Benzimidazole Compounds

Information

  • Patent Application
  • 20110034526
  • Publication Number
    20110034526
  • Date Filed
    December 19, 2008
    16 years ago
  • Date Published
    February 10, 2011
    13 years ago
Abstract
This invention relates generally to benzimidazole-based modulators of Liver X receptors (LXRs) having formula (I) and related methods:
Description
TECHNICAL FIELD

This invention relates generally to benzimidazole-based modulators of Liver X receptors (LXRs) and related methods.


BACKGROUND

Atherosclerosis is among the leading causes of death in developed countries. Some of the independent risk factors associated with atherosclerosis include the presence of relatively high levels of serum LDL cholesterol and relatively low levels of serum HDL cholesterol in affected patients. As such, some anti-atherosclerotic therapy regimens include the administration of agents (e.g., statins) to reduce elevated serum LDL cholesterol levels.


Agents that increase patient HDL cholesterol levels can also be useful in anti-atherosclerotic therapy regimens. HDL cholesterol is believed to play a major role in the transport of cholesterol from peripheral tissues to the liver for metabolism and excretion (this process is sometimes referred to as “reverse cholesterol transport”). ABCA1 is a transporter gene involved in HDL production and reverse cholesterol transport. Upregulation of ABCA1 can therefore result in increased reverse cholesterol transport as well as inhibition of cholesterol absorption in the gut. In addition, HDL is also believed to inhibit the oxidation of LDL cholesterol, reduce the inflammatory response of endothelial cells, inhibit the coagulation pathway, and promote the availability of nitric oxide.


Liver X receptors (LXRs), originally identified in the liver as orphan receptors, are members of the nuclear hormone receptor super family and are believed to be involved in the regulation of cholesterol and lipid metabolism. LXRs are ligand-activated transcription factors and bind to DNA as obligate heterodimers with retinoid X receptors. While LXRα is generally found in tissues such as liver, kidney, adipose tissue, intestine and macrophages, LXRβ displays a ubiquitous tissue distribution pattern. Activation of LXRs by oxysterols (endogenous ligands) in macrophages results in the expression of several genes involved in lipid metabolism and reverse cholesterol transport including the aforementioned ABCA1; ABCG1; and ApoE. See, e.g., Koldamova, et al., J. Biol. Chem. 2003, 278, 13244.


Studies have been conducted in LXRα knock-out (k/o), LXRβ k/o and double k/o mice to determine the physiological role of LXRs in lipid homeostasis and atherosclerosis. The data from these studies suggested that in double k/o mice on normal chow diet, increased cholesterol accumulation was observed in macrophages (foam cells) of the spleen, lung and arterial wall. The increased cholesterol accumulation was believed to be associated with the presence of reduced serum HDL cholesterol and increased LDL cholesterol, even though the total cholesterol levels in the mice were about normal. While LXRα k/o mice did not appear to show significant changes in hepatic gene expression, LXRβ k/o mice showed 58% decrease in hepatic ABCA1 expression and 208% increase in SREBP1c expression suggesting that LXRβ may be involved in the regulation of liver SREBP1c expression.


Data obtained from studies employing two different atherosclerotic mouse models (ApoE k/o and LDLR k/o) suggest that agonists of LXRα or β can be relatively effective in upregulating ABCA1 expression in macrophages. For example, inhibition of atherosclerotic lesions could be observed when ApoE k/o and LDLR k/o mice were treated with LXRα or 13 agonists for 12 weeks. The tested agonists were observed to have variable effects on serum cholesterol and lipoprotein levels and appeared to cause a relatively significant increase in serum HDL cholesterol and triglyceride levels. These in vivo data were found to be consistent with in vitro data obtained for the same agonists in macrophages.


In addition to the lipid and triglyceride effects described above, it is also believed that activation of LXRs results in the inhibition of inflammation and proinflammatory gene expression. This hypothesis is based on data obtained from studies employing three different models of inflammation (LPS-induced sepsis, acute contact dermatitis of the ear and chronic atherosclerotic inflammation of the artery wall). These data suggest that LXR modulators can mediate both the removal of cholesterol from the macrophages and the inhibition of vascular inflammation.


For a review of LXR biology and LXR modulators, see, e.g., Goodwin, et al., Current Topics in Medicinal Chemistry 2008, 8, 781; and Bennett, et al., Current Medicinal Chemistry 2008, 15, 195.


For studies related to atherosclerosis, see, e.g., Scott, J. N. Engl. J. Med. 2007, 357, 2195; Joseph, et al., PNAS 2002, 99, 7604; Tangirala, et. al., PNAS, 2002, 99, 11896; and Bradley, et al., Journal of Clinical Investigation 2007, 117, 2337-2346.


For studies related to inflammation, see, e.g., Fowler, et al., Journal of Investigative Dermatology 2003, 120, 246; and US 2004/0259948.


For studies related to Alzheimer's disease, see, e.g., Koldamova, et al., J. Biol. Chem. 2005, 280, 4079; Sun, et al., J. Biol. Chem. 2003, 278, 27688; and Riddell, et al., Mol. Cell Neurosci. 2007, 34, 621.


For studies related to diabetes, see, e.g., Kase, et al., Diabetologia 2007, 50, 2171; and Liu, et al., Endocrinology 2006, 147, 5061.


For studies related to skin aging, see, e.g., WO 2004/076418; WO 2004/103320; and US 2008/0070883.


For studies related to arthritis, see, e.g., Chintalacharuvu, et. al., Arthritis a& Rheumatism 2007, 56, 1365; and WO 2008/036239.


SUMMARY

This invention relates generally to benzimidazole-based modulators of Liver X receptors (LXRs) and related methods.


In one aspect, this invention features a compound having formula (I):




embedded image


in which:


R1 is:


(i) hydrogen; or


(ii) C1-C6 alkyl or C1-C6haloalkyl, each of which is optionally substituted with from 1-10 Ra; or


(iii) C2-C6 alkenyl or C2-C6 alkynyl, each of which is optionally substituted with from 1-10 Rb; or


(iv) C3-C10 cycloalkyl, C3-C10 cycloalkenyl, heterocyclyl including 3-10 atoms, heterocycloalkenyl including 3-10 atoms, C7-C11 aralkyl, or heteroaralkyl including 6-11 atoms, each of which is optionally substituted with from 1-10 Rc; or


(v) C6-C10 aryl or heteroaryl including 5-10 atoms, each of which is optionally substituted with from 1-10 Rd;


R2 is C6-C10 aryl or heteroaryl including 5-10 atoms, each of which is:


(i) substituted with 1 R7, and


(ii) optionally substituted with from 1-5 Re; wherein:


R7 is WA, wherein:


W is a bond; —O—; —NR8—; C1-6 alkylene, C2-6 alkenylene, or C2-6 alkynylene; —W1(C1-6 alkylene)-; or —(C1-6 alkylene)W1—;


W1 at each occurrence is, independently, —O— or —NR8—;


R8 is hydrogen; C1-C6 alkyl;


A at each occurrence is, independently, C6-C10 aryl or heteroaryl including 5-10 atoms, each of which is:


(i) substituted with 1 R9, and


(ii) optionally further substituted with from 1-5 Rg;


R9 is:


(i) —W2—S(O)nR10 or —W2—S(O)nNR11R12; or


(ii) —W2—C(O)OR13; or


(iii) —W2—C(O)NR11R12; or


(iv) —W2—CN; or


(v) C1-C12 alkyl or C1-C12 haloalkyl, each of which is:

    • (a) substituted with 1 Rh, and
    • (b) optionally further substituted with from 1-5 Ra; or


(vi) —NR14R15;


wherein:


W2 at each occurrence is, independently, a bond; C1-6 alkylene; C2-6 alkenylene; C2-6 alkynylene; C3-6 cycloalkylene; —O(C1-6 alkylene)-, or —NR8(C1-6 alkylene)-;


n at each occurrence is, independently, 1 or 2;


R10 is:


(i) C1-C6 alkyl or C1-C6 haloalkyl, each of which is optionally substituted with from 1-5 Ra; or


(ii) C2-C6 alkenyl or C2-C6 alkynyl, each of which is optionally substituted with from 1-5 Rb; or


(iii) C3-C10 cycloalkyl, C3-C10 cycloalkenyl, C7-C11 aralkyl, or heteroaralkyl including 6-11 atoms, each of which is optionally substituted with from 1-5 Rc; or


(iv) C6-C10 aryl or heteroaryl including 5-10 atoms, each of which is optionally substituted with from 1-5 Rd;


R11 and R12 are each, independently:


(i) hydrogen; or


(ii)-(v) R10 (in which R10 is as defined above); or


(vi) heterocyclyl including 3-10 atoms or a heterocycloalkenyl including 3-10 atoms, each of which is optionally substituted with from 1-5 Rc; or


R11 and R12 together with the nitrogen atom to which they are attached form a heterocyclyl including 3-10 atoms or a heterocycloalkenyl including 3-10 atoms, each of which is optionally substituted with from 1-5 Rc;


R13 is:


(i) hydrogen;


(ii)-(v) R10 (in which R10 is as defined above);


one of R14 and R15 is hydrogen or C1-C3 alkyl; and the other of R14 and R15 is:


(i) —S(O)nR10; or


(ii) —C(O)OR13; or


(iii) —C(O)NR11R12; or


(iv) C1-C12 alkyl or C1-C12 haloalkyl, each of which is:

    • (a) substituted with 1 Rh, and
    • (b) optionally further substituted with from 1-5 Ra;


each of R3, R4, and R5 is, independently:


(i) hydrogen; or


(ii) halo; or


(iii) C1-C6 alkyl or C1-C6haloalkyl, each of which is optionally substituted with from 1-3 Ra;


R6 is:


(i) hydrogen; or


(ii) halo; or


(iii) C1-C6 alkyl or C1-C6haloalkyl, each of which is optionally substituted with from 1-3 Ra; or


(iv) nitro; C1-C6 alkoxy; C1-C6 haloalkoxy; C1-C6 thioalkoxy; C1-C6 thiohaloalkoxy; or cyano;


Ra at each occurrence is, independently:


(i) NRmRn; hydroxy; C1-C6 alkoxy or C1-C6 haloalkoxy; C6-C10 aryloxy or heteroaryloxy including 5-10 atoms, each of which is optionally substituted with from 1-5 Rd; C7-C1i aralkoxy, heteroaralkoxy including 6-11 atoms, C3-C11 cycloalkoxy, C3-C11 cycloalkenyloxy, heterocyclyloxy including 3-10 atoms, or heterocycloalkenyloxy including 3-10 atoms, each of which is optionally substituted with from 1-5 Rc; or cyano; or


(ii) C3-C10 cycloalkyl, C3-C10 cycloalkenyl, heterocyclyl including 3-10 atoms, or heterocycloalkenyl including 3-10 atoms, each of which is optionally substituted with from 1-5 Rc;


Rb at each occurrence is, independently:


(i) halo; NRmRn; hydroxy; C1-C60 alkoxy or C1-C6 haloalkoxy; C6-C10 aryloxy or heteroaryloxy including 5-10 atoms, each of which is optionally substituted with from 1-5 Rd; C7-C11 aralkoxy, heteroaralkoxy including 6-11 atoms, C3-C10 cycloalkoxy, C3-C10 cycloalkenyloxy, heterocyclyloxy including 3-10 atoms, or heterocycloalkenyloxy including 3-10 atoms, each of which is optionally substituted with from 1-5 Rc; or cyano; or


(ii) C3-C10 cycloalkyl, C3-C10 cycloalkenyl, heterocyclyl including 3-10 atoms, or heterocycloalkenyl including 3-10 atoms, each of which is optionally substituted with from 1-5 Rc; or


(iii) C6-C10 aryl or heteroaryl including 5-10 atoms, each of which is optionally substituted with from 1-5 Rd;


Rc at each occurrence is, independently:


