensitivity to pain, such as hyperalgesia, causalgia and allodynia; acute pain; burn pain; atypical facial pain; neuropathic pain; back pain; complex regional pain syndromes I and II; arthritic pain; sports injury pain; pain related to infection, e.g. HIV, post-polio syndrome, and post-herpetic neuralgia; phantom limb pain; labour pain; cancer pain; post-chemotherapy pain; post-stroke pain; post-operative pain; neuralgia; conditions associated with visceral pain including irritable bowel syndrome, migraine and angina; urinary bladder incontinence e.g. urge incontinence; tolerance to narcotics or withdrawal from narcotics; sleep disorders; sleep apnoea; narcolepsy; insomnia; parasomnia; jet-lag syndrome; and neurodegenerative disorders, which includes nosological entities such as disinhibition-dementia-parkinsonism-amyotrophy complex, pallido-ponto-nigral degeneration, epilepsy, and seizure disorders.


Experiments have shown that central administration of the ligand orexin-A (described in more detail below) stimulated food intake in freely-feeding rats during a 4 hour time period. This increase was approximately four-fold over control rats receiving vehicle. These data suggest that orexin-A may be an endogenous regulator of appetite. Therefore, antagonists of its receptors may be useful in the treatment of obesity and diabetes, see Cell, 1998, 92, 573-585.


There is a significant incidence of obesity in westernised societies. According to WHO definitions a mean of 35% of subjects in 39 studies were overweight and a further 22% clinically obese. It has been estimated that 5.7% of all healthcare costs in the USA are a consequence of obesity. About 85% of Type 2 diabetics are obese, and diet and exercise are of value in all diabetics. The incidence of diagnosed diabetes in westernised countries is typically 5% and there are estimated to be an equal number undiagnosed. The incidence of both diseases is rising, demonstrating the inadequacy of current treatments which may be either ineffective or have toxicity risks including cardiovascular effects. Treatment of diabetes with sulfonylureas or insulin can cause hypoglycaemia, whilst metformin causes GI side-effects. No drug treatment for Type 2 diabetes has been shown to reduce the long-term complications of the disease. Insulin sensitisers will be useful for many diabetics, however they do not have an anti-obesity effect.


Rat sleep/EEG studies have also shown that central administration of orexin-A, an agonist of the orexin receptors, causes a dose-related increase in arousal, largely at the expense of a reduction in paradoxical sleep and slow wave sleep 2, when administered at the onset of the normal sleep period. Therefore antagonists of its receptors may be useful in the treatment of sleep disorders including insomnia.


The present invention provides benzamide derivatives which are non-peptide antagonists of human orexin receptors, in particular orexin-1 receptors and orexin-2 receptors. In particular, these compounds are of potential use in the treatment of obesity, including obesity observed in Type 2 (non-insulin-dependent) diabetes patients, gastrointestinal disorders and/or sleep disorders. Additionally these compounds are useful in stroke, particularly ischemic or haemorrhagic stroke, and/or blocking the emetic response i.e. the compounds are useful in the treatment of nausea and vomiting.


International Patent Applications WO99/09024, WO99/58533, WO0/47577 and WO00/47580 disclose phenyl urea derivatives and WO00/47576 discloses quinolinyl cinnamide derivatives as orexin receptor antagonists. WO01/96302 discloses N-aroyl cyclic amine derivatives and WO02/44172 discloses morpholine derivatives as orexin receptor antagonists.


According to the present invention there is provided a compound of formula (I):
embedded image

wherein:

  • R1 is hydrogen;
  • R2 is (C1-3)alkyl; and
  • R3 is hydrogen or (C1-3)alkyl; or R2 and R3 together with the carbon to which they are attached form a (C3-5)cycloalkcyl group; or
  • R1 is (C1-3)alkyl; R2 is hydrogen; and R3 is hydrogen, or (C1-3)alkyl;
  • R4 and R5 are independently selected from hydrogen, halogen, NC—, optionally substituted (C1-6)alkylCO, optionally substituted (C1-6)alkyl, optionally substituted (C1-6)alkoxy, optionally substituted (C1-6)alkylOCO—, and optionally substituted (C1-6)alkylNHCO—; provided that R4 and R5 are not both hydrogen;
  • R6 is hydrogen or halogen;
  • Ar represents an optionally substituted aryl or an optionally substituted 5- or 6-membered aromatic heterocyclyl group containing up to 3 heteroatoms selected from N, O and S; or Ar represents an optionally substituted bicyclic heteroaryl group containing up to 3 heteroatoms selected from N, O and S;
  • X is CH2—, or a bond;
  • Y is —NHCO—, or a bond;
  • or a pharmaceutically acceptable derivative thereof.


The group Ar may be optionally substituted by 1 to 5, preferably 1 to 3, substituents.


When Ar is aryl it is suitably phenyl or naphthyl.


Examples of a 5- or 6-membered aromatic heterocyclyl group containing up to 3 heteroatoms selected from N, O and S include furanyl, thienyl, pyrrolyl, oxazolyl, thiazolyl, imidazolyl, oxadiazolyl, thiadiazolyl, triazolyl, triazinyl, pyridazinyl, pyrimidinyl, isothiazolyl, isoxazolyl, pyrazinyl, or pyrazolyl.


When Ar is bicyclic heteroaryl it is, for example, quinolinyl, isoquinolinyl, quinoxalinyl, quinazolinyl, pyridopyrazinyl, benzoxazolyl, benzothiophenyl, benzimidazolyl, benzothiazolyl, benzoxadiazolyl, benzthiadiazolyl or naphthyridinyl.


Preferably Ar represents phenyl, naphthyl, quinolinyl, isoquinolinyl, benzothiazolyl, benzoxadiazolyl, benzothiadiazolyl, thiazolyl, triazolyl, or pyrazolyl, any of which may be optionally substituted.


Optional substituents for Ar include phenyl optionally substituted by halogen; a 5- or 6-membered aromatic heterocyclyl group containing up to 3 heteroatoms selected from N, O and S, optionally substituted by (C1-4)alkyl; halogen, hydroxy, oxo, cyano, nitro, (C1-4)alkyl, hydroxy(C1-4)alkyl, (C1-4)alkoxy, hydroxy(C1-4)alkoxy, halo(C1-4)alkyl, halo(C1-4)alkoxy, aryl(C1-4)alkoxy, (C1-4)alkylthio, hydroxy(C1-4)alkyl, (C1-4)alkoxy(C1-4)alkyl, (C3-6)cycloalkyl(C1-4)alkoxy, (C1-4)alkanoyl, (C1-4)alkoxycarbonyl, (C1-4)alkylsulfonyl, (C1-4)alkylsulfonyloxy, (C1-4)alkylsulfonyl(C1-4)alkyl, arylsulfonyl, arylsulfonyloxy, arylsulfonyl(C1-4)alkyl, (C1-4)alkylsulfonamido, (C1-4)alkylamido, (C1-4)alkylsulfonamido(C1-4)alkyl, (C1-4)alkylamido(C1-4)alkyl, arylsulfonamido, arylcarboxamido, arylsulfonamido(C1-4)alkyl, arylcarboxamido(C1-4)alkyl, aroyl, aroyl(C1-4)alkyl, or aryl(C1-4)alkanoyl group; a group RxRyN—, RxOCO(CH2)r, RxCON(Ry)(CH2)r, RxRyNCO(CH2)r, RxRyN(CH2)rO, RxRyNSO2(CH2)r or RxSO2NRy(CH2)r where each of Rx and Ry independently represents a hydrogen atom or a (C1-4)alkyl group or where appropriate RxRy forms part of a (C3-6)azacycloalkane or (C3-6)(2-oxo)azacycloalkane ring and r represents zero or an integer from 1 to 4. Additionally, when Ar is phenyl two substituents on adjacent carbon atoms may, together with the ring to which they are attached, form a bicyclic or tricyclic heterocyclyl or carbocyclyl ring system, for example, fluorenyl, 1,3-benzodioxolyl, or dihydrobenzofuryl, any of which may be optionally substituted by halogen or oxo.


Optional substituents for the groups R4 and R5 include halogen.


Preferred optional substituents for a group Ar include phenyl optionally substituted by halogen; oxadiazolyl substituted by (C 1-4)alkyl; halogen, cyano, (C1-4)alkyl, (C1-4)alkoxy, halo(C1-4)alkyl, halo(C1-4)alkoxy, (C1-4)alkoxycarbonyl, (C1-4)alkylsulfonyl, (C1-4)alkylamido, RxRyN(CH2)rO, where each of Rx and Ry independently represents a hydrogen atom or a (C1-4)alkyl group and r represents zero or an integer from 2 to 4. Additionally, when Ar is phenyl two substituents on adjacent carbon atoms may, together with the ring to which they are attached, form a fluorenyl, 1,3-benzodioxolyl, or dihydrobenzofuryl ring system, any of which may be optionally substituted by halogen or oxo.


More preferably optional substituents for a group Ar are independently selected from: phenyl optionally substituted by halogen e.g. F; oxadiazolyl optionally substituted by methyl; Br, Cl, F, NC—, CH3—, CF3—, CH3O—, CF3O—, (CH3)2NCH2CH2O, CH3CONH—, and CH3SO2- or, when Ar is phenyl, two substituents on adjacent carbons together with the phenyl ring to which they are attached form a group selected from 9-fluorenon-4-yl, 1,3-benzodioxol-5-yl, and 5-bromodihydrobenzofur-7-yl.


Preferably substituents on the group Ar are ortho and/or meta to the amide linker.


Examples of R4 and R5 are hydrogen, halogen, NC—, optionally substituted (C1-4)alkoxy, optionally substituted (C1-4)alkylOCO—, and optionally substituted (C1-4)alkylCO—.


Further examples of R4 and R5 are hydrogen, halogen, NC—, optionally substituted (C1-4)alkoxy, and optionally substituted (C1-4)alkylCO—.


When R1 is hydrogen, then R2 and R3 are preferably the combinations methyl/hydrogen, ethyl/hydrogen or methyl/methyl.


When R2 is is (C1-3)alkyl and R1 and R3 are hydrogen the R-enantiomer is preferred.


When R1 is (C1-3)alkyl and R2 and R3 are hydrogen, the S-enantiomer is preferred.


When a halogen atom is present in the compound of formula (I) it may be fluorine, chlorine, bromine or iodine.