(i) halo; NRmRn; hydroxy; C1-C6 alkoxy or C1-C6 haloalkoxy; or cyano; or


(ii) C1-C6 alkyl or C1-C6 haloalkyl, each of which is optionally substituted with from 1-5 Ra; or


(iii) C2-C6 alkenyl or C2-C6 alkynyl, each of which is optionally substituted with from 1-5 Rb;


Rd at each occurrence is, independently:


(i) halo; NRmRn; hydroxy; C1-C6 alkoxy or C1-C6 haloalkoxy; or cyano; or


(ii) C1-C6 alkyl or C1-C6 haloalkyl, each of which is optionally substituted with from 1-5 Ra; or


(iii) C2-C6 alkenyl or C2-C6 alkynyl, each of which is optionally substituted with from 1-5 Rb;


Re at each occurrence is, independently, C1-C6 alkyl; C1-C6 haloalkyl; halo; hydroxyl; NRmRn; C1-C6 alkoxy; C1-C6 haloalkoxy; C3-C6 cycloalkoxy; or cyano;


Rg at each occurrence is, independently:


(i) halo; NRmRn; hydroxy; C1-C6 alkoxy or C1-C6 haloalkoxy; or cyano;


(ii) C1-C6 alkyl or C1-C6 haloalkyl;


Rh at each occurrence is, independently, hydroxyl, C1-C6 alkoxy, or C1-C6 haloalkoxy; C3-C10 cycloalkoxy or C3-C10 cycloalkenyloxy, each of which is optionally substituted with from 1-5 Rc; or C6-C10 aryloxy or heteroaryloxy including 5-10 atoms, each of which is optionally substituted with from 1-5 Rd;


each of Rm and Rn, at each occurrence is, independently, hydrogen; or C1-C6 alkyl, or C1-C6 haloalkyl;


or an N-oxide and/or salt (e.g., a pharmaceutically acceptable salt) thereof.


In some embodiments, it is provided that when:


(i) R2 is phenyl that is substituted with 1 WA and 0 Re (e.g., monosubstituted at the meta position with WA only); and


(ii) W is a bond; and


(iii) A is phenyl that is substituted with 1 R9 and 0 Rg (e.g., monosubstituted at the meta position with R9 only); and


(iv) R9 is —W2—C(O)OR13; and


(v) R13 is C1-C6 alkyl (e.g., CH2CH3);


then one (or more) of R1, R3, R4, R5, or R6 (e.g., R1 and/or R6) must be a substituent other than hydrogen.


In one aspect, this invention features a compound having formula (I), in which R1, R2, R3, R4, R5, R7, R8, R9, R10, R11, R12, R13, R14, R15, W, W1, W2, A, Ra, Rb, Rc, Rd, Re, Rg, Rh, Rm, Rn, and n, can be, independently, as defined anywhere herein, and


R6 is:


(ii) halo; or


(iii) C1-C6 alkyl or C1-C6 haloalkyl, each of which is optionally substituted with from 1-3 Ra; or


(iv) nitro; C1-C6 alkoxy; C1-C6 haloalkoxy; C1-C6 thioalkoxy; C1-C6 thiohaloalkoxy; or cyano.


In one aspect, this invention features a compound having formula (I), in which R1, R2, R3, R4, R5, R6, R7, R8, R10, R11, R12, R13, R14, R15, W, W1, W2, A, Ra, Rb, Rc, Rd, Re, Rg, Rh, Rm, Rn, and n, can be, independently, as defined anywhere herein, and


R9 is:


(i) —W2—S(O). R10 or —W2—S(O)nNR11R12; or


(iii) —W2—C(O)NR11R12; or


(iv) —W2—CN; or


(v) C1-C12 alkyl or C1-C12 haloalkyl, each of which is:

    • (a) substituted with from 1 Rh, and
    • (b) optionally further substituted with from 1-5 Ra; or


(vi) —NR14R15.


In certain embodiments:


R6 is:


(ii) halo; or


(iii) C1-C6 alkyl or C1-C6 haloalkyl, each of which is optionally substituted with from 1-3 Ra; or


(iv) nitro; C1-C6 alkoxy; C1-C6 haloalkoxy; C1-C6 thioalkoxy; C1-C6 thiohaloalkoxy; or cyano.


In one aspect, this invention features a compound having formula (I), in which R1, R2, R3, R4, R5, R6, R7, R8, R10, R11, R12, R13, R14, R15, W, W1, W2, A, Ra, Rb, Rc, Rd, Re, Rg, Rh, Rm, Rn, and n, can be, independently, as defined anywhere herein, and


R9 is:


(i) —W2—S(O)nR10 or W2—S(O)nNR11R12; or


(iv) —W2—CN; or


(v) C1-C12 alkyl or C1-C12 haloalkyl, each of which is:

    • (a) substituted with from 1 Rh, and
    • (b) optionally further substituted with from 1-5 Ra; or


(vi) —NR14R15.


In certain embodiments:


R6 is:


(ii) halo; or


(iii) C1-C6 alkyl or C1-C6 haloalkyl, each of which is optionally substituted with from 1-3 Ra; or


(iv) nitro; C1-C6 alkoxy; C1-C6 haloalkoxy; C1-C6 thioalkoxy; C1-C6 thiohaloalkoxy; or cyano.


In one aspect, this invention features a compound having formula (I), in which R1, R2, R3, R4, R5, R6, R7, R8, R10, R11, R12, R13, R14, R15, W, W1, W2, A, Ra, Rb, Rc, Rd, Re, Rg, Rh, Rm, Rn, and n, can be, independently, as defined anywhere herein, and


R9 is:


(i) —W2—S(O)nR10 or W2—S(O)nNR11R12; or


(v) C1-C12 alkyl or C1-C12 haloalkyl, each of which is:

    • (a) substituted with from 1 Rh, and
    • (b) optionally further substituted with from 1-5 Ra; or


(vi) —NR14R15.


In certain embodiments:


R6 is:


(ii) halo; or


(iii) C1-C6 alkyl or C1-C6 haloalkyl, each of which is optionally substituted with from 1-3 Ra; or


(iv) nitro; C1-C6 alkoxy; C1-C6 haloalkoxy; C1-C6 thioalkoxy; C1-C6 thiohaloalkoxy; or cyano.


In one aspect, this invention features a compound having formula (I), in which R1, R2, R3, R4, R5, R6, R7, R8, R10, R11, R12, R13, R14, R15, W, W1, W2, A, Ra, Rb, Rc, Rd, Re, Rg, Rh, Rm, Rn, and n, can be, independently, as defined anywhere herein, and


R9 is:


(i) —W2—S(O)nR10 or —W2—S(O)nNR11R12.


In certain embodiments:


R6 is:


(ii) halo; or


(iii) C1-C6 alkyl or C1-C6haloalkyl, each of which is optionally substituted with from 1-3 Ra; or


(iv) nitro; C1-C6 alkoxy; C1-C6 haloalkoxy; C1-C6 thioalkoxy; C1-C6 thiohaloalkoxy; or cyano.


In one aspect, this invention features a compound having formula (I), in which R1, R2, R3, R4, R5, R6, R7, R8, R10, R11, R12, R13, R14, R15, W, W1, W2, A, Ra, Rb, Rc, Rd, Re, Rg, Rh, Rm, Rn, and n, can be, independently, as defined anywhere herein, and


R9 is (ii) —W2—C(O)OR13.


In certain embodiments:


R6 is:


(ii) halo; or


(iii) C1-C6 alkyl or C1-C6 haloalkyl, each of which is optionally substituted with from 1-3 Ra; or


(iv) nitro; C1-C6 alkoxy; C1-C6 haloalkoxy; C1-C6 thioalkoxy; C1-C6 thiohaloalkoxy; or cyano.


In certain embodiments, it is provided that when: (i) R2 is phenyl that is substituted with 1 WA and 0 Re (e.g., monosubstituted at the meta position with WA only); and (ii) W is a bond; and (iii) A is phenyl that is substituted with 1 R9 and 0 Rg (e.g., monosubstituted at the meta position with R9 only); and (iv) R9 is —W2—C(O)OR13; and (v) R13 is C1-C6 alkyl (e.g., CH2CH3); then one (or more) of R1, R3, R4, R5, or R6 (e.g., R1 and/or R6) must be a substituent other than hydrogen.


In another aspect, this invention features a compound having formula (I), in which R1, R2, R3, R4, R5, R6, R7, R8, R10, R11, R12, R13, R14, R15, W, W1, W2, A, Ra, Rb, Rc, Rd, Re, Rg, Rh, Rm, Rn, and n, can be, independently, as defined anywhere herein, and


R9 is (iii) —W2—C(O)NR11R12.


In certain embodiments:


R6 is:


(ii) halo; or


(iii) C1-C6 alkyl or C1-C6 haloalkyl, each of which is optionally substituted with from 1-3 Ra; or


(iv) nitro; C1-C6 alkoxy; C1-C6 haloalkoxy; C1-C6 thioalkoxy; C1-C6 thiohaloalkoxy; or cyano.


In a further aspect, this invention features a compound having formula (I), in which R1, R2, R3, R4, R5, R6, R7, R8, R10, R11, R12, R13, R14, R15, W, W1, W2, A, Ra, Rb, Rc, Rd, Re, Rg, Rh, Rm, Rn, and n, can be, independently, as defined anywhere herein, and


R9 at each occurrence is, independently:


(v) C1-C12 alkyl or C1-C12 haloalkyl, each of which is:


(a) substituted with from 1 Rh, and


(b) optionally further substituted with from 1-5 Ra.


In certain embodiments:


R6 is:


(ii) halo; or


(iii) C1-C6 alkyl or C1-C6 haloalkyl, each of which is optionally substituted with from 1-3 Ra; or


(iv) nitro; C1-C6 alkoxy; C1-C6 haloalkoxy; C1-C6 thioalkoxy; C1-C6 thiohaloalkoxy; or cyano.


In one aspect, this invention features a compound having formula (I), in which R1, R2, R3, R4, R5, R6, R7, R8, R10, R11, R12, R13, R14, R15, W, W1, W2, A, Ra, Rb, Rc, Rd, Re, Rg, Rh, Rm, Rn, and n, can be, independently, as defined anywhere herein, and


R9 is (vi) —NR14R15.


In certain embodiments:


R6 is:


(ii) halo; or


(iii) C1-C6 alkyl or C1-C6 haloalkyl, each of which is optionally substituted with from 1-3 Ra; or


(iv) nitro; C1-C6 alkoxy; C1-C6 haloalkoxy; C1-C6 thioalkoxy; C1-C6 thiohaloalkoxy; or cyano.


In one aspect, this invention features a compound having formula (I), in which R1, R2, R3, R4, R5, R6, R7, R8, R10, R11, R12, R13, R14, R15, W, W1, W2, A, Ra, Rb, Rc, Rd, Re, Rg, Rh, Rm, Rn, and n, can be, independently, as defined anywhere herein, and


R9 is (iv) —W2—CN.


In certain embodiments:


R6 is:


(ii) halo; or


(iii) C1-C6 alkyl or C1-C6 haloalkyl, each of which is optionally substituted with from 1-3 Ra; or


(iv) nitro; C1-C6 alkoxy; C1-C6 haloalkoxy; C1-C6 thioalkoxy; C1-C6 thiohaloalkoxy; or cyano.


In one aspect, this invention relates to any subgenera of formula (I) described herein.


In one aspect, this invention relates to any of the specific benzimidazole compounds delineated herein. In some embodiments, the compound of formula (I) can be selected from the title compounds of Examples 5-21 25-73, 75, 77-88, and 89-107; or a pharmaceutically acceptable salt and/or N-oxide thereof.


In one aspect, this invention features a composition (e.g., a pharmaceutical composition), which includes a compound of formula (I) (including any subgenera or specific compounds thereof) or a salt (e.g., a pharmaceutically acceptable salt) or a prodrug thereof and a pharmaceutically acceptable adjuvant, carrier or diluent. In some embodiments, the composition can include an effective amount of the compound or the salt thereof. In some embodiments, the composition can further include an additional therapeutic agent.


In one aspect, this invention features a dosage form, which includes from about 0.05 milligrams to about 2,000 milligrams (e.g., from about 0.1 milligrams to about 1,000 milligrams, from about 0.1 milligrams to about 500 milligrams, from about 0.1 milligrams to about 250 milligrams, from about 0.1 milligrams to about 100 milligrams, from about 0.1 milligrams to about 50 milligrams, or from about 0.1 milligrams to about 25 milligrams) of formula (I) (including any subgenera or specific compounds thereof), or a salt (e.g., a pharmaceutically acceptable salt), or an N-oxide, or a prodrug thereof. The dosage form can further include a pharmaceutically acceptable carrier and/or an additional therapeutic agent.


The invention also relates generally to modulating (e.g., activating) LXRs with the benzimidazole compounds described herein. In some embodiments, the methods can include, e.g., contacting an LXR in a sample (e.g., a tissue, a cell free assay medium, a cell-based assay medium) with a compound of formula (I) (including any subgenera or specific compounds thereof). In other embodiments, the methods can include administering a compound of formula (I) (including any subgenera or specific compounds thereof) to a subject (e.g., a mammal, e.g., a human, e.g., a human having or at risk of having one or more of the diseases or disorders described herein).


In one aspect, this invention also relates generally to methods of treating (e.g., controlling, ameliorating, alleviating, slowing the progression of, delaying the onset of, or reducing the risk of developing) or preventing one or more LXR-mediated diseases or disorders in a subject (e.g., a subject in need thereof). The methods include administering to the subject an effective amount of a compound of formula (I) (including any subgenera or specific compounds thereof) or a pharmaceutically acceptable salt or prodrug thereof. LXR-mediated diseases or disorders can include, e.g., cardiovascular diseases (e.g., acute coronary syndrome, restenosis), atherosclerosis, atherosclerotic lesions, type I diabetes, type II diabetes, Syndrome X, obesity, lipid disorders (e.g., dyslipidemia, hyperlipidemia, hypertriglyceridemia, hypercholesterolemia, low HDL and/or high LDL), cognitive disorders (e.g., Alzheimer's disease, dementia), inflammatory diseases (e.g., multiple sclerosis, rheumatoid arthritis, inflammatory bowel disease, Crohn's disease, endometriosis, LPS-induced sepsis, acute contact dermatitis of the ear, chronic atherosclerotic inflammation of the artery wall), celiac, thyroiditis, skin aging or connective tissue diseases.


In another aspect, this invention relates to methods of modulating (e.g., increasing) serum HDL cholesterol levels in a subject (e.g., a subject in need thereof), which includes administering to the subject an effective amount of a compound of formula (I) (including any subgenera or specific compounds thereof) or a pharmaceutically acceptable salt or prodrug thereof.


In another aspect, this invention relates to methods of modulating (e.g., decreasing) serum LDL cholesterol levels in a subject (e.g., a subject in need thereof), which includes administering to the subject an effective amount of a compound of formula (I) (including any subgenera or specific compounds thereof) or a pharmaceutically acceptable salt or prodrug thereof.


In another aspect, this invention relates to methods of modulating (e.g., increasing) reverse cholesterol transport in a subject (e.g., a subject in need thereof), which includes administering to the subject an effective amount of a compound of formula (I) (including any subgenera or specific compounds thereof) or a pharmaceutically acceptable salt or prodrug thereof.


In another aspect, this invention relates to methods of modulating (e.g., decreasing or inhibiting) cholesterol absorption in a subject (e.g., a subject in need thereof), which includes administering to the subject an effective amount of a compound of formula (I) (including any subgenera or specific compounds thereof) or a pharmaceutically acceptable salt or prodrug thereof.


In a further aspect, this invention relates to methods of preventing or treating a cardiovascular disease (e.g., acute coronary syndrome, restenosis, or coronary artery disease), which includes administering to a subject in need thereof an effective amount of a compound of formula (I) (including any subgenera or specific compounds thereof) or a pharmaceutically acceptable salt or prodrug thereof.


In one aspect, this invention relates to methods of preventing or treating a atherosclerosis and/or atherosclerotic lesions, which includes administering to a subject in need thereof an effective amount of a compound of formula (I) (including any subgenera or specific compounds thereof) or a pharmaceutically acceptable salt or prodrug thereof.


In another aspect, this invention relates to methods of preventing or treating diabetes (e.g., type I diabetes or type II diabetes), which includes administering to a subject in need thereof an effective amount of a compound of formula (I) (including any subgenera or specific compounds thereof) or a pharmaceutically acceptable salt or prodrug thereof.


In a further aspect, this invention relates to methods of preventing or treating Syndrome X, which includes administering to a subject in need thereof an effective amount of a compound of formula (I) (including any subgenera or specific compounds thereof) or a pharmaceutically acceptable salt or prodrug thereof.


In one aspect, this invention relates to methods of preventing or treating a obesity, which includes administering to a subject in need thereof an effective amount of a compound of formula (I) (including any subgenera or specific compounds thereof) or a pharmaceutically acceptable salt or prodrug thereof.


In another aspect, this invention relates to methods of preventing or treating a lipid disorder (e.g., dyslipidemia, hyperlipidemia, hypertriglyceridemia, hypercholesterolemia, low HDL and high LDL), which includes administering to a subject in need thereof an effective amount of a compound of formula (I) (including any subgenera or specific compounds thereof) or a pharmaceutically acceptable salt or prodrug thereof.


In a further aspect, this invention relates to methods of preventing or treating a cognitive disorder (e.g., Alzheimer's disease or dementia), which includes administering to a subject in need thereof an effective amount of a compound of formula (I) (including any subgenera or specific compounds thereof) or a pharmaceutically acceptable salt or prodrug thereof.


In one aspect, this invention relates to methods of preventing or treating dementia, which includes administering to a subject in need thereof an effective amount of a compound of formula (I) (including any subgenera or specific compounds thereof) or a pharmaceutically acceptable salt or prodrug thereof.


In another aspect, this invention relates to methods of preventing or treating Alzheimer's disease, which includes administering to a subject in need thereof an effective amount of a compound of formula (I) (including any subgenera or specific compounds thereof) or a pharmaceutically acceptable salt or prodrug thereof.


In a further aspect, this invention relates to methods of preventing or treating an inflammatory disease (e.g., multiple sclerosis, rheumatoid arthritis, inflammatory bowel disease, Crohn's disease, endometriosis, LPS-induced sepsis, acute contact dermatitis of the ear, chronic atherosclerotic inflammation of the artery wall), which includes administering to a subject in need thereof an effective amount of a compound of formula (I) (including any subgenera or specific compounds thereof) or a pharmaceutically acceptable salt or prodrug thereof.


In another aspect, this invention relates to methods of preventing or treating rheumatoid arthritis, which includes administering to a subject in need thereof an effective amount of a compound of formula (I) (including any subgenera or specific compounds thereof) or a pharmaceutically acceptable salt or prodrug thereof.


In a further aspect, this invention relates to methods of preventing or treating celiac, which includes administering to a subject in need thereof an effective amount of a compound of formula (I) (including any subgenera or specific compounds thereof) or a pharmaceutically acceptable salt or prodrug thereof.


In a further aspect, this invention relates to methods of preventing or treating thyroiditis, which includes administering to a subject in need thereof an effective amount of a compound of formula (I) (including any subgenera or specific compounds thereof) or a pharmaceutically acceptable salt or prodrug thereof.


In one aspect, this invention relates to methods of treating a connective tissue disease (e.g., osteoarthritis or tendonitis), which includes administering to a subject (e.g., a mammal, e.g., a human) in need thereof an effective amount of a compound of formula (I) (including any subgenera or specific compounds thereof) or a pharmaceutically acceptable salt or prodrug thereof. In embodiments, the compound of formula (I) inhibits (e.g., reduces or otherwise diminishes) cartilage degradation. In embodiments, the compound of formula (I) induces (e.g., increases or otherwise agments) cartilage regeneration. In embodiments, the compound of formula (I) inhibits (e.g., reduces or otherwise diminishes) cartilage degradation and induces (e.g., increases or otherwise agments) cartilage regeneration. In embodiments, the compound of formula (I) inhibits (e.g., reduces or otherwise diminishes) aggrecanase activity. In embodiments, the compound of formula (I) inhibits (e.g., reduces or otherwise diminishes) elaboration of pro-inflammatory cytokines in osteoarthritic lesions.


In another aspect, this invention relates to methods of treating or preventing skin aging, the method comprising administering (e.g., topically administering) to a subject (e.g., a mammal, e.g., a human) in need thereof an effective amount of a compound of formula (I) (including any subgenera or specific compounds thereof) or a pharmaceutically acceptable salt or prodrug thereof. In embodiments, the skin aging can be derived from chronological aging, photoaging, steroid-induced skin thinning, or a combination thereof.


The term “skin aging” includes conditions derived from intrinsic chronological aging (for example, deepened expression lines, reduction of skin thickness, inelasticity, and/or unblemished smooth surface), those derived from photoaging (for example, deep wrinkles, yellow and leathery surface, hardening of the skin, elastosis, roughness, dyspigmentations (age spots) and/or blotchy skin), and those derived from steroid-induced skin thinning. Accordingly, another aspect is a method of counteracting UV photodamage, which includes contacting a skin cell exposed to UV light with an effective amount of a compound of formula (I).


In some embodiments, the compound of formula (I) (including any subgenera or specific compounds thereof) does not substantially increase serum and/or hepatic triglyceride levels of the subject.


In some embodiments, the administered compound of formula (I) (including any subgenera or specific compounds thereof) can be an LXR agonist (e.g., an LXRα agonist or an LXRβ agonist, e.g., an LXRβ agonist).


In some embodiments, the subject can be a subject in need thereof (e.g., a subject identified as being in need of such treatment). Identifying a subject in need of such treatment can be in the judgment of a subject or a health care professional and can be subjective (e.g. opinion) or objective (e.g. measurable by a test or diagnostic method). In some embodiments, the subject can be a mammal. In certain embodiments, the subject is a human.


In a further aspect, this invention also relates to methods of making compounds described herein. Alternatively, the method includes taking any one of the intermediate compounds described herein and reacting it with one or more chemical reagents in one or more steps to produce a compound described herein.


In one aspect, this invention relates to a packaged product. The packaged product includes a container, one of the aforementioned compounds in the container, and a legend (e.g., a label or an insert) associated with the container and indicating administration of the compound for treatment and control of the diseases or disorders described herein.


In embodiments, any compound, composition, or method can also include any one or more of the following features (alone or in combination) and/or any one or more of the features (alone or in combination) delineated in the detailed description and/or in the claims.


R1 can be hydrogen.


R1 can be C1-C6 alkyl. For example, R1 can be CH3, CH2CH3, or CH2CH2CH3. As another example, R1 can be branched C3-C6 alkyl.


R1 can be C1-C3 haloalkyl (e.g., CF3 or CHF2).


R1 can be C6-C10 aryl or heteroaryl including 5-10 atoms, each of which is optionally substituted with from 1-5 (e.g., 1-4, 1-3, 1-2, or 1) Rd. For example, R1 can be phenyl, which is optionally substituted with from 1-5 (e.g., 1-4, 1-3, 1-2, or 1) Rd.


R1 can be C7-C11 aralkyl, which is optionally substituted with from 1-5 (e.g., 1-4, 1-3, 1-2, or 1) Rd. For example, R1 can be benzyl, which is optionally substituted with from 1-5 (e.g., 1-4, 1-3, 1-2, or 1) Rd.


R1 can be C3-C8 (e.g., C3-C6) cycloalkyl, which is optionally substituted with from 1-3 (e.g., 1-2, or 1) Rc. For example, R1 can be cyclopropyl.