A preferred compound is (R)benzo[1,3]dioxole-5-carboxylic acid[2-3,4-dimethoxyphenyl)-ethyl]-(2-phenyl-propyl)-amide or a pharmaceutically acceptable derivative thereof.


A further preferred compound is (R)-2-cyano-N-[2-(3,4-dimethoxy-phenyl)ethyl]-N-(2-phenyl-propyl)-benzamide) or a pharmaceutically acceptable derivative thereof.


When the compound of formula (I) contains an alkyl group, whether alone or forming part of a larger group, e.g. alkoxy or alkylthio, the alkyl group may be straight chain, branched or cyclic, or combinations thereof, then it is preferably methyl or ethyl.


It will be appreciated that compounds of formula (I) may exist as R or S enantiomers. The present invention includes within its scope all such isomers, including mixtures. Where additional chiral centres are present in compounds of formula (I), the present invention includes within its scope all possible diastereoisomers, including mixtures thereof. The different isomeric forms may be separated or resolved one from the other by conventional methods, or any given isomer may be obtained by conventional synthetic methods or by stereospecific or asymmetric syntheses.


It will be understood that the invention includes pharmaceutically acceptable derivatives of compounds of formula (I) and that these are included within the scope of the invention.


Particular compounds according to the invention include those mentioned in the examples and their pharmaceutically acceptable derivatives.


As used herein “pharmaceutically acceptable derivative” includes any pharmaceutically acceptable salt, solvate, ester or salt or solvate of such ester of a compound of formula (I) which, upon administration to the recipient is capable of providing (directly or indirectly) a compound of formula (I) or an active metabolic or residue thereof. Preferred pharmaceutically acceptable derivatives according to the invention are any pharmaceutically acceptable salts and solvates.


It will be appreciated that for use in medicine the salts of the compounds of formula (I) should be pharmaceutically acceptable. Suitable pharmaceutically acceptable salts will be apparent to those skilled in the art and include acid addition salts formed with inorganic acids e.g. hydrochloric, hydrobromic, sulphuric, nitric or phosphoric acid; and organic acids e.g. succinic, maleic, acetic, fumaric, citric, tartaric, benzoic, p-toluenesulfonic, methanesulfonic or naphthalenesulfonic acid. Other salts e.g. oxalates, may be used, for example in the isolation of compounds of formula (I) and are included within the scope of this invention. Also included within the scope of the invention are solvates and hydrates of compounds of formula (I).


Certain of the compounds of formula (I) may form acid addition salts with one or more equivalents of the acid. The present invention includes within its scope all possible stoichiometric and non-stoichiometric forms.


Since the compounds of formula (I) are intended for use in pharmaceutical compositions it will readily be understood that they are each preferably provided in substantially pure form, for example at least 60% pure, more suitably at least 75% pure and preferably at least 85%, especially at least 98% pure (% are on a weight for weight basis). Impure preparations of the compounds may be used for preparing the more pure forms used in the pharmaceutical compositions.


According to a further feature of the invention there is provided a process for the preparation of compounds of formula (I) and salts thereof. The following schemes detail synthetic routes to compounds of the invention.


Compounds of formula (I) may be prepared from convenient starting materials by adapting synthetic procedures well known in the art. Preferably, the final stage involves the formation of an amide bond between a compound of formula (II) and a compound of formula (III):
embedded image

wherein Ar, R1, R2, R3, R4, R5, R6, X and Y are as hereinbefore defined for compounds of formula (I), and Z is a leaving group or a group converted to a leaving group in-situ followed by, if necessary or so desired, conversion to a pharmaceutically acceptable derivative thereof.


Z is suitably halogen, hydroxy, OC(═O)alkyl or OC(═O)Oalkyl, particularly halogen, for example chloro.


Amide bond forming conditions are well known in the art and include reaction of the amine with an appropriate acid chloride in an inert solvent such as dichloromethane, optionally in the presence of a base such as triethylamine or N,N-diisopropylethylamine. Alternatively, the amine may be coupled directly with an appropriate carboxylic acid using a reagent such as 1-(3-dimethylaminopropyl)-3-ethylcarbodi-imide with 1-hydroxybenzotriazole or O-(7-azabenzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium hexafluorophosphate (HATU) with a base such as triethylamine or N,N-diisopropylethylamine.


Compounds of formula (II) and (III) are known in the literature or can be prepared by known methods. A compound of formula (II) may be prepared by reacting a compound of formula (IV) with a compound of formula (V):
embedded image

wherein R1, R2, R3, R4, R5, R6, X and Y are as hereinbefore defined, in the presence of a reducing agent. Suitable reducing agents which may be employed include sodium borohydride, sodium cyanoborohydride or sodium triacetoxyborohydride under acidic conditions, or catalytic hydrogenation. The reaction may conveniently be effected in a solvent such as ethanol or dichloroethane.


A compound of formula (II) where R1=H may also be prepared by reaction of a compound of formula (VI) with a compound of formula (VII):
embedded image

wherein R2, R3, R4, R5, R6, X and Y are as hereinbefore defined for compounds of formula (I), in the presence of a reducing agent. Suitable reducing conditions which may be employed include those defined above for the reaction of a compound of formula (IV) with a compound of formula (V) in the presence of a reducing agent.


A compound of formula (II) may also be prepared from an amide of formula (VIII) or where R1=H, an amide of formula (IX):
embedded image

wherein R1, R2, R3, R4, R5, R6, X and Y are as hereinbefore defined for compounds of formula (I), by reduction of the amide carbonyl. Suitable reducing agents include lithium aluminium hydride or diborane in the presence of a solvent such as tetrahydrofuran or diethyl ether.


Intermediates of formulae (III), (IV), (V), (VI), (VIII), (VIII) and (IX) are commercially available, or may be made by known routes from commercially available materials.


Compounds of formula (III) may be prepared according to processes known in the art for the preparation of acyl groups, for example The Chemistry of Acyl Halides, S. Patai (Ed), Interscience, New York, 1972.


Amines of formula (IV) and formula (VI) may be made by methods known to the skilled person, for example those described in The Amino Group, S. Patai (Ed), Interscience, New York 1968.


Aldehydes of formula (V) or formula (VII) may be made by methods known in the art, for example those described in The Chemistry of the Carbonyl Group, S. Patai (Ed), Interscience, New York, 1966.


Amides of formula (VIII) and formula (IX) may be made by known methods such as those described in The Chemistry of Amides, J. Zabicky (Ed), Interscience, New York, 1970.


The compounds of formula (I) may be prepared singly or as compound libraries comprising at least 2, e.g. 5 to 1000, preferably 10 to 100 compounds of formula (I). Compound libraries may be prepared by a combinatorial ‘split and mix’ approach or by multiple parallel synthesis using either solution phase or solid phase chemistry, by procedures known to those skilled in the art.


Thus according to a further aspect of the invention there is provided a compound library comprising at least 2 compounds of formula (I), or pharmaceutically acceptable salts thereof.


Pharmaceutically acceptable salts may be prepared conventionally by reaction with the appropriate acid or acid derivative.


The compounds of formula (I) and their pharmaceutically acceptable derivatives are useful for the treatment of diseases or disorders where an antagonist of a human orexin receptor is required such as obesity and diabetes; prolactinoma; hypoprolactinemia; hypothalamic disorders of growth hormone deficiency; idiopathic growth hormone deficiency; Cushings syndrome/disease; hypothalamic-adrenal dysfunction; dwarfism; sleep disorders; sleep apnoea; narcolepsy; insomnia; parasomnia; jet-lag syndrome; sleep disturbances associated with diseases such as neurological disorders, neuropathic pain and restless leg syndrome; heart and lung diseases; depression; anxiety; addictions; obsessive compulsive disorder; affective neurosis/disorder; depressive neurosis/disorder; anxiety neurosis; dysthymic disorder; behaviour disorder, mood disorder; sexual dysfunction; psychosexual dysfunction; sex disorder; sexual disorder; schizophrenia; manic depression; delerium; dementia; bulimia; ischemic or haemorrhagic stroke and hypopituitarism.


The compounds of formula (I) and their pharmaceutically acceptable derivatives are particularly useful for the treatment of obesity, including obesity associated with Type 2 diabetes, stroke and sleep disorders.


Other diseases or disorders which may be treated in accordance with the invention include disturbed biological and circadian rhythms; adrenohypophysis disease; hypophysis disease; hypophysis tumor/adenoma; adrenohypophysis hypofunction; functional or psychogenic amenorrhea; adrenohypophysis hyperfunction; migraine; hyperalgesia; pain; enhanced or exaggerated sensitivity to pain such as hyperalgesia, causalgia and allodynia; acute pain; burn pain; atypical facial pain; neuropathic pain; back pain; complex regional pain syndromes I and II; arthritic pain; sports injury pain; pain related to infection e.g. HIV, post-polio syndrome and post-herpetic neuralgia; phantom limb pain; labour pain; cancer pain; post-chemotherapy pain; post-stroke pain; post-operative pain; neuralgia; and tolerance to narcotics or withdrawal from narcotics.


The invention also provides a method of treating or preventing diseases or disorders where an antagonist of a human orexin receptor is required, which comprises administering to a subject in need thereof an effective amount of a compound of formula (I), or a pharmaceutically acceptable derivative thereof.


The invention also provides a compound of formula (I), or a pharmaceutically acceptable derivative thereof, for use in the treatment or prophylaxis of diseases or disorders where an antagonist of a human orexin receptor is required.


The invention also provides the use of a compound of formula (I), or a pharmaceutically acceptable derivative thereof, in the manufacture of a medicament for the treatment or prophylaxis of diseases or disorders where an antagonist of a human orexin receptor is required.


For use in therapy the compounds of the invention are usually administered as a pharmaceutical composition. The invention also provides a pharmaceutical composition comprising a compound of formula (I), or a pharmaceutically acceptable derivative thereof, and a pharmaceutically acceptable carrier.


The compounds of formula (I) and their pharmaceutically acceptable derivatives may be administered by any convenient method, e.g. by oral, parenteral, buccal, sublingual, nasal, rectal or transdermal administration, and the pharmaceutical compositions adapted accordingly.


The compounds of formula (I) and their pharmaceutically acceptable derivatives which are active when given orally can be formulated as liquids or solids, e.g. as syrups, suspensions, emulsions, tablets, capsules or lozenges.