R2 can be C6-C10 aryl, which is (a) substituted with from 1 R7; and (b) optionally substituted with from 1-2 Re. R2 can be C6-C10 aryl, which is (a) substituted with 1 R7; and (b) optionally substituted with from 1-4 Re. In embodiments, R2 can be phenyl, which is (a) substituted with 1 R7; and (b) optionally substituted with from 1 Re. In other embodiments, R2 can be phenyl, which is substituted with 1 R7.


R2 can have formula (A-2):




embedded image


In some embodiments, each of R22, R23, and R24 can be, independently, hydrogen or Re. In these and other embodiments related to formula (A-2), each of W, A, and Re can be as defined anywhere herein.


In some embodiments, (i) each of R22, R23, and R24 is hydrogen; or (ii) one of R22, R23, and R24 is Re, and the other two are hydrogen.


In certain embodiments, each of R22, R23, and R24 can be hydrogen. In other embodiments, one of R22, R23, and R24 can be Re, and the other two are hydrogen. For example, R22 can be Re (e.g., halo, e.g., chloro) and each of R23 and R24 can be hydrogen.


R2 can have formula (A-3):




embedded image


In these and other embodiments related to formula (A-3), each of W and A can be, independently, as defined anywhere herein.


W can be —O—. W can be a bond. W can be —W1(C1-6 alkylene)-; in embodiments, W1 can be —O—, and W can be, for example, —OCH2—. W can be a bond or —W1(C1-6 alkylene)-.


A can be C6-C10 aryl, which is (a) substituted with from 1 R9; and (b) optionally substituted with from 1-4 Rg. In embodiments, A can be phenyl, which is (a) substituted with 1 R9; and (b) optionally substituted with from 1-4 Rg.


A can have formula (B-1):




embedded image


in which:


one of RA3 and RA4 is R9, the other of RA3 and RA4 is hydrogen; and


each of RA2, RA5, and RA6 is, independently, hydrogen or Rg. In these and other embodiments related to formula (B-1), each of R9 and Rg can be, independently, as defined anywhere herein.


R9 can be —W2—S(O)nR10. W2 can be a bond. W2 can be a bond, and n can be 2. R10 can be: C1-C6 alkyl or C1-C6 haloalkyl, each of which is optionally substituted with from 1-2 Ra; or C3-C6 cycloalkyl, optionally substituted with from 1-3 Rc. In embodiments, R10 can be C1-C6 alkyl, optionally substituted with from 1-2 Ra. For example, R10 can be C1-C5 alkyl (e.g., CH3, CH3CH2, (CH3)2CH, e.g., CH3). As another example, R10 can be C2-C6 alkyl substituted with 1 Ra. In embodiments, Ra can be hydroxyl, C1-C3 alkoxy, or NRmRn. As another example, R10 can be C3-C6 cycloalkyl (e.g., cyclopropyl). As a further example, R10 can be CF3.


In some embodiments:


R2 can be C6-C10 aryl, which is (a) substituted with 1 R7; and (b) optionally substituted with from 1-4 (e.g., 1-2) Re; and


A can be C6-C10 aryl, which is (a) substituted with from 1 R9; and (b) optionally substituted with from 1-4 Rg. In these embodiments, each of R7, R9, Re, and Rg can be, independently, as defined anywhere herein.


In certain embodiments:


R2 can be phenyl, which is (a) substituted with 1 R7 (i.e., WA); and (b) optionally substituted with from 1 Re; and


A can be phenyl, which is (a) substituted with 1 R9; and (b) optionally substituted with from 1-4 R9. In these embodiments, each of R7, R9, Re, and Rg can be, independently, as defined anywhere herein.


For example, R2 can have formula (C-1):




embedded image


In some embodiments:


each of R22, R23, and R24 is, independently, hydrogen or Re; and


one of RA2, RA3, RA4, RA5, and RA6 is R9, and the others are each, independently, hydrogen or Rg.


In some embodiments:


(i) each of R22, R23, and R24 is hydrogen; or


(ii) one of R22, R23, and R24 is Re, and the other two are hydrogen; and


one of RA2, RA3, RA4, RA5, and RA6 is R9, and the others are each, independently, hydrogen or Rg.


In these and other embodiments related to formula (C-1), each of W, R9, Re and Rg can be, independently, as defined anywhere herein.


Embodiments can include, for example, one or more of the following features (and/or any one or more other features described anywhere herein).


In certain embodiments, each of R22, R23, and R24 can be hydrogen. In other embodiments, one of R22, R23, and R24 can be Re, and the other two are hydrogen. For example, R22 can be Re (e.g., halo, e.g., chloro) and each of R23 and R24 can be hydrogen.


W can be —O—. W can be a bond. W can be —W1(C1-6 alkylene)-; in embodiments, W1 can be —O—, and W can be, for example, —OCH2—. W can be a bond or —W1(C1-6 alkylene)-.


R9 can be —W2—S(O)nR10.


One of RA3 and RA4 can be R9, and the other of RA3 and RA4 can be hydrogen; and each of RA2, RA5, and RA6 can be, independently, hydrogen or Rg.


In certain embodiments, RA3 is —W2—S(O)nR10. Each of RA2, RA5, and RA6 can be hydrogen. W2 can be a bond. n can be 2. R10 can be C1-C6 alkyl, optionally substituted with from 1-2 Ra. In embodiments, R10 can be C1-C5 alkyl (e.g., CH3, CH3CH2, (CH3)2CH, e.g., CH3). R10 can be C2-C6 alkyl substituted with 1 Ra. R10 can be C3-C6 cycloalkyl (e.g., cyclopropyl). In embodiments, Ra can be hydroxyl, C1-C3 alkoxy, or NRmRn. RA5 can be hydrogen or Rg (e.g., Rg), and each of RA2 and RA6 can be hydrogen.


One of RA3 and RA4 can be R9, and the other of RA3 and RA4 can be hydrogen; and each of RA2, RA5, and RA6 can be, independently, hydrogen or Rg. Each of RA2, RA5, and RA6 can be hydrogen. RA5 can be Rg (e.g., halo, e.g., fluoro), and each of RA2 and RA6 can be hydrogen.


In certain embodiments, RA3 can be R9, and RA4 can be hydrogen. For example, when RA3 is R9, R9 can be —W2—S(O)nR10. W2 can be a bond; n can be 2. R10 can be C1-C6 alkyl, optionally substituted with from 1-2 Ra. For example, R10 can be C1-C5 alkyl (e.g., CH3, CH3CH2, (CH3)2CH, e.g., CH3). As another example, R10 can be C2-C6 alkyl substituted with 1 Ra. In embodiments, Ra can be hydroxyl, C1-C3 alkoxy, or NRmRn. As another example, R10 can be C3-C6 cycloalkyl (e.g., cyclopropyl). As a further example, R10 is CF3. RA5 can be hydrogen or Rg (e.g., Rg), and each of RA2 and RA6 can be hydrogen. Each of RA2, RA5, and RA6 can be hydrogen. RA5 can be Rg (e.g., halo, e.g., fluoro), and each of RA2 and RA6 can be hydrogen.


As another example, R2 can have formula (C-2):




embedded image


In some embodiments, one of RA2, RA3, RA4, RA5, and RA6 is R9, and the others are each, independently, hydrogen or Rg.


In some embodiments, one of RA3 and RA4 is R9, and the other of RA3 and RA4 is hydrogen; and each of RA2, RA5, and RA6 is, independently, hydrogen or Rg.


In these and other embodiments related to formula (C-2), each of W, R9 and Rg can be, independently, as defined anywhere herein.


Embodiments can include, for example, one or more of the following features (and/or any one or more other features described anywhere herein).


W can be —O—. W can be a bond. W can be —W1(C1-6 alkylene)-; in embodiments, W1 can be —O—, and W can be, for example, —OCH2—. W can be a bond or —W1(C1-6 alkylene)-.


In certain embodiments, RA3 can be R9, and RA4 can be hydrogen. For example, when RA3 is R9, R9 can be —W2—S(O)nR10. W2 can be a bond; n can be 2. R10 can be C1-C6 alkyl, optionally substituted with from 1-2 Ra. For example, R10 can be C1-C5 alkyl (e.g., CH3, CH3CH2, (CH3)2CH, e.g., CH3). As another example, R10 can be C2-C6 alkyl substituted with 1 Ra. In embodiments, Ra can be hydroxyl, C1-C3 alkoxy, or NRmRn. As another example, R10 can be C3-C6 cycloalkyl (e.g., cyclopropyl). As a further example, R10 is CF3. In embodiments, W2 can be a bond; n can be 2; and R10 can be C1-C5 alkyl (e.g., CH3, CH3CH2, (CH3)2CH, e.g., CH3). RA5 can be hydrogen or Rg (e.g., Rg), and


each of RA2 and RA6 can be hydrogen. Each of RA2, RA5, and RA6 can be hydrogen. RA5 can be Rg (e.g., halo, e.g., fluoro), and each of RA2 and RA6 can be hydrogen.


Each of R3, R4, and R5 can be, independently: (i) hydrogen; or (ii) halo. Each of R3, R4, and R5 can be hydrogen.


R6 can be:


(ii) halo; or


(iii) C1-C6 alkyl or C1-C6 haloalkyl, each of which is optionally substituted with from 1-3 Ra; or


(iv) cyano.


R6 can be C1-C6 haloalkyl. In certain embodiments, R6 can be C1-C3 perfluoroalkyl (e.g., CF3).


R6 can be halo (e.g., chloro).


One or more of R1, R3, R4, R5, and R6 (e.g., R1 and/or R6) can be a substituent other than hydrogen.


The compound can have formula (VI):




embedded image


in which:


R1 is:


(i) hydrogen; or


(ii) C1-C3 alkyl or C1-C3 haloalkyl; or


(iii) phenyl or heteroaryl including 5-6 atoms, each of which is optionally substituted with from 1-5 Rd; or


(iv) C3-C8 cycloalkyl or C7-C12 aralkyl, each of which is optionally substituted with from 1-3 Rc;


each of R3, R4, and R5 is, independently:


(i) hydrogen; or


(ii) halo; or


(iii) C1-C3 alkyl or C1-C3 haloalkyl, each of which is optionally substituted with from 1-3 Ra;


R6 is:


(ii) halo; or


(iii) C1-C3 alkyl or C1-C3 haloalkyl, each of which is optionally substituted with from 1-3 Ra; or


(iv) cyano; and


each of R22, R23, and R24 is, independently, hydrogen or Re (as defined anywhere herein).


Embodiments can include, for example, one or more of the following features (and/or any one or more other features described anywhere herein).


R1 can be hydrogen. R1 can be C1-C6 alkyl; for example, R1 can be CH3, CH2CH3, or CH2CH2CH3; as another example, R1 can be branched C3-C6 alkyl. R1 can be phenyl, which is optionally substituted with from 1-5 (e.g., 1-4, 1-3, 1-2, or 1) Rd. R1 can be benzyl, which is optionally substituted with from 1-5 (e.g., 1-4, 1-3, 1-2, or 1) Rd. R1 can be C3-C6 cycloalkyl, optionally substituted with C1-C3 Rc.


W can be —O—. W can be a bond. W can be —OCH2—.


A can have formula (B-1), in which one of RA3 and RA4 is R9, and the other of RA3 and RA4 is hydrogen; and each of RA2, RA5, and RA6 is, independently, hydrogen or Rg. RA3 can be —W2—S(O)nR10, in which W2 can be a bond, and n can be 2. R10 can be C1-C6 alkyl, optionally substituted with from 1-2 Ra. R10 can be CH3, CH2CH3, or isopropyl. R10 can be C2-C8 alkyl substituted with 1 Ra. Ra can be hydroxyl or C1-C3 alkoxy. R10 can be C3-C6 cycloalkyl. RA5 can be hydrogen or Rg, and each of RA2 and RA6 can be hydrogen. RA4 is —W2—C(O)OR13. R13 can be hydrogen or C1-C3 alkyl. W2 can be CH2. Each of RA2, RA5, and RA6 can be hydrogen. Each of R3, R4, and R5 can be hydrogen. Each of R22, R23, and R24 can be hydrogen. One of R22, R23, and R24 can be Re, and the other two are hydrogen. For example, R22 can be Re (e.g., halo, e.g., chloro) and each of R23 and R24 can be hydrogen. R6 can be CF3. R6 can be chloro.