A liquid formulation will generally consist of a suspension or solution of the active ingredient in a suitable liquid carrier(s) e.g. an aqueous solvent such as water, ethanol or glycerine, or a non-aqueous solvent, such as polyethylene glycol or an oil. The formulation may also contain a suspending agent, preservative, flavouring and/or colouring agent.


A composition in the form of a tablet can be prepared using any suitable pharmaceutical carrier(s) routinely used for preparing solid formulations, such as magnesium stearate, starch, lactose, sucrose and cellulose.


A composition in the form of a capsule can be prepared using routine encapsulation procedures, e.g. pellets containing the active ingredient can be prepared using standard carriers and then filled into a hard gelatin capsule; alternatively a dispersion or suspension can be prepared using any suitable pharmaceutical carrier(s), e.g. aqueous gums, celluloses, silicates or oils and the dispersion or suspension then filled into a soft gelatin capsule.


Typical parenteral compositions consist of a solution or suspension of the active ingredient in a sterile aqueous carrier or parenterally acceptable oil, e.g. polyethylene glycol, polyvinyl pyrrolidone, lecithin, arachis oil or sesame oil. Alternatively, the solution can be lyophilised and then reconstituted with a suitable solvent just prior to administration.


Compositions for nasal administration may conveniently be formulated as aerosols, drops, gels and powders. Aerosol formulations typically comprise a solution or fine suspension of the active ingredient in a pharmaceutically acceptable aqueous or non-aqueous solvent and are usually presented in single or multidose quantities in sterile form in a sealed container which can take the form of a cartridge or refill for use with an atomising device. Alternatively the sealed container may be a disposable dispensing device such as a single dose nasal inhaler or an aerosol dispenser fitted with a metering valve. Where the dosage form comprises an aerosol dispenser, it will contain a propellant which can be a compressed gas e.g. air, or an organic propellant such as a fluoro-chlorohydrocarbon or hydrofluorocarbon. Aerosol dosage forms can also take the form of pump-atomisers.


Compositions suitable for buccal or sublingual administration include tablets, lozenges and pastilles where the active ingredient is formulated with a carrier such as sugar and acacia, tragacanth, or gelatin and glycerin.


Compositions for rectal administration are conveniently in the form of suppositories containing a conventional suppository base such as cocoa butter.


Compositions suitable for transdermal administration include ointments, gels and patches.


Preferably the composition is in unit dose form such as a tablet, capsule or ampoule.


The dose of the compound of formula (I), or a pharmaceutically acceptable derivative thereof, used in the treatment or prophylaxis of the abovementioned disorders or diseases will vary in the usual way with the particular disorder or disease being treated, the weight of the subject and other similar factors. However, as a general rule, suitable unit doses may be 0.05 to 1000 mg, more suitably 0.05 to 500 mg. Unit doses may be administered more than once a day for example two or three times a day, so that the total daily dosage is in the range of about 0.01 to 100 mg/kg; and such therapy may extend for a number of weeks or months. In the case of pharmaceutically acceptable derivatives the above figures are calculated as the parent compound of formula (I).


No toxicological effects are indicated/expected when a compound of formula (I) is administered in the above mentioned dosage range.


Human orexin-A has the amino acid sequence:

pyroGlu Pro Leu Pro Asp Cys Cys Arg Gln Lys Thr Cys Ser Cys Arg Leu 1              5                 10                 15Tyr Glu Leu Leu His Gly Ala Gly Asn His Ala Ala Gly Ile Leu Thr            20                25                 30Leu-NH2


Orexin-A can be employed in screening procedures for compounds which inhibit the ligand's activation of the orexin-1 receptor.


In general, such screening procedures involve providing appropriate cells which express the orexin-1 receptor on their surface. Such cells include cells from mammals, yeast, Drosophila or E. coli. In particular, a polynucleotide encoding the orexin-1 receptor is used to transfect cells to express the receptor. The expressed receptor is then contacted with a test compound and an orexin-1 receptor ligand to observe inhibition of a functional response. One such screening procedure involves the use of melanophores which are transfected to express the orexin-1 receptor, as described in WO 92/01810.


Another screening procedure involves introducing RNA encoding the orexin-1 receptor into Xenopus oocytes to transiently express the receptor. The receptor oocytes are then contacted with a receptor ligand and a test compound, followed by detection of inhibition of a signal in the case of screening for compounds which are thought to inhibit activation of the receptor by the ligand.


Another method involves screening for compounds which inhibit activation of the receptor by determining inhibition of binding of a labelled orexin-1 receptor ligand to cells which have the receptor on their surface. This method involves transfecting a eukaryotic cell with DNA encoding the orexin-1 receptor such that the cell expresses the receptor on its surface and contacting the cell or cell membrane preparation with a compound in the presence of a labelled form of an orexin-1 receptor ligand. The ligand may contain a radioactive label. The amount of labelled ligand bound to the receptors is measured, e.g. by measuring radioactivity.


Yet another screening technique involves the use of FLIPR equipment for high throughput screening of test compounds that inhibit mobilisation of intracellular calcium ions, or other ions, by affecting the interaction of an orexin-1 receptor ligand with the orexin-1 receptor.


All publications, including but not limited to patents and patent applications, cited in this specification are herein incorporated by reference as if each individual publication were specifically and individually indicated to be incorporated by reference herein as though fully set forth.


The following Examples illustrate the preparation of pharmacologically active compounds of the invention. The Descriptions illustrate the preparation of intermediates to compounds of the invention.


Abbreviations used herein are as follows: MDC is dichloromethane, THF is tetrahydrofuran, DMF is N,N-dimethylformamide and TFA is trifluoroacetic acid, EtOAc is ethyl acetate and DMSO is dimethyl sulphoxide.


The following Examples illustrate the preparation of pharmacologically active compounds of the invention. The Descriptions D1-D22 illustrate the preparation of intermediates to compounds of the invention. 1H NMR's were measured at 250 MHz in CDCl3 unless otherwise stated.


Description 1a


(R,S)-(3-Bromo-methoxy-benzyl)-(2-phenylpropyl)-amine


A solution of 3-bromo-4-methoxy-benzaldehyde (2.15 g, 10 mmol) and (R,S)-1-amino-2-phenylpropane (1.35 g, 10 mmol) in 1,2-dichloroethane (50 ml) was stirred at room temperature under argon for 0.5 h. Sodium triacetoxyborohydride (2.97 g, 14 mmol) was added over 5 min. then stirring was continued for a further 16 h. The reaction mixture was diluted with MDC (50 ml) and then washed with saturated aqueous K2CO3. The aqueous phase was extracted with MDC and the combined organics then washed with brine. The organic phase was dried (MgSO4) and the solvent removed in vacuo. The residue was chromatographed (silica gel, 20-50% EtOAc-pentane) to afford the title compound as a colourless oil (1.90 g, 57%).


MS (API+): Found MH+334. C17H2079BrNO requires 333.



1H NMR δ: 1.25 (3H, d, J=7 Hz), 2.75 (2H, d, J=7 Hz), 2.96 (1H, m), 3.65 (2H, m), 3.88 (3H, s), 6.82 (1H, d, J=8 Hz), 7.05-7.36 (6H, m), 7.42 (111, d, J=2 Hz).


The following compounds were prepared in a similar manner to Description 1a


Description 1b


(R,S)-(3,4-Dimethoxy-benzyl)-(2-phenyl-propyl)-amine


MS (API+): Found MH+286. C18H23NO2 requires 285.



1H NMR δ: 1.25 (3H, d, J=7 Hz), 2.77 (2H, d, J=7 Hz), 2.96 (1H, m), 3.69 (2H, m), 3.84 (3H, s), 3.86 (3H, s), 6.77 (3H, m), 7.23-7.35 (5H, m).


Description 1c


(R)(3,4-Dimethoxy-benzyl)-(2-phenylpropyl)-amine


MS (API+): Found MH+286. C18H23NO2 requires 285.


Description 1d


(R,S)-(3-Bromo methoxy-benzyl)-2-phenyl-butyl)-amine


Prepared from 2-phenylbutylamine (Maryanoff et al, J. Org. Chem., 1341,51(8),1986).


MS (API+): Found MH+348. C18H2279BrNO requires 347.



1HNMR δ: 0.78 (3H, t, J=7 Hz), 1.42-1.80 (2H, m), 2.62-2.88 (3H, m), 3.64 (2H, m), 3.87 (3H, s), 6.81 (1H, d, J=8 Hz), 7.05-7.36 (6H, m), 7.40 (1H, d, J=2 Hz).


Description 1e


(R,S-(3-Ethoxy-4-methoxy-benzyl)-(2-phenyl-propyl)-amine


MS (API+): Found MH+300. C19H25NO2 requires 299.



1H NMR δ: 1.18 (3H, d, J=7 Hz), 1.45 (3H, t, J=7 Hz), 2.77 (2H, d, J=7 Hz), 2.96 (1H, m), 3.69 (2H, AB q), 3.85 (311, s), 4.05 (2H, q, J=7 Hz), 6.75 (3H, m), 7.25 (5H, m).


Description 1f


(R,S)-[2-(3,4-Dimethoxy-phenyl)-ethyl]-(2-phenyl-propyl)amine


Prepared form 2-phenyl-propionaldehyde and 2-(3,4-dimethoxyphenyl)-ethylamine.


MS (API+): Found MH+300. C19H25NO2 requires 299.



1H NMR δ: 1.24 (3H, d, J=7 Hz), 2.65-2.93 (7H, bm), 3.82 (3H, s), 3.85 (3H, s), 6.64 (2H, m), 6.74 (1H, d, J=8 Hz), 7.15 (3H, m), 7.25 (2H, m).


Description 1g


(R,S)-2-Methoxy-5[(2-phenyl-propylamino)-methyl]-benzoic acid methyl ester



1H NMR δ: 1.26 (3H, d, J=7 Hz), 2.76 (2H, d, J=7 Hz), 2.94 (1H, m), 3.70 (2H, AB q), 3.89 (6H, s), 6.91 (1H, d, J=9 Hz), 7.15-7.40 (6H, m), 7.66 (1H, d, J=2 Hz).