In some embodiments, when the compound have formula (VI):


R1 is:


(i) hydrogen; or


(ii) C1-C3 alkyl or C1-C3 haloalkyl; or


(iii) phenyl or heteroaryl including 5-6 atoms, each of which is optionally substituted with from 1-5 Rd; or


(iv) C3-C8 cycloalkyl or C7-C12 aralkyl, each of which is optionally substituted with from 1-3 Rc;


R2 is phenyl, which is (a) substituted with 1 WA; and (b) optionally substituted with 1 Re;


W is a —O—, —OCH2—, or a bond;


A has formula (B-1), wherein one of RA3 and RA4 is R9, and the other of RA3 and RA4 is hydrogen; and each of RA2, RA5, and RA6 is, independently, hydrogen or Rg;


R9 is —W2—S(O)nR10;


each of R3, R4, and R5 is hydrogen; and


R6 is:


(ii) halo; or


(iii) C1-C3 alkyl or C1-C3 haloalkyl, each of which is optionally substituted with from 1-3 Ra; or


(iv) cyano.


Embodiments can include any one or more of the features described anywhere herein.


The term “mammal” includes organisms, which include mice, rats, cows, sheep, pigs, rabbits, goats, horses, monkeys, dogs, cats, and humans.


“An effective amount” refers to an amount of a compound that confers a therapeutic effect (e.g., treats, controls, ameliorates, prevents, delays the onset of, or reduces the risk of developing a disease, disorder, or condition or symptoms thereof) on the treated subject. The therapeutic effect may be objective (i.e., measurable by some test or marker) or subjective (i.e., subject gives an indication of or feels an effect). An effective amount of the compound described above may range from about 0.01 mg/Kg to about 1000 mg/Kg, (e.g., from about 0.1 mg/Kg to about 100 mg/Kg, from about 1 mg/Kg to about 100 mg/Kg). Effective doses will also vary depending on route of administration, as well as the possibility of co-usage with other agents.


The term “halo” or “halogen” refers to any radical of fluorine, chlorine, bromine or iodine.


In general, and unless otherwise indicated, substituent (radical) prefix names are derived from the parent hydride by either (i) replacing the “ane” in the parent hydride with the suffixes “yl,” “diyl,” “triyl,” “tetrayl,” etc.; or (ii) replacing the “e” in the parent hydride with the suffixes “yl,” “diyl,” “triyl,” “tetrayl,” etc. (here the atom(s) with the free valence, when specified, is (are) given numbers as low as is consistent with any established numbering of the parent hydride). Accepted contracted names, e.g., adamantyl, naphthyl, anthryl, phenanthryl, furyl, pyridyl, isoquinolyl, quinolyl, and piperidyl, and trivial names, e.g., vinyl, allyl, phenyl, and thienyl are also used herein throughout. Conventional numbering/lettering systems are also adhered to for substituent numbering and the nomenclature of fused, bicyclic, tricyclic, polycyclic rings.


The term “alkyl” refers to a saturated hydrocarbon chain that may be a straight chain or branched chain, containing the indicated number of carbon atoms. For example, C1-C20 alkyl indicates that the group may have from 1 to 20 (inclusive) carbon atoms in it. Any atom can be optionally substituted, e.g., by one or more substituents. Examples of alkyl groups include without limitation methyl, ethyl, n-propyl, isopropyl, and tert-butyl.


The term “cycloalkyl” refers to saturated monocyclic, bicyclic, tricyclic, or other polycyclic hydrocarbon groups. Any atom can be optionally substituted, e.g., by one or more substituents. A ring carbon serves as the point of attachment of a cycloalkyl group to another moiety. Cycloalkyl groups can contain fused rings. Fused rings are rings that share a common carbon atom. Cycloalkyl moieties can include, e.g., cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, adamantyl, and norbornyl (bicycle[2.2.1]heptyl).


The terms “alkylene,” “alkenylene,” “alkynylene,” and “cycloalkylene” refer to divalent, straight chain or branched chain alkyl (e.g., —CH2—), alkenyl (e.g., —CH═CH—), alkynyl (e.g., —C≡C—); or cycloalkyl moieties, respectively.


The term “haloalkyl” refers to an alkyl group, in which at least one hydrogen atom is replaced by halo. In some embodiments, more than one hydrogen atom (2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, etc. hydrogen atoms) on a alkyl group can be replaced by more than one halogen (e.g., 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, etc. halogen atoms). In these embodiments, the hydrogen atoms can each be replaced by the same halogen (e.g., fluoro) or the hydrogen atoms can be replaced by a combination of different halogens (e.g., fluoro and chloro). “Haloalkyl” also includes alkyl moieties in which all hydrogens have been replaced by halo (e.g., perhaloalkyl, e.g., perfluoroalkyl, such as trifluoromethyl). Any atom can be optionally substituted, e.g., by one or more substituents.


The term “aralkyl” refers to an alkyl moiety in which an alkyl hydrogen atom is replaced by an aryl group. One of the carbons of the alkyl moiety serves as the point of attachment of the aralkyl group to another moiety. Aralkyl includes groups in which more than one hydrogen atom on an alkyl moiety has been replaced by an aryl group. Any ring or chain atom can be optionally substituted e.g., by one or more substituents. Non-limiting examples of “aralkyl” include benzyl, 2-phenylethyl, 3-phenylpropyl, benzhydryl (diphenylmethyl), and trityl (triphenylmethyl) groups.


The term “heteroaralkyl” refers to an alkyl moiety in which an alkyl hydrogen atom is replaced by a heteroaryl group. One of the carbons of the alkyl moiety serves as the point of attachment of the aralkyl group to another moiety. Heteroaralkyl includes groups in which more than one hydrogen atom on an alkyl moiety has been replaced by a heteroaryl group. Any ring or chain atom can be optionally substituted e.g., by one or more substituents. Heteroaralkyl can include, for example, 2-pyridylethyl.


The term “alkenyl” refers to a straight or branched hydrocarbon chain containing 2-20 carbon atoms and having one or more double bonds. Any atom can be optionally substituted, e.g., by one or more substituents. Alkenyl groups can include, e.g., allyl, 1-butenyl, 2-hexenyl and 3-octenyl groups. One of the double bond carbons can optionally be the point of attachment of the alkenyl substituent. The term “alkynyl” refers to a straight or branched hydrocarbon chain containing 2-20 carbon atoms and having one or more triple bonds. Any atom can be optionally substituted, e.g., by one or more substituents. Alkynyl groups can include, e.g., ethynyl, propargyl, and 3-hexynyl. One of the triple bond carbons can optionally be the point of attachment of the alkynyl substituent.


The term “alkoxy” refers to an —O-alkyl radical. The term “mercapto” refers to an SH radical. The term “thioalkoxy” refers to an —S-alkyl radical. The terms “aryloxy” and “heteroaryloxy” refer to an —O-aryl radical and —O-heteroaryl radical, respectively. The terms “thioaryloxy” and “thioheteroaryloxy” refer to an —S-aryl radical and —S-heteroaryl radical, respectively.


The terms “aralkoxy” and “heteroaralkoxy” refer to an —O-aralkyl radical and —O-heteroaralkyl radical, respectively. The terms “thioaralkoxy” and “thioheteroaralkoxy” refer to an —S-aralkyl radical and —S-heteroaralkyl radical, respectively. The term “cycloalkoxy” refers to an —O-cycloalkyl radical. The terms “cycloalkenyloxy” and “heterocycloalkenyloxy” refer to an —O-cycloalkenyl radical and —O-heterocycloalkenyl radical, respectively. The term “heterocyclyloxy” refers to an —O-heterocyclyl radical. The term “thiocycloalkoxy” refers to an —S-cycloalkyl radical. The terms “thiocycloalkenyloxy” and “thioheterocycloalkenyloxy” refer to an —S-cycloalkenyl radical and —S-heterocycloalkenyl radical, respectively. The term “thioheterocyclyloxy” refers to an —S-heterocyclyl radical.


The term “heterocyclyl” refers to a saturated monocyclic, bicyclic, tricyclic or other polycyclic ring system having 1-4 heteroatoms if monocyclic, 1-8 heteroatoms if bicyclic, or 1-10 heteroatoms if tricyclic, said heteroatoms selected from O, N, or S (and mono and dioxides thereof, e.g., N→O, S(O), SO2). Thus, a heterocyclyl ring includes carbon atoms and 1-4, 1-8, or 1-10 heteroatoms selected from N, O, or S if monocyclic, bicyclic, or tricyclic, respectively. A ring heteroatom or ring carbon is the point of attachment of the heterocyclyl substituent to another moiety. Any atom can be substituted, e.g., by one or more substituents. The heterocyclyl groups can contain fused rings. Fused rings are rings that share a common carbon or nitrogen atom. Heterocyclyl groups can include, e.g., tetrahydrofuryl, tetrahydropyranyl, piperidyl (piperidino), piperazinyl, morpholinyl (morpholino), pyrrolinyl, and pyrrolidinyl.


The term “cycloalkenyl” refers to partially unsaturated monocyclic, bicyclic, tricyclic, or other polycyclic hydrocarbon groups. A ring carbon (e.g., saturated or unsaturated) is the point of attachment of the cycloalkenyl substituent. Any atom can be optionally substituted e.g., by one or more substituents. The cycloalkenyl groups can contain fused rings. Fused rings are rings that share a common carbon or nitrogen atom. Cycloalkenyl moieties can include, e.g., cyclohexenyl, cyclohexadienyl, or norbornenyl.


The term “heterocycloalkenyl” refers to partially unsaturated monocyclic, bicyclic, tricyclic, or other polycyclic hydrocarbon groups having 1-4 heteroatoms if monocyclic, 1-8 heteroatoms if bicyclic, or 1-10 heteroatoms if tricyclic, said heteroatoms selected from O, N, or S (and mono and dioxides thereof, e.g., N→O, S(O), SO2) (e.g., carbon atoms and 1-4, 1-8, or 1-10 heteroatoms of N, O, or S if monocyclic, bicyclic, or tricyclic, respectively). A ring carbon (e.g., saturated or unsaturated) or heteroatom is the point of attachment of the heterocycloalkenyl substituent. Any atom can be optionally substituted, e.g., by one or more substituents. The heterocycloalkenyl groups can contain fused rings. Fused rings are rings that share a common carbon or nitrogen atom. Heterocycloalkenyl groups can include, e.g., tetrahydropyridyl, dihydropyranyl, 4,5-dihydrooxazolyl, 4,5-dihydro-1H-imidazolyl, 1,2,5,6-tetrahydro-pyrimidinyl, and 5,6-dihydro-2H-[1,3]oxazinyl.


The term “aryl” refers to a fully unsaturated, aromatic monocyclic, bicyclic, or tricyclic, hydrocarbon ring system, wherein any ring atom can be optionally substituted, e.g., by one or more substituents. Aryl groups can contain fused rings. Fused rings are rings that share a common carbon atom. Aryl moieties can include, e.g., phenyl, naphthyl, anthracenyl, and pyrenyl.