Description 2


N-(3,4-Dimethoxy-benzyl)2-phenyl-isobutyramide


A solution of 2-methyl-2-phenylpropionic acid (3.28 g, 20 mmol) in DMF (50 ml) was treated sequentially with N,N-diisopropylethylamine (8.09 g, 80 mmol), O-(7-azabenzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium hexafluorophosphate (HATU) (7.60 g, 20 mmol) then 3,4-dimethoxybenzylamine (3.34 g, 20 mmol) and then stirred at room temperature, under argon for 24 h. The reaction mixture was diluted with EtOAc then washed with water (3×) then brine. The organic phase was dried (MgSO4) and the solvent removed in vacuo. The residue was triturated with diethyl ether/pentane to afford the title compound as a beige solid (5.95 g, 95%).


MS (API+): Found MH+314. C19H23NO3 requires 313.



1H NM δ: 1.60 (6H, s), 3.80 (3H, s), 3.84 (3H, s), 4.32 (2H, d, J=6 Hz), 5.44 (1H, bs), 6.65 (2H, m), 6.76 (1H, d, J=8 Hz), 7.20-7.44 (5H, m).


Description 3


(3,4-Dimethoxy-benzyl(2-methyl-2-phenyl-propyl)amine


A solution of N-3,4-dimethoxybenzyl)2-phenyl-isobutyramide (D2, 4.00 g, 12.8 mmol) in THF (30 ml) was added drop-wise to an ice-cooled solution of lithium aluminium hydride (25.6 mmol) in THF (75 ml) under argon. The reaction mixture was stirred at room temperature for 1 h then at reflux for 8 h. The reaction mixture was ice-cooled then treated with aqueous THF until effervescence ceased and then aqueous 40% NaOH (2 ml) added. After stirring for a further 0.5 h the mixture was filtered through kieselguhr, washing with diethyl ether. The filtrate was washed with brine, dried (MgSO4) and the solvent removed in vacuo. The residue was dissolved in EtOAc and washed with 0.5N HCl. The aqueous phase was basified with aqueous K2CO3 then extracted with EtOAc (2×). The combined organics were dried (MgSO4) and the solvent was removed in vacuo to give the title compound as a colourless oil (1.23 g, 32%).


MS (API+): Found MH+300. C19H25NO2 requires 299.



1H NMR δ: 1.35 (6H, s), 2.69 (2H, s), 3.66 (2H, s), 3.83 (3H, s), 3.87 (3H, s), 6.75 (3H, m), 7.14-7.38 (5H, m).


Description 4


3-Bromo-methoxybenzylamine


A stirring solution of 3-bromo-4-methoxy-benzonitrile (1.00 g, 4.7 mmol) in THF (30 ml) was treated drop-wise with borane-THF (14.2 ml, 1M solution in THF, 14.2 mmol). The mixture was heated at reflux, under argon for 5 h. To the cooled reaction mixture was cautiously added MeOH (20 ml). The volatiles were removed in vacuo and the residue was treated with 2N HCl (20 ml). After heating at reflux for 0.45 h and cooling to room temperature the mixture was basified by addition of solid K2CO3. The basic solution was extracted with diethyl ether (2×). The organic phase was dried (MgSO4) and the solvent removed in vacuo to afford the title compound as a colourless oil (64%).



1H NMR δ: 1.48 (2H, bs), 3.79 (2H, s), 3.88 (3H, s), 6.86 (1H, d, J=8.4 Hz), 7.21 (1H, dd, J=2 and 8 Hz), 7.51 (1H, d, J=2 Hz)


Description 5


N-3-Bromo-4-methoxy-benzyl)-2-phenyl-isobutyramide


A solution of 2-methyl-2-phenylpropionic acid (1.51 g, 9.2 mmol) in DME (30 ml) was treated sequentially with 1-(3-dimethylamionopropyl)-3-ethylcarbodiimide hydrochloride (1.76 g, 9.2 mmol), 3-bromo-4-methoxybenzylamine (D4, 2.00 g, 9.3 mmol) then 1-hydroxybenzotriazole (0.20 g). After stirring at room temperature, under argon for 16 h the reaction mixture was diluted with EtOAc and washed with water (2×) then brine. The organic phase was dried (MgSO4) and the solvent removed in vacuo. The residue was triturated with diethyl ether/pentane to afford the title compound as an off-white solid (2.3 g, 70%).


MS (API+): Found MH+362. C18H2079BrNO requires 361.



1H NMR δ: 1.60 (6H, s), 3.86 (3H, s), 4.28 (2H, d, J=6 Hz), 5.44 (1H, bm), 6.79 (1H, d, J=8 Hz), 7.05 (1H, dd, J=2, 8 Hz), 7.26 (2H, m), 7.36 (4H, m).


Description 6


(3-Bromo-4-methoxy-benzyl)-(2-methyl-2-phenyl-propyl)amine


A stirring solution of N-3-bromo-4-methoxybenzyl-2-phenyl-isobutyramide (D5, 2.30 g, 6.4 mmol) in THF (50 ml) was treated dropwise with borane-THF (12.8 ml, 1M solution in THF, 12.8 mmol). The mixture was heated at reflux, under argon for 3.5 h. To the cooled reaction mixture was cautiously added MeOH (35 ml). The volatiles were removed in vacuo and the residue was treated with 2N HCl (70 ml). After heating at reflux for 0.5 h and cooling to room temperature the mixture was basified by addition of NaOH pellets. The basic solution was extracted with MDC (2×). The organic phase was dried (MgSO4) and the solvent removed in vacuo. The residue was chromatographed (silica gel, 0-7.5% MeOH-MDC) to afford the title compound as a colourless oil (1.92 g, 86%).


MS (API+): Found MH+348. C18H2279BrNO requires 347.



1H NMR δ: 1.34 (6H, s), 2.67 (2H, s), 3.62 (2H, s), 3.87 (3H, s), 6.81 (1H, d, J=8 Hz), 7.10 (1H, dd, J=2, 8 Hz), 7.20 (1H, m), 7.32 (4H, m), 7.39 (1H, d, J=2 Hz).


Description 7


(S)-(3,4-Dimethoxy-benzyl)-(1-methyl-2-phenyl-ethyl)-amine


A solution of 3,4-dimethoxybenzaldehyde (1.06 g, 6.4 mmol), (S)-1-methyl-2-phenylethylamine sulfate (1.18 g, 6.4 mmol) and triethylamine (0.89 ml, 6.4 mmol) in 1,2-dichloroethane (50 ml) was stirred at room temperature under argon for 15 min. Sodium triacetoxyborohydride (2.97 g, 14 mmol) was added over 5 min. then stirring was continued for a further 16 h. The reaction mixture was diluted with MDC (50 ml) then washed with saturated aqueous K2CO3. The aqueous phase was extracted with MDC and the combined organics washed with brine. The organic phase was dried (MgSO4) and the solvent removed in vacuo. The residue was chromatographed (silica gel, 0-100% EtOAc-pentane) to afford the title compound as a colourless oil (1.20 g, 67%).


MS (API+): Found MH+286. C18H23NO2 requires 285.



1H NMR δ: 1.10 (3H, d, J=6 Hz), 2.70 (2H, m), 2.91 (1H, m), 3.70 (2H, m), 3.82 (3H, s), 3.86 (3H, s), 2.75 (3H, m), 7.20 (5H, m).


Description 8


(S)-[2-(3,4-Dimethoxy-phenyl)-ethyl]-(1-methyl-2-phenyl-ethyl)-amine


The title compound was prepared from (3,4-dimethoxyphenyl)acetaldehyde (Kraus et al, J. Org. Chem., 1720, 64, 1999) according to a procedure similar to that for Description 7.


MS (API+): Found MH+300. C19H25NO2 requires 299.



1H NMR δ: 1.07 (3H, d, J=6 Hz), 2.55-3.00 (7H, m), 3.84 (3H, s), 3.96 (3H, s), 6.70 (3H, m), 7.10 (2H, m), 7.25 (3H, m).


Description 9


(R,S)-[2-(4-chloro-phenyl)-propyl]-(3,4,dimethoxy-benzyl)amine


The title compound was prepared from 2-(4-chloro-phenyl)-propylamine hydrochloride according to a procedure similar to that for Description 7.


MS (API+): Found MH+320. C18H2235ClNO2 requires 319.



1H NMR δ: 1.23 (3H, d, J=7 Hz), 2.80 (2H, m), 3.00 (1H, m), 3.75 (2H, AB q), 3.84 (3H, s), 3.86 (3H, s), 5.60 (1H, bs), 6.78 (3H, m), 7.10 (2H, m), 7.25 (21H, m)


Description 10


(R,S)-2-Methoxy-[(2-phenyl-propylamino)-methyl]-N-propyl benzamide


A solution of (R,S-2-methoxy-5-[(2-phenyl-propylamino)-methyl]-benzoic acid methyl ester (D1g, 1.16 g, 3.7 mmol) in n-propylamine (5 ml) was allowed to stand at room temperature for 12 days. Removal of the volatiles in vacuo afforded the title compound (1.26 g, 100%).



1H NMR δ: 0.96 (3H, t, J=7 Hz), 1.24 (3H, d, J=7 Hz), 1.60 (2H, m), 2.76 (2H, dd, J=1, 7 Hz), 2.96 (1H, m), 3.42 (2H, m), 3.73 (2H, s), 3.94 (3H, s), 6.91 (1H, d, J=8 Hz), 7.15-7.40 (6H, bm), 7.87 (1H, bt), 8.06 (1H, d, J=2 Hz).


Description 11


(R)-2-(3,4-Dimethoxy-phenyl)-N-(2-phenylpropyl)-acetamide


The title compound was prepared from (R)-1-amino-2-phenylpropane according to a procedure similar to that for Description 2.


MS (API+): Found MH+314. C19H23NO3 requires 313.



1H NMR δ: 1.20 (3H, d, J=7 Hz), 2.80 (1H, m), 3.15 (1H, m), 3.43 (2H, s), 3.60 (1H, in), 3.80 (3H, s), 3.88 (3H, s), 5.23 (1H, bt), 6.60 (2H, m), 6.75 (1H, d, J=8 Hz), 7.06 (2H, m), 7.20 (3H, m).


Description 12


(R)-[2-(3,4-Dimethoxy-phenyl)-ethyl]-2-phenyl-propyl)-amine


The title compound was prepared from (R)-2-3,4-dimethoxy-phenyl)-N-(2-phenyl-propyl)-acetamide, D11 according to a procedure similar to that for Description 6.


MS (API+): Found MH+300. C19H25NO2 requires 299.



1H NMR δ: 1.24 (3H, d, J=7 Hz), 2.60-3.05 (7H, bm), 3.83 (3H, s), 3.85 (3H, s), 6.65 (2H, m), 6.74 (1H, d, J=9 Hz), 7.10-7.35 (5H, m).


Description 13


(R,S)-2-Amino-propyl)-carbamic acid tert-butyl ester


A solution of di-tert-butyl dicarbonate (13.9 g, 0.064 mol) in 1,4-dioxane (100 ml) was added dropwise to a stirring solution of (R,S)-propane-1,2-diamine (37.4 g, 0.51 mmol) in 1,4-dioxane (200 ml). After stirring at room temperature, under argon for 16 h the volatiles were removed in vacuo. The residue was dissolved in water and the resulting solution extracted with MDC (3×). The combined organics were dried (MgSO4) and the solvent removed iii vacuo to afford the title compound as a yellow oil (11.1 g, 100%).


MS (API+): Found MH+175. C8H18N2O2 requires 174.



1H NMR δ: 1.07 (3H, d, J=6 Hz), 1.29 (2H,bs), 1.44 (94, s), 2.80-3.20 (3H, bm), 5.56 (1H,bt).


Description 14


(R,S){2-[(1-Phenyl-methanoyl)-amino]-propyl}-carbamic acid tert-butyl ester


A solution of (R,S)-(2-amino-propyl)carbamic acid tert-butyl ester (D13, 1.00 g. 5.75 mmol) in MDC (30 ml) was treated with triethylamine (0.88 ml, 6.32 mmol) then benzoyl chloride (0.74 ml, 6.32 mmol). After stirring at room temperature, under argon for 16 h the reaction mixture was washed with saturated, aqueous NaHCO3 then brine. The organic phase was dried (MgSO4) and the solvent removed iii vacuo. The residue was triturated with diethyl ether to afford the title compound as a white solid (1.15 g, 72%).


MS (API+): Found MH+279. C15H22N2O3 requires 278.



1HNMR δ:1.26 (3H, d, J=7 Hz), 1.40 (9H, s), 3.12-3.52 (2H, m), 4.20 (1H, m), 5.00 (1H, bt), 7.10 (1H, bd), 7.45 (3H, m), 7.82 (2H, m).


Description 15


(R,S)-N-(2-Amino-1-methyl-ethyl)-benzamide


A stirring, ice-cooled solution of (R,S){2-[(1-phenyl-methanoyl)-amino]-propyl}-carbamic acid tert-butyl ester (D14, 1.15 g, 4.14 mmol) in MDC (45 ml) was treated with TFA (5 ml). After 5 min. the ice bath was removed and the reaction mixture was stirred at room temperature, under argon for 2.5 h. The reaction mixture was basified by cautious addition to a minimum of saturated aqueous K2CO3. The aqueous layer was extracted with MDC (2×) then MDC/10% MeOH (2×). The combined organics were dried (MgSO4) and the solvent removed in vacuo to afford the title compound as a colourless gum (0.37 g, 50%). The aqueous extracts were evaporated to dryness and chromatographed (silica gel, 85:14.9:0.1 MDC:MeOH:anmionia) to afford a further batch of the title compound as a sticky white solid (0.28 g, 38%).


MS (API+): Found MH+179. C10H14N2O requires 178.


Description 16


(R,S)-N-[2-(3,4-Dimethoxy-benzylamino)-1-methyl-ethyl]-benzamide


A solution of 3,4-dimethoxy-benzaldehyde (1.97 g, 1.2 mmol) and (R,S)-N-(2-amino-1-methylethyl)-benzamide (D15, 2.11 g, 1.2 mmol) in 1,2-dichloroethane (60 ml) was stirred at room temperature under argon for 0.5 h. Sodium triacetoxyborohydride (3.77 g, 1.8 mmol) was added over 5 min. then stirring was continued for a further 16 h. The reaction mixture was diluted with MDC (50 ml) and then washed with saturated aqueous K2CO3. The organic phase was dried (MgSO4) and the solvent removed in vacuo. The residue was chromatographed (silica gel, 0-20% MeOH-EtOAc) to afford the title compound as a colourless gum.


MS (API+): Found MH+329. C19H24N2O3 requires 328.



1H NMR δ: 1.27 (3H, d, J=7 Hz), 2.77 (2H, d, J=5 Hz), 3.76 (2H, s), 3.82 (3H, s), 3.86 (3H, s), 4.30 (1H, s), 6.64 (1H, bs), 6.55 (3H, m), 7.45 (3H, m), 7.76 (2H, m).


Description 17


(R,S)-N-{2-[2-(3,4-Dimethoxy-phenyl)-ethylamino]-1-methyl-ethyl}-benzamide


The title compound was prepared from (3,4-dimethoxyphenyl)acetaldehyde (Kraus et al, J. Org. Chem., 1720,64, 1999) according to a procedure similar to that for Description 16


MS (API+): Found MH+343. C20H26N2O3 requires 342.


Description 18


(R,S)-N-(3,4-Dimethoxy-benzyl)-2-(4-fluoro-phenyl)-propionamide


The title compound was prepared from 2-(4-fluoro-phenyl)propionic acid and 3,4-dimethoxybenzylamine according to a procedure similar to that for Description 2. Diethyl ether rather than EtOAc was used as the work-up solvent and the product was purified by trituration with diethyl ether.


MS (API+): Found MH+318. C18H20FNO3 requires 317.



1HNMR δ: 1.53 (3H, d, J=7 Hz), 3.55 (1H, q, J=7 Hz), 3.78 (31, s), 3.85 (3H, s), 4.33 (2H, m), 5.60 (1H, bs), 6.65-6.79 (3H, m), 6.97-7.06 (2H, m), 7.24-7.31 (2H, m).


Description 19


(R,S)-(3,4-Dimethoxy-benzyl)-[2-(4-fluoro-phenyl)-propyl]-amine


The title compound was prepared from (R,S)-N-(3,4-dimethoxy-benzyl-2-(4-fluoro-phenyl)-propionamide, D18 according to a procedure similar to that for Description 6.



1H NMR δ: 1.23 (3H, d, J=7 Hz), 2.68-2.81 (2H, m), 2.93 (1H, m), 3.69 (2H, AB q), 3.85 (3H, s), 3.86 (3H, s), 6.73-6.87 (3H, m), 6.95-7.03 (2H, m), 7.12-7.20 (2H, m).


Description 20


(R,S)-2-Methoxy-5[(2-phenyl-propylamino)methyl]-benzonitrile


A solution of (R,S)-3-bromo-4-methoxy-benzyl)(2-phenyl-propyl)amine (D1a, 2.18 g, 6.53 mmol) and copper (1) cyanide (1.16 g, 13.1 mmol) in 1-methyl-2-pyrrolidinone (75 ml) was heated at reflux, under argon for 5 h. The cooled reaction mixture was filtered through kieselguhr, washing with EtOAc and water. The organic phase was separated and washed with water (2×) then brine (2×), dried (MgSO4) and the solvent removed in vacuo. The residue was chromatographed (silica gel, 0-100% EtOAc-pentane) to afford the title compound as a brown gum (0.23 g, 12%).


MS (API+): Found MH+281. C18H20N2O requires 280.



1H NMR δ: 1.26 (3H, d, J=7 Hz), 2.74 (2H, d, J=7 Hz), 2.93 (1H, m), 3.68 (2H, s), 3.90 (3H, s), 6.88 (1H, dd, J=1 and 9 Hz), 7.18-7.42 (7H, m).


Description 21


(R,S)-1-{2-Methoxy-5-[(2-phenyl-propylamino)-methyl]-phenyl}-ethanone


A mixture of (R,S)-(3-bromo-4-methoxy-benzyl)(2-phenyl-propyl)-amine (D1a, 1.50 g, 4.50 mmol), tributyl(1-ethoxyvinyl)tin (1.81 ml, 5.36 mmol) and tetrakis(triphenylphosphine)palladium(0) (0.26 g, 0.22 mmol) in 1,4-dioxane (20 ml) was heated at 100° C. for 16 h. The cooled reaction mixture was treated with 2N HCl (5 ml) and the mixture stirred at room temperature for 1.5 h. The reaction mixture was diluted with water and extracted with EtOAc (3×). The combined organics were dried (MgSO4) and the solvent removed in vacuo. The residue was chromatographed (silica gel, 0-10% methanol-EtOAc) to afford the title compound as a yellow gum (0.81 g, 61%).


MS (API+): Found MH+298. C19H23NO2 requires 297.



1H NMR δ: 1.36 (3H, d, J=7 Hz), 2.58 (3H, s), 2.83-2.97 (2H, m), 3.29 (1H, m), 3.87 (2H, s), 3.89 (3H, s), 6.97 (1H, d, J=9 Hz), 7.19-7.40 (5H, m), 7.62 (1H, d, j=2 Hz), 7.70 (1H dd, J=2 and 9 Hz).


Description 22


(S)-(3,4-Dimethoxy-benzyl)-(2-phenyl-propyl)amine


The title compound was prepared from (S)2-amino-phenylpropane according to a procedure similar to that for Description 1a.


MS (API+): Found MH+286. C18H23NO2 requires 285.


The compounds of Examples 1-69 below were prepared from the appropriate amine and acid chloride using a procedure similar to Method A or Method B.


Method A


To a solution of the appropriate acid chloride (0.05 mmol) in MDC (0.5 ml) was added the appropriate amine (0.10 mmol) in MDC (0.5 ml) and MDC (0.3 ml). The reaction was allowed to mix for 16 h. Excess Amberlite IRA-93, Trisamine resin and Pol-isocyanate were added and allowed to mix for 16 h. The mixture was filtered through a pre-packed SCX resin column (250 mg). The solvent was evaporated to afford the desired amide which was analysed by LC-MS (>80% purity). The chemistry was carried out in 96 well Robbins Flex Chem Filtration Blocks enabling analogues to be prepared as components of a combinatorial array. Stock solutions of reagents were prepared which were dispensed using Eppendorf pipettes.


Method B


To a solution of triethylamine (0.036 mmol) in MDC (0.50 ml) was added a solution of the appropriate amine (0.03 mmol) in MDC (0.25 ml) then the appropriate acid chloride (0.036 mmol) in MDC (0.25 ml). The reaction was allowed to mix for 16 h. Excess Amberlite IRA-93, Trisamine resin and Pol-isocyanate were added and allowed to mix for 18 h. Scavenger resins were filtered, solvent removed and the residue was treated with another portion of excess Amberlite IRA-93 for 4 h. The resin was removed by filtration and the solvent evaporated to give the desired amide which was analysed by LC/MS (>80% purity). The chemistry was carried out in 96 well Robbins Flex Chem Filtration Blocks enabling analogues to be prepared as components of a combinatorial array. Stock solutions of reagents were prepared which were dispensed to the 96 wells simultaneously or to individual wells, as required using either Hydra 96 or Eppendorf pipettes.