The term “heteroaryl” refers to a fully unsaturated, aromatic monocyclic, bicyclic, tricyclic, or other polycyclic hydrocarbon groups having 1-4 heteroatoms if monocyclic, 1-8 heteroatoms if bicyclic, or 1-10 heteroatoms if tricyclic, said heteroatoms independently selected from O, N, or S (and mono and dioxides thereof, e.g., N→O, S(O), SO2) (e.g., carbon atoms and 1-4, 1-8, or 1-10 heteroatoms of N, O, or S if monocyclic, bicyclic, or tricyclic, respectively). Any atom can be optionally substituted, e.g., by one or more substituents. Heteroaryl groups can contain fused rings. Fused rings are rings that share a common carbon atom. Heteroaryl groups can include, e.g., pyridyl, thienyl, furyl (furanyl), imidazolyl, indolyl, isoquinolyl, quinolyl and pyrrolyl.


The descriptor C(O)) refers to a carbon atom that is doubly bonded to an oxygen atom.


The term “substituent” refers to a group “substituted” on, e.g., an alkyl, haloalkyl, cycloalkyl, alkenyl, alkynyl, aralkyl, heteroaralkyl, heterocyclyl, heterocycloalkenyl, cycloalkenyl, aryl, or heteroaryl group at any atom of that group. In one aspect, the substituent(s) (e.g., Rd) on a group are independently any one single, or any combination of two or more of the permissible atoms or groups of atoms delineated for that substituent. In another aspect, a substituent may itself be substituted with any one of the above substituents.


In general, when a definition for a particular variable includes both hydrogen and non-hydrogen (halo, alkyl, aryl, etc.) possibilities, the term “substituent(s) other than hydrogen” refers collectively to the non-hydrogen possibilities for that particular variable.


Descriptors such as “C1-C6 alkyl which is optionally substituted with from 1-2 Ra” (and the like) is intended to include as alternatives both unsubstituted C1-C6 alkyl and C1-C6 alkyl that is substituted with from 1-2 Ra. The use of a substituent (radical) prefix names such as alkyl without the modifier “optionally substituted” or “substituted” is understood to mean that the particular substituent is unsubstituted. However, the use of “haloalkyl” without the modifier “optionally substituted” or “substituted” is still understood to mean an alkyl group, in which at least one hydrogen atom is replaced by halo.


In some embodiments, the compounds have agonist activity for genes involved with HDL production and cholesterol efflux (e.g., ABCA1) and antagonist activity for genes involved with triglyceride synthesis (e.g., SREBP-1c).


The details of one or more embodiments of the invention are set forth in the description below. Other features and advantages of the invention will be apparent from the description and from the claims.







DETAILED DESCRIPTION

This invention relates generally to benzimidazole-based modulators of Liver X receptors (LXRs) and related methods.


The benzimidazole-based LXR modulators have the general formula (I):




embedded image


in which R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, R11, R12, R13, R14, R15, W, W1, W2, A, Ra, Rb, Rc, Rd, Re, Rg, Rh, Rm, Rn, and n, can be, independently, as defined anywhere herein.


For ease of exposition, it is understood that where in this specification (including the claims), a group is defined by “as defined anywhere herein” (or the like), the definitions for that particular group include the first occurring and broadest generic definition as well as any sub-generic and specific definitions delineated anywhere in this specification.


Variable R1


In some embodiments, R1 can be:


(1-i) hydrogen; or


(1-ii) C1-C6 (e.g., C1-C3) alkyl or C1-C6 (e.g., C1-C4 or C1-C3) haloalkyl, each of which is optionally substituted with from 1-10 (e.g., 1-5, 1-4, 1-3, 1-2, 1) Ra; or


(1-iv) C3-C10 (e.g., C3-C8 or C3-C6) cycloalkyl, C3-C10 (e.g., C3-Cs or C3-C6) cycloalkenyl, heterocyclyl including 3-10 (e.g., 3-8 or 3-6) atoms, heterocycloalkenyl including 3-10 (e.g., 3-8 or 3-6) atoms, C7-C11 (e.g., C7-C10) aralkyl, or heteroaralkyl including 6-11 (e.g., 6-10) atoms, each of which is optionally substituted with from 1-10 (e.g., 1-5, 1-4, 1-3, 1-2, 1) Rc; or


(1-v) C6-C10 (e.g., phenyl) aryl or heteroaryl including 5-10 (e.g., 5-6) atoms, each of which is optionally substituted with from 1-10 (e.g., 1-5, 1-4, 1-3, 1-2, 1) Rd.


In some embodiments, R1 can be:


(1-i) hydrogen; or


(1-ii) C1-C6 (e.g., C1-C3) alkyl or C1-C6 (e.g., C1-C4) haloalkyl, each of which is optionally substituted with from 1-10 (e.g., 1-5, 1-4, 1-3, 1-2, 1) Ra; or


(1-iv′) C3-C10 (e.g., C3-C8 or C3-C6) cycloalkyl, C7-C1i (e.g., C7-C10) aralkyl, or heteroaralkyl including 6-11 (e.g., 6-10) atoms, each of which is optionally substituted with from 1-10 (e.g., 1-5, 1-4, 1-3, 1-2, 1) Rc; or


(1-v) C6-C6 (e.g., phenyl) aryl or heteroaryl including 5-10 (e.g., 5-6) atoms, each of which is optionally substituted with from 1-10 (e.g., 1-5, 1-4, 1-3, 1-2, 1) Rd.


In some embodiments, R1 can be any one of: (1-i), (1-ii), (1-iv), (1-iv′), and (1-v). In certain embodiments, R1 can be hydrogen. In other embodiments, R1 can be a substituent other than hydrogen.


In some embodiments, R1 can be any two of: (1-i), (1-ii), (1-iv), (1-iv′), and (1-v). In certain embodiments, R1 can be hydrogen and any one of (1-ii), (1-iv), (1-iv′), and (1-v). In other embodiments, R1 can be any two of (1-ii), (1-iv), (1-iv′), and (1-v), e.g., R1 can be (1-ii) and (1-iv′).


In some embodiments, R1 can be any three of: (1-i), (1-ii), (1-iv), (1-iv′), and (1-v). In certain embodiments, R1 can be hydrogen and any two of (1-ii), (1-iv), (1-iv′), and (1-v), e.g., R1 can be (1-ii) and (1-iv′). In other embodiments, R1 can be any three of (1-ii), (1-iv), (1-iv′), and (1-v), e.g., (1-ii), (1-iv′), and (1-v).


In embodiments, R1 can be C1-C6 (e.g., C1-C5 or C1-C3) alkyl. For example, R1 can be methyl (CH3), ethyl (CH2CH3), propyl (CH2CH2CH3), isopropyl (CH(CH3)2), or 2-methylpropyl (CH2CH(CH3)2). As another example, R1 can be CH3, CH2CH3, or CH2CH2CH3. As a further example, R1 can be branched C3-C6 alkyl.


In embodiments, R1 can be C1-C6 (e.g., C1-C4, C1-C3) haloalkyl (e.g., perhaloalkyl). For example, R1 can be CF3 or CHF2.


In embodiments, R1 can be C3-C6 (e.g., C3-C5) cycloalkyl. For example, R1 can be cyclopropyl.


In embodiments, R1 can be C7-C11 (e.g., C7-C10) aralkyl, which is optionally substituted with from 1-5 (e.g., 1-4, 1-3, 1-2, 1) Rc. For example, R1 can be benzyl or 2-phenylethyl, each of which is optionally substituted with from 1-5 (e.g., 1-4, 1-3, 1-2, 1) Rc (e.g., Rc can be halo, e.g., fluoro).


In embodiments, R1 can be heteroaralkyl including 6-10 atoms, which is optionally substituted with from 1-5 (e.g., 1-4, 1-3, 1-2, 1) Rc. In certain embodiments, the alkyl portion can be C1-C2 alkylene, and the heteroaryl portion can be thienyl, furyl, pyrrolyl, or pyridinyl, each of which is optionally substituted with from 1-5 (e.g., 1-4, 1-3, 1-2, 1) Rc.


In embodiments, R1 can be C6-C10 aryl, which is optionally substituted with from 1-5 (e.g., 1-4, 1-3, 1-2, 1) Rd. For example, R1 can be phenyl, which is optionally substituted with from 1-5 (e.g., 1-4, 1-3, 1-2, 1) Rd.


In embodiments, R1 can be heteroaryl including 5-10 (e.g., 5-6) atoms, each of which is optionally substituted with from 1-5 (e.g., 1-4, 1-3, 1-2, 1) Rd. For example, R1 can be thienyl, furyl, pyrrolyl, or pyridinyl, each of which is optionally substituted with from 1-5 (e.g., 1-4, 1-3, 1-2, 1) Rd.


In some embodiments, when: (i) R2 is phenyl that is substituted with 1 WA and 0 Re (e.g., monosubstituted at the meta position with WA only); and (ii) W is a bond; and (iii) A is phenyl that is substituted with 1 Rg and 0 Rg (e.g., monosubstituted at the meta position with R9 only); and (iv) R9 is —W2—C(O)OR13; and (v) R13 is C1-C6 alkyl (e.g., CH2CH3); then R1 (and optionally one or more of R3, R4, R5, and R6) can be a substituent other than hydrogen.


Variable R2


In some embodiments, R2 can be C6-C10 (e.g., phenyl) aryl, which is (i) substituted with 1 R7 and (ii) optionally substituted with from 1-5 (e.g., 1-3, 1-2, 1) Re.


In some embodiments, when R2 is aryl and substituted with Re, each Re can be independently of one another: halo (e.g., chloro); C1-C3 alkyl; C1-C3 haloalkyl (e.g., C1-C3 fluoroalkyl, e.g., 1-5 fluorines can be present; or C1-C3 perfluoroalkyl); CN; hydroxyl; NRmRn (e.g., NH2, monoalkylamino, or dialkylamino); C1-C3 alkoxy; or C1-C3 haloalkoxy.


In certain embodiments, when R2 is substituted with Re, each Re can be independently of one another: C1-C3 alkyl; C1-C3 haloalkyl, e.g., C1-C3 perfluoroalkyl; halo (e.g., chloro); or CN.


In certain embodiments, when R2 is substituted with Re, each Re can be independently of one another: C1-C3 alkyl; or C1-C3 haloalkyl, e.g., C1-C3 perfluoroalkyl; halo (e.g., chloro).


In certain embodiments, when R2 is substituted with Re, each Re can be independently of one another halo (e.g., chloro).


In some embodiments, R2 can be C6-C10 aryl, which is (i) substituted with 1 R7 and (ii) optionally substituted with from 1-4 (e.g., 1-3, 1-2, 1) Re.


In some embodiments, R2 can be C6-C10 aryl, which is (i) substituted with 1 R7 and (ii) optionally substituted with 1 or 2 Re.


In certain embodiments, R2 can be phenyl, which is (i) substituted with 1 R7 and (ii) optionally substituted with 1 or 2 (e.g., 1) Re (e.g., halo, e.g., chloro). In other embodiments, R2 can be phenyl, which is substituted with 1 R7. In these embodiments, R2 can have formula (A), in which R7 (i.e., the moiety —WA) can be attached to a ring carbon that is ortho, meta, or para (e.g., meta or para; e.g., meta) with respect to the ring carbon that connects the phenyl ring to the 1-position of the benzimidazole ring, and Re, when present can be connected to ring carbons that are not occupied by WA. For example, R2 can have formula (A-1), in which R7 (WA) is attached to the ring carbon that is meta with respect to the ring carbon that connects the phenyl ring to the 1-position of the benzimidazole ring in formula (I).




embedded image


In certain embodiments, R2 can have formula (A-2) or (A-3):




text missing or illegible when filed


In certain embodiments, when R2 has formula (A-2), each of R22, R23, and R24 can be, independently of one another, hydrogen or Re, in which Re can be as defined anywhere herein. In embodiments, each of R22, R23, and R24 can be hydrogen; or one of R22, R23, and R24 can be Re, and the other two are hydrogen. In these and other embodiments related to formula (A-2), each of W, A, and Re can be as defined anywhere herein.


In embodiments, each of R22, R23, and R24 can be hydrogen. In other embodiments, each of R22, R23, and R24 can be a substituent other than hydrogen. In still other embodiments, one or two of R22, R23, and R24 can be Re, and the other(s) are hydrogen.