TABLE 1embedded imageEx-am-pleMethodArMS1A—PhFound MH+ 390C25H27NO3 requires 3892Aembedded imageFound MH+ 420 C26H29NO4 requires 4193Aembedded imageFound MH+ 420 C26H29NO4 requires 4194Aembedded imageFound MH+ 470 C25H2681BrNO3 requires 4695Aembedded imageFound MH+ 474 C26H26F3NO4 requires 4736Aembedded imageFound MH+ 415 C26H26N2O3 requires 4147Aembedded imageFound MH+ 415 C26H26N2O3 requires 4148Aembedded imageFound MH+ 472 C28H29N3O4 requires 4719Aembedded imageFound MH+ 440 C29H29NO3 requires 43910Aembedded imageFound MH+ 450 C27H31NO5 requires 44911Aembedded imageFound MH+ 450 C27H31NO5 requires 44912Aembedded imageFound MH+ 426 C25H25F3NO3 requires 42513Bembedded imageFound MH+ 526 C27H25F6NO3 requires 52514Bembedded imageFound MH+ 408 C25H26FNO3 requires 40715Bembedded imageFound MH+ 458 C25H2535Cl2NO3 requires 45716Bembedded imageFound MH+ 458 C25H2535Cl2NO3 requires 45717Bembedded imageFound MH+ 434 C26H27NO5 requires 43318Bembedded imageFound MH+ 492 C32H29NO4 requires 49119Bembedded imageFound MH+ 440 C29H29NO3 requires 43920Bembedded imageFound MH+ 498 C26H2879BrNO4 requires 497









TABLE 2















embedded image















Example
Method
Ar
MS



















21
A


embedded image


Found MH+ 468 C25H2679BrNO3 requires 467





22
A


embedded image


Found MH+ 434 C26H27NO5 requires 433





23
A


embedded image


Found MH+ 448 C27H29NO5 requires 447





24
A


embedded image


Found MH+ 498 C26H2879BrNO4 requires 497





25
A


embedded image


Found MH+ 500 C26H2881BrNO4 requires 499





26
A


embedded image


Found MH+ 512 C27H2881BrNO4 requires 511





27
A


embedded image


Found MH+ 458 C26H26F3NO3 requires 457





28
A


embedded image


Found MH+ 450 C27H31NO5 requires 449





29
A


embedded image


Found MH+ 472 C28H29N3O4 requires 471





30
A


embedded image


Found MH+ 468 C26H29NO5S requires 467
















TABLE 3















embedded image















Ex-





am-





ple
Method
Ar
MS



















31
A
—Ph
Found MH+ 440





C24H2481BrNO2 requires 439





32
A


embedded image


Found MH+ 465 C25H2381BrN2O requires 464





33
A


embedded image


Found MH+ 522 C27H2681BrN3O3 requires 521





34
A


embedded image


Found MH+ 500 C26H2881BrNO4 requires 499





35
B


embedded image


Found MH+ 482 C25H2479BrNO4 requires 481





36
B


embedded image


Found MH+ 546 C25H2579Br2NO3 requires 545
















TABLE 4















embedded image















Ex-





am-





ple
Method
Ar
MS



















37
A


embedded image


Found MH+ 484 C26H2881BrNO3 requires 483





38
A


embedded image


Found MH+ 429 C27H28N2O3 requires 428





39
A


embedded image


Found MH+ 454. C30H31NO3 requires 453





40
A


embedded image


Found MH+ 486 C29H31N3O4 requires 485





41
A


embedded image


Found MH+ 464 C28H33NO5 requires 463





42
A


embedded image


Found MH+ 464 C28H33NO5 requires 463





43
A


embedded image


Found MH+ 464 C28H33NO5 requires 463





44
A


embedded image


Found MH+ 440 C26H27F2NO3 requires 439
















TABLE 5















embedded image















Ex-





am-
Me




ple
thod
Ar
MS



















45
A


embedded image


Found MH+ 534 C26H2781Br35ClNO4 requires 533





46
A


embedded image


Found MH+ 546 C27H2781Br35ClNO4 requires 545





47
A


embedded image


Found MH+ 504 C25H2581Br35ClNO3 requires 503





48
A


embedded image


Found MH+ 492 C26H2535ClF3NO3 requires 491





49
A


embedded image


Found MH+ 468 C26H2635ClNO5 requires 467
















TABLE 6















embedded image















Ex-





am-





ple
Method
Ar
MS



















50
A
—Ph
Found MH+ 452





C25H2679BrNO2 requires 451





51
A


embedded image


Found MH+ 484 C26H2881BrNO3 requires 483





52
A


embedded image


Found MH+ 536 C28H28Br81N3O3 requires 535
















TABLE 7















embedded image















Ex-





am-





ple
Method
Ar
MS



















53
A
—Ph
Found MH+ 454





C25H2681BrNO2 requires 453.





54
A


embedded image


Found MH+ 484 C26H2881BrNO3 requires 483.





55
A


embedded image


Found MH+ 534 C25H2879BrN3O3 requires 533.





56
B


embedded image


Found MH+ 496 C26H2679BrNO4 requires 495.
















TABLE 8















embedded image
















Me-




Example
thod
Ar
MS



















57
A


embedded image


Found MH+ 482 C26H2879BrNO3 requires 481





58
A


embedded image


Found MH+ 454 C30H31NO3 requires 453





59
A


embedded image


Found MH+ 464 C28H33NO5 requires 463





60
A


embedded image


Found MH+ 464 C28H33NO5 requires 463
















TABLE 9















embedded image















Ex-





am-





ple
Method
Ar
MS



















61
A


embedded image


Found MH+ 498 C24H2681BrNO4 requires 497





62
A


embedded image


Found MH+ 468 C30H29NO4 requires 467





63
A


embedded image


Found MH+ 500 C29H29N3O5 requires 499





64
A


embedded image


Found MH+ 454 C26H25F2NO4 requires 453
















TABLE 10















embedded image
















Me-




Example
thod
Ar
MS



















65
A


embedded image


Found MH+ 511. C25H2779BrN2O4 requires 510.





66
A


embedded image


Found MH+ 543. C27H2981BrN2O5 requires 542.





67
A


embedded image


Found MH+ 553. C28H2979BrN2O5 requires 552.





68
A


embedded image


Found MH+ 501. C27H27F3N2O4 requires 500.





69
A


embedded image


Found MH+ 477. C25H25N2O6 requires 476.














EXAMPLE 70

5-Bromo-2,3-dihydrobenzofuran-7-carboxylic acid (3,4-dimethoxy-benzyl)-(2-methyl-2-phenyl-propyl)-amide


The title compound was prepared according to a procedure similar to that of Method A in Examples 1-69


MS (Electrospray LC/MS): Found MH+524. C28H3079BrNO4 requires 523.


EXAMPLE 71

(R,S)-3-Acetylamino-N-(3,4-dimethoxy-benzyl)-N-(2-phenyl-propyl)-benzamide


A solution of 3-acetylamino-benzoic acid (99 mg, 0.55 mmol) in DMF (5 ml) was treated sequentially with N,N-diisopropylethylamine (0.26 ml, 1.5 mmol), O-(7-azabenzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium hexafluorophosphate (HATU) (209 mg, 0.55 mmol) then (RS)-(3,4-dimethoxy-benzyl)-(2-phenyl-propyl)-amine (D1b, 143 mg, 0.5 mmol) and then stirred at room temperature, under argon for 48 h. The reaction mixture was diluted with EtOAc then washed with saturated aqueous K2CO3, water (3×) then brine. The organic phase was dried (MgSO4) and the solvent removed iii vacuo to afford the title compound as an orange gum (187 mg, 76%).


MS (Electrospray LC/MS): Found MH+447. C27H30N2O4 requires 446.


EXAMPLE 72

(R,S)-Benzothiazole-6-carboxylic acid (3,4-dimethoxy-benzyl)(2-phenyl-propyl)amide


The title compound was prepared according to a procedure similar to that of Example 71.


MS (Electrospray LC/MS): Found MH+447. C26H26N2O3S requires 446.


EXAMPLE 73

3-Acetylamino-N-(3-Bromo-4-methoxy-benzyl)-N-(2-methyl-2-phenyl-propyl)-benzamide


The title compound was prepared according to a procedure similar to that of Example 71. Purifcation by chromatography (silica gel, 20-50% EtOAc-pentane) afforded the title compound.


MS (Electrospray LC/MS): Found MH+509. C27H2979BrN2O3 requires 508.


EXAMPLE 74

(R,S)-Benzo[1,2,5]oxadiazole-5-carboxylic acid (3,4-dimethoxy-benzyl)-(2-phenyl-propyl)-amide


The title compound was prepared according to a procedure similar to that of Example 71. The reaction mixture was heated at 50° C. in an attempt to effect completion. Unreacted amine was scavenged with isocyanate resin prior to the aqueous work-up described for Example 71. Purifcation by chromatography (silica gel, 0-20% EtOAc-pentane) afforded the title compound.


MS (Electrospray LC/MS): Found MH+432. C25H25N3O4 requires 431.


EXAMPLE 75

(R,S)-Benzo[1,2,5]thiadiazole-5-carboxylic acid (3,4-dimethoxy-benzyl)(2-phenyl-propyl)-amide


The title compound was prepared according to a procedure similar to that of Example 71.


MS (Electrospray LC/MS): Found MH+448. C25H25N3O3S requires 447.


EXAMPLE 76

(RS)-Benzo[1,3]dioxole-5-carboxylic acid[2-3,4-dimethoxy-phenyl)-ethyl]-2-phenyl-propyl) amide


A stirring solution of benzo[1,3]dioxole-5-carbonyl chloride (138 mg, 0.75 mmol) in MDC (5 ml) was treated with a pre-mixed solution of (S-[2-3,4-dimethoxy-henyl)ethyl]-2-phenyl-propyl)amine (D1f, 224 mg, 0.75 mmol) and triethylamine (0.16 ml) in MDC (2 ml). After stirring under argon at room temperature for 2 h the reaction mixture was washed with water then brine. The organic phase was dried (MgSO4) and the solvent removed in vacuo. The residue was chromatographed (silica gel, 20-800 EtOAc-pentane) to afford the title compound as a colourless gum (301 mg, 90%).


MS (API+): Found MH+448. C27H29NO5 requires 447.


EXAMPLE 77

(R,S)-3-Bromo-N-(3-bromo-4-methoxy-benzyl)-N-2-phenyl-propyl)-benzamide


The title compound was prepared according to a procedure similar to that of Example 76


MS (Electrospray LC/MS): Found MH+516. C24H2379Br2NO2 requires 515.


EXAMPLE 78

(R,S)-2,2-Difluoro-benzo[1,3]dioxole-5-carboxylic acid[2-(3,4-dimethoxy-phenyl)-ethyl]-(2-phenyl-propyl)amide


A solution of 2,2-difluorobenzo[1,3]dioxole-5-carboxylic acid (152 mg, 0.75 mmol) in DMF (5 ml) was treated sequentially with N,N-diisopropylethylamine (0.45 ml), O-(7-azabenzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium hexafluorophosphate (HATU) (285 mg, 0.75 mmol) then (R,S)-[2-(3,4-dimethoxy-phenyl)-ethyl]-(2-phenyl-propyl)-amine (D1f, 224 mg, 0.75 mmol) and then stirred at room temperature, under argon for 24 h. The reaction mixture was diluted with diethyl ether then washed with water (3×) then brine. The organic phase was dried (MgSO4) and the solvent removed in vacuo. The residue was chromatographed (silica gel, 0-60% EtOAc-pentane) to afford the title compound as a yellow gum (300 mg, 83%).


MS (API+LC/MS): Found MH+484. C27H27F2NO5 requires 483.


EXAMPLE 79

(S)-3-Bromo-N-(3,4-dimethoxy-benzyl)-N-1-methyl-2-phenyl-ethyl)-benzamide


The title compound was prepared from 3-bromobenzoyl chloride and (S)(3,4-dimethoxybenzyl)1-methyl-2-phenylethyl)amine, D7 according to a procedure similar to that for Example 76.


MS (Electrospray LC/MS): Found MH+468. C25H2679BrNO3 requires 467.


EXAMPLE 80

(S)-3-Bromo-N-[2-(3,4-dimethoxy-phenyl)-ethyl]-N-(1-methyl-2-phenyl-ethyl)-benzamide


The title compound was prepared from 3-bromobenzoyl chloride and (S)-[2-(3,4 dimethoxyphenyl)ethyl]-(1-methyl-2-phenylethyl)amine D8 according to a procedure similar to that for Example 76.


MS (Electrospray LC/MS): Found MH+482. C26H2879BrNO3 requires 481.


EXAMPLE 81

(S)-Benzo[1,3]dioxol-5-carboxylic acid [2-3,4-dimethoxy-phenyl)ethyl]-(1-methyl-2-phenylethyl)-amide


The title compound was prepared from benzo[1,3]dioxole-5-arbonyl chloride and (S)[2-(3,4-dimethoxyphenyl)ethyl]-1-methyl-2-phenylethyl)amine, D8 according to a procedure similar to that for Example 76.


MS (Electrospray LC/MS): Found MH+448. C27H29NO5 requires 447.


EXAMPLE 82

(R)-Benzo[1,3]dioxole-5-carboxylic acid [2-(3,4-dimethoxy-phenyl)-ethyl]-(2-phenyl-propyl)-amide


A stirring solution of benzo[1,3]dioxole-5-carbonyl chloride (151 mg, 0.82 mmol) in MDC (5 ml) was treated with a pre-mixed solution of (R)-[2-(3,4-dimethoxy-phenyl)-ethyl]-(2-phenyl-propyl)-amine (D12, 245 mg, 0.75 mmol) and triethylamine (0.17 ml) in MDC (2 ml). After stirring under argon at room temperature for 72 h the solvent was removed in vacuo and the residue was chromatographed (silica gel, 0-40% EtOAc-pentane) to afford the title compound as a colourless gum (250 mg, 68%).


MS (Electrospray LC/MS): Found MH+448. C27H29NO5 requires 447.



1H NMR T=360K (D6-DMSO) δ: 1.20 (3H, d, J=7 Hz), 2.66 (2H, t, J=7 Hz), 3.17 (1H, m), 3.28 (1H, m), 3.42 (1H, m), 3.48 (1H, m), 3.56 (1H, m), 3.71 (3H, s), 3.73 (3H, s), 6.0 (2H, s), 6.48 (1H, d), 6.56 (1H, d), 6.59 (2H, m), 6.83 (1H, d, J=8 Hz), 6.85 (1H, d, J=8 Hz), 7.22 (3H, m), 7.30 (2H, m).


EXAMPLE 83

(R)-2-Cyan-N-[2-(3,4-dimethoxy-phenyl)ethyl]-N-(2-phenyl-propyl)-benzamide)


A stirring solution of 2-cyano-benzoic acid (120 mg, 0.82 mmol) in MDC (5 ml) was treated with oxalyl chloride (0.22 ml, 2.5 mmol) and DMF (1 drop). After 2 h the volatiles were removed in vacuo and the residue was triturated with toluene (2×). The residue was dissolved in MDC (5 ml) and treated with a pre-mixed solution of (R)-[2-3,4-dimethoxy-phenyl)-ethyl]-2-phenyl-propyl)amine (D12, 245 mg, 0.82 mmol) and trietlylamine (0.17 ml) in MDC (5 ml). After stirring under argon at room temperature for 72 h the solvent was removed in vacuo and the residue was chromatographed (silica gel, 040% EtOAc-pentane) to afford the title compound as a colourless gum (220 mg, 63%)


MS (Electrospray LC/MS): Found MH+429. C27H28N2O3 requires 428.



1HNMR δ: 1.14 (1.5H, d, J=7 Hz), 1.42 (1.5H, d, J=7 Hz), 2.56 (1H, m), 2.87-3.10 (2H, bm), 3.16-3.42 (2H, bm), 3.52 (0.5H, m), 3.604.00 (7.5H, bm), 6.25 (0.5H, d, J=2 Hz), 6.39 (0.5H, dd, J=2 and 10 Hz), 6.72 (1H, m), 6.85 (2H, m), 6.92 (1H, m), 7.25 (2H, m), 7.32-7.52 (4H, m), 7.65 (1H, m).


The following compounds in Examples 84-91 were prepared by a procedure similar to that for Example 76.

TABLE 11embedded imageExampleArMS84embedded imageFound MH+ 480 C26H2679BrNO3 requires 47985embedded imageFound MH+ 446 C27H27NO5 requires 44586embedded imageFound MH+ 452 C30H29NO3 requires 45187embedded imageFound MH+ 438 C24H25F2NO3 requires 43788embedded imageFound MH+ 510 C27H2879BrNO4 requires 50989embedded imageFound MH+ 427 C27H26N2O3 requires 426









TABLE 12















embedded image














Example
Ar
MS

















90


embedded image


Found MH+ 429 C26H24N2O4 requires 428





91


embedded image


Found MH+ 435 C29H26N2O2 requires 434









Examples 92-104 were prepared from the appropriate amine and carboxylic acid according to Method C or Method D.


Method C


A solution of the carboxylic acid in DMF (2 ml/mmol) was treated sequentially with N,N-diisopropylethylamine (3 eq.), O-7-azabenzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium hexafluorophosphate (HATU) (1 eq.) then after 20 min. the appropriate amine (1 eq.) and then stirred at room temperature, under argon for 16 h. The reaction mixture was diluted with diethyl ether then washed with water (2×) then brine. The organic phase was dried (MgSO4) and the solvent removed in vacuo. Purification was carried out as required by chromatography on silica gel.


Method D


A solution of the carboxylic acid in MDC (10 ml/mmol) was treated with oxalyl chloride (3 eq.) then DMF (1 drop). After stirring at room temperature for 2.5 h the volatiles were removed in vacuo. The residue was azeotroped with toluene then redissolved in MDC (10 ml/mmol). Triethylamine (1.1 eq.) and the appropriate amine (1 eq.) in MDC (5 ml/mmol) were added and the solution was stirred at room temperature for 16 h. The reaction mixture was diluted with MDC then washed with aqueous NaHCO3 (2×) then brine. The organic phase was dried (MgSO4) and the solvent removed in vacuo. Purification was carried out as required by chromatography on silica gel.

TABLE 13embedded imageEx-ampleMethodArMS92Cembedded imageFound MH+ 441 C28H28N2O3 requires 44093Cembedded imageFound MH+ 441 C28H28N2O3 requires 44094Cembedded imageFound MH+ 455 C29H30N2O3 requires 45495Cembedded imageFound MH+ 455 C29H30N2O3 requires 454









TABLE 14















embedded image















Example
Method
Ar
MS



















96
D


embedded image


Found MH+ 519 C30H31FN2O3S requires 518





97
D


embedded image


Found MH+ 505 C29H29FN2O3S requires 504





98
D


embedded image


Found MH+ 519 C30H31FN2O3S requires 518





99
D


embedded image


Found MH+ 503 C29H31FN4O3 requires 502





100
C


embedded image


Found MH+ 488 C29H30FN3O3 requires 487





101
D


embedded image


Found MH+ 512 C17H3079BrNO4 requires 511
















TABLE 15















embedded image















Ex-





am-
Me-




ple
thod
Ar
MS



















102
C


embedded image


Found MH+ 452 C26H26FNO5requires 451





103
C


embedded image


Found MH+ 433 C26H25FN2O3requires 432





104
C


embedded image


Found MH+ 495 C29H35FN2O4requires 494









EXAMPLE 105

(R,S)-N-(2-Benzoylamino-propyl)-3-bromo-N-[2-(3,4-dimethoxy-phenyl)-ethyl]-benzamide


A stirring solution of 3-bromobenzoyl chloride (0.042 ml, 0.32 mmol) in MDC (5 ml) was treated with a pre-mixed solution of (RS)-N-{2-[2-(3,4-dimethoxy-phenyl)ethylamino]-1-methyl-ethyl}-benzamide, D17 (100 mg, 0.32 mmol) and triethylamine (0.045 ml, 0.32 mmol) in MDC (7 ml). After stirring under argon at room temperature for 72 h the reaction mixture was washed with aqueous NaHCO3 then brine. The organic phase was dried (MgSO4) and the solvent removed in vacuo. The residue was chromatographed (silica gel, 0-50% EtOAc-pentane) to afford the title compound as a yellow gum (60 mg, 39%).