In certain embodiments, one of R22, R23, and R24 can be Re, and the other two are hydrogen. In embodiments, R22 can be Re, and each of R23 and R24 can be hydrogen. In certain embodiments, Re can be: halo (e.g., chloro); C1-C3 alkyl; or C1-C3 haloalkyl (e.g., C1-C3 fluoroalkyl, e.g., 1-5 fluorines can be present; or C1-C3 perfluoroalkyl). In certain embodiments, Re can be halo (e.g., chloro).


In certain embodiments, it is provided that when: (i) R2 is phenyl that is substituted with 1 WA and 0 Re (e.g., monosubstituted at the meta position with WA only); and (ii) W is a bond; and (iii) A is phenyl that is substituted with 1 R9 and 0 Rg (e.g., monosubstituted at the meta position with R9 only); and (iv) R9 is —W2—C(O)OR13; and (v) R13 is C1-C6 alkyl (e.g., CH2CH3); then one (or more) of R1, R3, R4, R5, or R6 (e.g., R1 and/or R6) must be a substituent other than hydrogen.


In certain embodiments, can have formula (A-3) above, in which R7 (WA) is attached to the ring carbon that is para with respect to the ring carbon that connects the phenyl ring to the 1-position of the benzimidazole ring in formula (I). In these and other embodiments related to formula (A-3), each of W and A can be, independently, as defined anywhere herein.


In some embodiments, R2 can be heteroaryl including 5-10 (e.g., 5-6) atoms, which is (i) substituted with 1 R7 and (ii) optionally substituted with from 1-5 (e.g., 1-3, 1-2, 1) Re.


In embodiments, when R2 is heteroaryl and substituted with Re, each Re can be independently as defined anywhere herein. For example, each Re can be independently of one another: C1-C3 alkyl; C1-C3 haloalkyl, e.g., C1-C3 perfluoroalkyl; halo (e.g., chloro); e.g., each Re can be halo (e.g., chloro).


In some embodiments, R2 can be heteroaryl including 5-10 atoms, which is (i) substituted with 1 R7 and (ii) optionally substituted with from 1-4 (e.g., 1-3, 1-2, 1) Re.


In some embodiments, R2 can be heteroaryl including 5-10 atoms, which is (i) substituted with 1 R7 and (ii) optionally substituted with 1 or 2 Re.


In some embodiments, R2 can be heteroaryl including 5-6 atoms, which is (i) substituted with 1 R7 and (ii) optionally substituted with 1 or 2 Re.


In some embodiments, R2 can be heteroaryl including 8-10 atoms, which is (i) substituted with 1 R7 and (ii) optionally substituted with 1 or 2 Re.


In certain embodiments, R2 can be pyridyl, pyrimidinyl, thienyl, furyl, quinolinyl, oxazolyl, thiazolyl, imidazolyl, isoxazolyl, indolyl, benzo[1,3]-dioxolyl, benzo[1,2,5]-oxadiazolyl, isochromenyl-1-one, 3-H-isobenzofuranyl-1-one (e.g., pyridyl, thienyl, or indolyl, e.g., pyridyl or indolyl, e.g., pyridyl), each of which is (i) substituted with 1 R7 and (ii) optionally substituted with 1 or 2 Re. For example, R2 can be pyridyl substituted with 1 R7.


Variable W


In some embodiments, W can be —O—.


In some embodiments, W can be a bond.


In other embodiments, W can be —W1(C1-6 alkylene)-. In certain embodiments, W1 can be —O—. For example, W can be —O(C1-3 alkylene)- (e.g., —OCH2—, —OCH2CH2—, or —OCH2CH2CH2—, e.g., —OCH2—)).


In some embodiments, W can be —NR8— (e.g., —NH—).


In some embodiments, W can be —(C1-6 alkylene)W1—. In certain embodiments, W1 is —NR9—, in which R9 can be hydrogen; or W1 can be —O—. In certain embodiments, W can be —(C1-3 alkylene)NH— (e.g., —CH2NH—). In certain embodiments, W can be —(C1-3 alkylene)O— (e.g., —CH2O—).


In still other embodiments, W can be C2-C4 alkenylene (e.g., —CH═CH—); C2-C4 alkynylene (e.g., —C≡C—); or C1-3 alkylene (e.g., CH2).


Variable A


In general, A is an aromatic or heteroaromatic ring system that is (a) substituted with one R9; and (b) optionally substituted with one or more Rg.


In some embodiments, A can be C6-C10 (e.g., phenyl) aryl, which is (a) substituted with 1 R9; and (b) optionally further substituted with from 1-5 (e.g., 1-4, 1-3, 1-2, 1, e.g., 1-2) Rg, in which Rg can be as defined anywhere herein.


In embodiments, when A is aryl and substituted with one or more Rg, each Rg can be independently of one another:


(i) halo; C1-C6 (e.g., C1-C3) alkoxy or C1-C6 (e.g., C1-C3) haloalkoxy; or cyano; or


(ii) C1-C6 (e.g., C1-C3) alkyl or C1-C6 (e.g., C1-C3) haloalkyl


In embodiments, when A is aryl and substituted with one or more Rg, each Rg can be independently of one another:


(i) halo; C1-C6 (e.g., C1-C3) alkoxy or C1-C6 (e.g., C1-C3) haloalkoxy; or cyano; or


(ii) C1-C6 (e.g., C1-C3) alkyl or C1-C6 (e.g., C1-C3) haloalkyl.


In embodiments, when A is aryl and substituted with one or more R9, each R9 can be independently of one another:

    • halo (e.g., chloro or fluoro); or
    • C1-C6 (e.g., C1-C3) alkoxy; NRmRn; C1-C6 (e.g., C1-C3) haloalkoxy; or
    • cyano; or
    • C1-C6 (e.g., C1-C3) alkyl or C1-C6 (e.g., C1-C3) haloalkyl.


In some embodiments, A can be C6-C10 aryl, which is (i) substituted with 1 R9 and (ii) optionally substituted with from 1-5 (e.g., 1-4, 1-3, 1-2, 1, e.g., 1-2) Rg.


In some embodiments, A can be phenyl, which is (i) substituted with 1 R9 and (ii) optionally substituted with from 1-4 (e.g., 1-3, 1-2, 1) Rg.


In these embodiments, R9 can be attached to a ring carbon that is ortho, meta, or para (e.g., meta or para) with respect to the ring carbon that connects the phenyl ring to W.


In certain embodiments, A can have formula (B-1):




embedded image


in which one of RA3 and RA4 is R9, the other of RA3 and RA4 and each of RA2, RA5, and RA6 is, independently, hydrogen or Rg. In these and other embodiments related to formula (B-1), each of R9 and Rg can be, independently, as defined anywhere herein.


In embodiments, one of RA3 and RA4 can be R9, the other of RA3 and RA4 can be hydrogen; and each of RA2, RA5, and RA6 can be, independently, hydrogen or Rg.


In certain embodiments, RA3 can be R9. For example, RA3 can be R9, RA4 can be hydrogen, and each of RA2, RA5, and RA6 can be hydrogen. As another example, RA3 can be R9; RA4 can be hydrogen; one of RA2, RA5, and RA6 (e.g., RA5) can be Rg (e.g., halo) and the other two of RA2, RA5, and RA6 can be hydrogen.


In certain embodiments, RA4 can be R9. For example, RA4 can be R9, RA3 can be hydrogen, and each of RA2, RA5, and RA6 can be hydrogen. As another example, RA3 can be R9; RA4 can be hydrogen; one of RA2, RA5, and RA6 can be Rg (e.g., halo) and the other two of RA2, RA5, and RA6 can be hydrogen.


In certain embodiments, it is provided that when: (i) R2 is phenyl that is substituted with 1 WA and 0 Re (e.g., monosubstituted at the meta position with WA only); and (ii) W is a bond; and (iii) A is phenyl that is substituted with 1 R9 and 0 Rg (e.g., monosubstituted at the meta position with R9 only); and (iv) R9 is —W2—C(O)OR13; and (v) R13 is C1-C6 alkyl (e.g., CH2CH3); then one (or more) of R1, R3, R4, R5, or R6 (e.g., R1 and/or R6) must be a substituent other than hydrogen.


In some embodiments, A can be heteroaryl including 5-10 atoms, which is (a) substituted with 1 R9; and (b) is optionally substituted with from 1-3 (e.g., 1-2, 1) Rg, in which Rg can be as defined anywhere herein.


In some embodiments, A can be heteroaryl including 5-10 atoms, which is (a) substituted with 1 R9; and (b) is optionally substituted with from 1-3 (e.g., 1-2, 1) Rg.


In certain embodiments, A can be pyrrolyl, pyridyl, pyridyl-N-oxide, pyrazolyl, pyrimidinyl, thienyl, furyl, quinolinyl, oxazolyl, thiazolyl, imidazolyl, isoxazolyl, indolyl, benzo[1,3]-dioxolyl, benzo[1,2,5]-oxadiazolyl, isochromenyl-1-one, 3-H-isobenzofuranyl-1-one (e.g., pyridyl, thienyl, or indolyl, e.g., pyridyl), which is (i) substituted with 1 R9 and (ii) optionally substituted with 1-3 (e.g., 1-2, 1) Rg.


In certain embodiments, A can be pyrrolyl, pyridyl, pyrimidinyl, pyrazolyl, thienyl, furyl, quinolyl, oxazolyl, thiazolyl, imidazolyl, or isoxazolyl, each of which is (a) substituted with 1 R9; and (b) is optionally substituted with from 1-3 (e.g., 1-2, 1) Rg.


In certain embodiments, A can be pyridyl, pyrimidinyl, thienyl, furyl, oxazolyl, thiazolyl, imidazolyl, or isoxazolyl, each of which is (a) substituted with 1 R9; and (b) is optionally substituted with from 1-3 (e.g., 1-2, 1) Rg.


In certain embodiments, A can be pyridyl in which W is attached to the 2- or 3-position of the pyridiyl ring. For example, A can be pyridyl in which W is attached to the 2-position of the pyridyl ring, and R9 is attached to the 4- or the 6-position of the pyridyl ring. Such rings can be further substituted with 1, 2 or 3 Rg (e.g., halo, e.g., chloro; or NRgRh, e.g., NH2).


Variable R9


R9 can be:


(9-i) —W2—S(O)nR10 or —W2—S(O)nNR11R12; or


(9-ii) —W2—C(O)OR13; or


(9-iii) —W2—C(O)NR11R12; or


(9-iv) —W2—CN; or


(9-v) C1-C12 alkyl or C1-C12 haloalkyl, each of which is:

    • (a) substituted with 1 Rh, and
    • (b) optionally further substituted with from 1-5 Ra; or


(9-vi) —NR14R15.


In some embodiments, R9 can be:

    • (9-i′) —W2—S(O)nR10; or
    • (9-ii), (9-iii), (9-iv), (9-v), or (9-vi).


In some embodiments, R9 can be any one of: (9-i), (9-i′), (9-ii), (9-iii), (9-iv), (9-v), or (9-vi). In certain embodiments, R9 can be —W2—S(O)nR10 or —W2—S(O)nNR11R12 (e.g., —W2—S(O)nR10). In other embodiments, R9 can be —W2—C(O)OR13.


In some embodiments, R9 can be any two of: (9-i), (9-i′), (9-ii), (9-iii), (9-iv), (9-v), or (9-ci). In certain embodiments, R9 can be —W2—S(O)nR10 or —W2—S(O)nNR11R12 (e.g., —W2—S(O)nR10) and any one of (9-ii), (9-iii), (9-iv), (9-v), or (9-vi). For example, R9 can be:

    • —W2—S(O)nR10 or —W2—S(O)nNR11R12 (e.g., —W2—S(O)nR10); and
    • —W2—C(O)OR13.


In other embodiments, R9 can be any two of (9-ii), (9-iii), (9-iv), (9-v), or (9-vi).