MS (API+LC/MS): Found MH+527. C27H2981BrN2O4 requires 526.


EXAMPLE 106

(R,S)-N-(2-Benzoylamino-propyl)-5-bromo-N-[2-(3,4-dimethoxy-phenyl)-ethyl]-2-methoxybenzamide


The title compound was prepared from of (R,S)-N-{2-[2-3,4-dimethoxy-phenyl)-ethylamino]-1-methyl-ethyl}-benzamide, D17 according to a procedure similar to that of Example 105.


MS (API+LC/MS): Found MH+557. C28H3181BrN2O5 requires 556.


EXAMPLE 107

(S)-3-Bromo-N-(3,4-dimethoxy-benzyl)-N-(2-phenylpropyl)-benzamide


The title compound was prepared from (S)-3,4-dimethoxy-benzyl)-(2-phenyl-propyl)-amine, D22 according to a procedure similar to that of Example 76.


MS (API+ LC/MS): Found MH+468. C25H2679BrNO3 requires 467.


It is to be understood that the present invention covers all combinations of particular and preferred subgroups described herein above.


Determination of Orexin-1 Receptor Antagonist Activity


The orexin-1 receptor antagonist activity of the compounds of formula (I) was determined in accordance with the following experimental method.


Experimental Method


HEK293 cells expressing the human orexin-1 receptor were grown in cell medium (MEM medium with Earl's salts) containing 2 mM L-Glutamine, 0.4 mg/mL G418 Sulphate from GIBCO BRL and 10% heat inactivated fetal calf serum from Gibco BRL. The cells were seeded at 20,000 cells/100 μl/well into 96-well black clear bottom sterile plates from Costar which had been precoated with 10 μg/well of poly-L-lysine from SIGMA. The seeded plates were incubated overnight at 37° C. in 5% CO2.


Agonists were prepared as 1 mM stocks in water:DMSO (1:1). EC50 values (the concentration required to produce 50% maximal response) were estimated using 11× half log unit dilutions (Biomek 2000, Beckman) in Tyrode's buffer containing probenecid (10 mM HEPES with 145 mM NaCl, 10 mM glucose, 2.5 mM KCl, 1.5 mM CaCl2, 1.2 mM MgCl2 and 2.5 mM probenecid; pH7.4). Antagonists were prepared as 10 mM stocks in DMSO (100%). Antagonist IC50 values (the concentration of compound needed to inhibit 50% of the agonist response) were determined against 3.0 nM human orexin-A using 11× half log unit dilutions in Tyrode's buffer containing 10% DMSO and probenecid.


On the day of assay 50 μl of cell medium containing probenecid (Sigma) and Fluo3AM (Texas Fluorescence Laboratories) was added (Quadra, Tomtec) to each well to give final concentrations of 2.5 mM and 4 μM, respectively. The 96-well plates were incubated for 90 min at 37° C. in 5% CO2. The loading solution containing dye was then aspirated and cells were washed with 4×150 μl Tyrode's buffer containing probenecid and 0.1% gelatin (Denley Cell Wash). The volume of buffer left in each well was 125 μl. Antagonist or buffer (25 μl) was added (Quadra) the cell plates gently shaken and incubated at 37° C. in 5% CO2 for 30 min. Cell plates were then transferred to the Fluorescent Imaging Plate Reader (FLIPR, Molecular Devices) instrument and maintained at 37° C. in humidified air. Prior to drug addition a single image of the cell plate was taken (signal test), to evaluate dye loading consistency. The run protocol used 60 images taken at 1 second intervals followed by a further 24 images at 5 second intervals. Agonists were added (by the FLIPR) after 20 sec (during continuous reading). From each well, peak fluorescence was determined over the whole assay period and the mean of readings 1-19 inclusive was subtracted from this figure. The peak increase in fluorescence was plotted against compound concentration and iteratively curve fitted using a four parameter logistic fit (as described by Bowen and Jerman, TiPS, 1995, 16, 413417) to generate a concentration effect value. Antagonist Kb values were calculated using the equation:

Kb=IC50/(1+([3/EC50])

    • where EC50 was the potency of human orexin-A determined in the assay (in nM terms) and IC50 is expressed in molar terms.


      Determination of Orexin-2 Receptor Antagonist Activity


The orexin-2 receptor antagonist activity of the compounds of formula (I) was determined in accordance with the following experimental method.


Experimental Method


CHO-DG44 cells expressing the human orexin-2 receptor were grown in cell medium (MEM medium with Earl's salts) containing 2 mM L-Glutamine, 0.4 mg/mL G418 Sulphate from GIBCO BRL and 10% heat inactivated fetal calf serum from Gibco BRL. The cells were seeded at 20,000 cells/100 μl/well into 96-well black clear bottom sterile plates from Costar which had been pre-coated with 10 μg/well of poly-L-lysine from SIGMA. The seeded plates were incubated overnight at 37 C in 5% CO2.


Agonists were prepared as 1 mM stocks in water:DMSO (1:1). EC50 values (the concentration required to produce 50% maximal response) were estimated using 11× half log unit dilutions (Biomek 2000, Beckman) in Tyrode's buffer containing probenecid (10 mM HEPES with 145 mM NaCl, 10 mM glucose, 2.5 mM KCl, 1.5 mM CaCl2, 1.2 mM MgCl2 and 2.5 mM probenecid; pH7.4). Antagonists were prepared as 10 mM stocks in DMSO (100%). Antagonist IC50 values (the concentration of compound needed to inhibit 50% of the agonist response) were determined against 10.0 nM human orexin-A using 11× half log unit dilutions in Tyrode's buffer containing 10% DMSO and probenecid.


On the day of assay 50 μl of cell medium containing probenecid (Sigma) and Fluo3AM (Texas Fluorescence Laboratories) was added (Quadra, Tomtec) to each well to give final concentrations of 2.5 mM and 4 μM, respectively. The 96-well plates were incubated for 60 min at 37 C in 5% CO2. The loading solution containing dye was then aspirated and cells were washed with 4×150 μl Tyrode's buffer containing probenecid and 0.1% gelatin (Denley Cell Wash). The volume of buffer left in each well was 125 μl. Antagonist or buffer (25 μl) was added (Quadra) the cell plates gently shaken and incubated at 37 C in 5% CO2 for 30 min. Cell plates were then transferred to the Fluorescent Imaging Plate Reader (FLIPR, Molecular Devices) instrument Prior to drug addition a single image of the cell plate was taken (signal test), to evaluate dye loading consistency. The run protocol used 60 images taken at 1 second intervals followed by a further 24 images at 5 second intervals. Agonists were added (by the FLIPR) after 20 sec (during continuous reading). From each well, peak fluorescence was determined over the whole assay period and the mean of readings 1-19 inclusive was subtracted from this figure. The peak increase in fluorescence was plotted against compound concentration and iteratively curve fitted using a four parameter logistic fit (as described by Bowen and Jennan, TiPS, 1995, 16, 413417) to generate a concentration effect value. Antagonist Kb values were calculated using the equation:

Kb=IC50/(1+([3/EC50])

    • where EC50 was the potency of human orexin-A determined in the assay (in nM terms) and IC50 is expressed in molar terms.


All compounds of Examples 1-107 tested according to these methods had pKb values of at least 7.0 at one or both of the human cloned orexin-1 receptor and the human cloned orexin-2 receptor.


No toxicological effects are indicated/expected when a compound (of the invention) is administered in the above mentioned dosage range.


Throughout the specification and the claims which follow, unless the context requires otherwise, the word ‘comprise’, and variations such as ‘comprises’ and ‘comprising’, will be understood to imply the inclusion of a stated integer or step or group of integers but not to the exclusion of any other integer or step or group of integers or steps.

Claims
  • 1. A compound of formula (I):
  • 2. A compound according to claim 1 wherein R1 is hydrogen and R2 and R3 are selected from the combinations: methyl/hydrogen, ethyl/hydrogen and methyl/methyl.
  • 3. A compound according to claim 1 wherein Ar is phenyl, naphthyl, furanyl, thienyl, pyrrolyl, oxazolyl, thiazolyl, imidazolyl, oxadiazolyl, thiadiazolyl, triazolyl, triazinyl, pyridazyl, pyrimidinyl, isothiazolyl, isoxazolyl, pyrazinyl, pyrazolyl, quinolinyl, isoquinolinyl, quinoxalinyl, quinazolinyl, pyridopyrazinyl, benzoxazolyl, benzothiophenyl, benzimidazolyl, benzothiazolyl, benzoxadiazolyl, benzothiadiazolyl or naphthyridinyl, any of which may be optionally substituted.
  • 4. A compound according to claim 1 wherein Ar is phenyl, naphthyl, quinolinyl, isoquinolinyl, benzothiazolyl, benzoxadiazolyl, benzothiadiazolyl, thiazolyl, triazolyl, or pyrazolyl, any of which may be optionally substituted.
  • 5. The compound of any one of Examples 1 to 107 or a pharmaceutically acceptable derivative of any one thereof.
  • 6. A compound selected from: (R)-benzo[1,3]dioxole-5-carboxylic acid[2-(3,4-dimethoxy-phenyl)-ethyl]-(2-phenylpropyl)-amide; and (R)-2-cyano-N-[2-(3,4-dimethoxy-phenyl)-ethyl]-N-(2-phenyl-propyl)-benzamide) or a pharmaceutically acceptable derivative of either thereof.
  • 7. A pharmaceutical composition comprising a compound of formula (I) as defined in claim 1, or a pharmaceutically acceptable derivative thereof, and a pharmaceutically acceptable carrier.
  • 8. A method of treating or preventing diseases or disorders where an antagonist of a human orexin receptor is required, which comprises administering to a subject in need thereof an effective amount of a compound of formula (I) as defined in claim 1, or a pharmaceutically acceptable derivative thereof.
  • 9. (Cancelled).
  • 10. A process for the preparation of a compound of formula (I), or a pharmaceutically acceptable derivative thereof, according to claim 1 which process comprises reacting a compound of formula (II) with a compound of formula (III):
Priority Claims (1)
Number Date Country Kind
0126292.2 Nov 2001 GB national
PCT Information
Filing Document Filing Date Country Kind
PCT/EP02/12170 10/30/2002 WO