In some embodiments, R9 can be any three of: (9-i), (9-i′), (9-ii), (9-iii), (9-iv), (9-v), or (9-vi).


In certain embodiments, R9 can be —W2—S(O)nR10, —W2—S(O)nNR11R12, and W2—C(O)OR13.


In certain embodiments, R9 can be:

    • —W2—S(O)nR10 or —W2—S(O)nNR11R12 (e.g., —W2—S(O)nR10); and
    • —W2—C(O)OR13; and
    • any one of (9-iii), (9-iv), (9-v), or (9-vi).


In other embodiments, R9 can be any three of (9-iii), (9-iv), (9-v), or (9-vi).


In some embodiments, R9 can be —W2—S(O)nR10 (e.g., —W2—S(O)2R10, in which n is 2). In embodiments, W2 can be a bond, and R9 is connected to variable A by the sulfur (S) atom of the sulfinyl or the sulfonyl group.


In some embodiments, R10 can be C1-C6 (e.g., C1-C5 or C2-C6) alkyl or C1-C6 (e.g., C1-C5 or C1-C3) haloalkyl, optionally substituted with from 1-2 Ra.


In certain embodiments, R10 can be C1-C10 (e.g., C1-C5 or C2-C8) alkyl, optionally substituted with from 1-2 (e.g., 1) Ra.


In certain embodiments, R10 can be unsubstituted branched or unbranched C1-C6 (e.g., C1-C5, C2-C6, or C3-C6) alkyl. For example, R10 can be methyl (CH3). As another example, R10 can be ethyl (CH2CH3) or propyl (CH2CH2CH3). As a further example, R10 can be isopropyl (CH(CH3)2) or 2-methylpropyl (CH2CH(CH3)2).


In certain embodiments, R10 can be branched or unbranched C2-C6 (e.g., C3-C6 or C3-C5) alkyl, which is substituted with 1 Ra. In embodiments, Ra can be: hydroxyl; C1-C6 (e.g., C1-C3) alkoxy; C3-C7 cycloalkoxy or C6-C10 aryloxy, each of which can be optionally substituted with Rc and Rd, respectively; NRmRn; halo; or heterocyclyl including 3-8 atoms, which is optionally substituted with from 1-5 Rc. For example, Ra can be hydroxyl, C1-C6 (e.g., C1-C3) alkoxy, or NRmRn (e.g., hydroxyl). In certain embodiments, Ra (e.g., hydroxyl) can be attached to a secondary or tertiary carbon atom of the alkyl group or a primary carbon of the alkyl group. In embodiments, R10 can be hydroxyl substituted C3-C6 (e.g., C3-C5) alkyl. For example, R10 can be 3-hydroxylpropyl (HOCH2CH2CH2) or 3-hydroxy-3-methylbutyl (HOC(CH3)2CH2CH2). In other embodiments, R10 can be C3-C6 (e.g., C3-C5) alkyl that is substituted with an amino group (NH2) or a secondary or tertiary amino group. For example, R10 can be 3-aminopropyl (NH2CH2CH2CH2).


In certain embodiments, R10 can be C1-C6 (e.g., C1-C5 or C1-C3) haloalkyl (e.g., CF3).


In certain embodiments, R10 can be C3-C6 cycloalkyl, optionally substituted with from 1-3 (e.g., 1-2 or 1) Rc. For example, R10 can be cyclopropyl.


In certain embodiments, R10 can be C7-C11 aralkyl (e.g., benzyl), optionally substituted with from 1-3 (e.g., 1-2, 1) Rc.


In certain embodiments, R10 can be C6-C10 aryl, optionally substituted with from 1-2 Rd.


In some embodiments, R9 can be —W2—S(O)nNR11R12 (e.g., —W2—S(O)2NR11R12, in which n is 2). In embodiments, W2 can be a bond, and R9 is connected to variable A by the sulfur (S) atom of the sulfinamide or sulfonamide group.


In certain embodiments, one or both of R11 and R12 can be hydrogen. In certain embodiments, R9 can be —S(O)2NH2. In other embodiments, one of R11 and R12 can be hydrogen, and the other of R11 and R12 can be:


(i) C1-C6 (e.g., C1-C3) alkyl or C1-C6 (e.g., C1-C3) haloalkyl, each of which is optionally substituted with from 1-5 (e.g., 1-4, 1-3, 1-2, 1) Ra (e.g., Ra can be: hydroxyl; C1-C6 (e.g., C1-C3) alkoxy; C3-C7 cycloalkoxy or C6-C10 aryloxy, each of which can be optionally substituted with Rc and Rd, respectively; NRmRn; or heterocyclyl including 3-8 atoms, which is optionally substituted with from 1-5 Rc); or


(iii) C7-C11 aralkyl, or heteroaralkyl including 6-11 atoms, each of which is optionally substituted with from 1-5 (e.g., 1-4, 1-3, 1-2, 1) Rc; or


(iv) C6-C10 aryl or heteroaryl including 5-10 atoms, each of which is optionally substituted with from 1-5 (e.g., 1-4, 1-3, 1-2, 1) Rd.


In certain embodiments, R11 and R12 can each be, independently of one another:


(i) C1-C6 alkyl or C1-C6 haloalkyl, each of which is optionally substituted with from 1-5 Ra; or


(ii) C2-C6 alkenyl or C2-C6 alkynyl, each of which is optionally substituted with from 1-5 Rb; or


(iii) C3-C10 cycloalkyl, C3-C10 cycloalkenyl, heterocyclyl including 3-10 atoms, heterocycloalkenyl including 3-10 atoms, C7-C11 aralkyl, or heteroaralkyl including 6-11 atoms, each of which is optionally substituted with from 1-5 Rc; or


(iv) C6-C10 aryl or heteroaryl including 5-10 atoms, each of which is optionally substituted with from 1-5 Rd.


In certain embodiments, R11 and R12 can each be, independently of one another:


(i) C1-C6 (e.g., C1-C3) alkyl or C1-C6 (e.g., C1-C3) haloalkyl, each of which is optionally substituted with from 1-5 (e.g., 1-4, 1-3, 1-2, 1) Ra (e.g., Ra can be: hydroxyl; C1-C6 (e.g., C1-C3) alkoxy; C3-C7 cycloalkoxy or C6-C10 aryloxy, each of which can be optionally substituted with Rc and Rd, respectively; NRmRn; or heterocyclyl including 3-8 atoms, which is optionally substituted with from 1-5 Rc); or


(iii) C7-C11 aralkyl, or heteroaralkyl including 6-11 atoms, each of which is optionally substituted with from 1-5 (e.g., 1-4, 1-3, 1-2, 1) Rc; or


(iv) C6-C10 aryl or heteroaryl including 5-10 atoms, each of which is optionally substituted with from 1-5 (e.g., 1-4, 1-3, 1-2, 1) Rd.


In certain embodiments, R11 and R12 together with the nitrogen atom to which they are attached can form a heterocyclyl including 3-10 (e.g., 3-8 or 3-6) atoms or a heterocycloalkenyl including 3-10 (e.g., 3-10, 3-8, or 3-6) atoms, each of which is optionally substituted with from 1-5 (1-4, 1-3, 1-2, 1) Rc. In some embodiments, the heterocyclyl can further include one or more additional ring heteroatoms (e.g., N, O, or S).


In certain embodiments, R11 and R12 together with the nitrogen atom to which they are attached can form a heterocyclyl including 3-10 (e.g., 3-8, 3-6, or 5-6) atoms, which is optionally substituted with from 1-5 (1-4, 1-3, 1-2, 1) Rc. For example, R11 and R12 together with the nitrogen atom to which they are attached can form a morpholinyl, piperidyl, pyrrolidinyl, or piperazinyl ring, each of which is optionally substituted with from 1-5 (1-4, 1-3, 1-2, 1) Rc.


In some embodiments, R9 can be —W2—C(O)OR13. In some embodiments, W2 can be C1-C6 alkylene, optionally substituted with from 1-3 Rf; or a bond. In certain embodiments, W2 can be C1-C6 alkylene. For example, W2 can be C1-C3 alkylene, such as CH2 or CH2CH2. In other embodiments, W2 can be a bond.


In some embodiments, R13 can be:


(i) hydrogen; or


(ii) C1-C6 alkyl, which is optionally substituted with from 1-3 (e.g., 1-2, 1) Ra; or


(iii) C3-C7 cycloalkyl or C7-C11 aralkyl, each of which is optionally substituted with from 1-5 Rc; or


(iv) C6-C10 aryl or heteroaryl including 5-10 atoms, each of which is optionally substituted with from 1-5 Rd.


In certain embodiments, R13 can be hydrogen. In other embodiments, R13 can be substituent other than hydrogen.


In certain embodiments, R13 can be other than (ii) C1-C6 alkyl, which is optionally substituted with from 1-3 (e.g., 1-2, 1) Ra, e.g., other than unsubstituted C1-C6 alkyl (e.g., other than C2, C1-C3 or C1-C4 alkyl).


For example, R13 can be hydrogen and one or both of:


(iii) C3-C7 cycloalkyl or C7-C11 aralkyl, each of which is optionally substituted with from 1-5 Rc; or


(iv) C6-C10 aryl or heteroaryl including 5-10 atoms, each of which is optionally substituted with from 1-5 Rd.


As another example,


R13 can be one or both of:


(iii) C3-C7 cycloalkyl or C7-C11 aralkyl, each of which is optionally substituted with from 1-5 Rc; or


(iv) C6-C10 aryl or heteroaryl including 5-10 atoms, each of which is optionally substituted with from 1-5 Rd.


In certain embodiments, it is provided that when: (i) R2 is phenyl that is substituted with 1 WA and 0 Re (e.g., monosubstituted at the meta position with WA only); and (ii) W is a bond; and (iii) A is phenyl that is substituted with 1 R9 and 0 Rg is —W2—C(O)OR13; (e.g., monosubstituted at the meta position with R9 only); and (iv) R9 is —W2—C(O)OR13; and (v) R13 is C1-C6 alkyl (e.g., CH2CH3); then one (or more) of R1, R3, R4, R5, or R6 (e.g., R1 and/or R6) must be a substituent other than hydrogen.


In some embodiments, R9 can be —W2—C(O)NR11R12.


Embodiments can include, for example, any one or more of the features described above in conjunction with —W2—S(O)nNR11R12 and/or —W2—C(O)OR13.


In some embodiments, R9 can be —W2—CN (e.g., CN).


In some embodiments, R9 can be C1-C6 alkyl or C1-C6 haloalkyl, each of which is (a) substituted with 1 Rh, and (b) optionally further substituted with from 1 or 2 Ra (e.g., Ra can be C3-C7 cycloalkyl, which is optionally substituted with from 1-5 Rc).


In certain embodiments, Rh at each occurrence can be, independently, hydroxyl, C1-C6 alkoxy, C1-C6 haloalkoxy; C3-C10 cycloalkoxy, which is optionally substituted with from 1-5 Rc; or C6-C10 aryloxy or heteroaryloxy including 5-10 atoms, each of which is optionally substituted with from 1-5 Rd.


In certain embodiments, R9 can have the following formula: —C(R91)(R92)(Rh), in which each of R91 and R92 is, independently, C1-C12 alkyl or C1-C12 haloalkyl, each of which is optionally further substituted with from 1 or 2 Ra (e.g., Ra can be C3-C7 cycloalkyl, which is optionally substituted with from 1-5 Rc); C3-C7 cycloalkyl, which is optionally substituted with from 1-5 Rc; or C6-C10 aryl, which is optionally substituted with from 1-10 Rd; and Rh can be as defined anywhere herein.


In some embodiments, R9 can be —NR14R15, one of R14 and R15 is hydrogen or C1-C3 alkyl (e.g., hydrogen); and the other of R14 and R15 can be:


(i) —S(O)nR10; or


(ii) —C(O)OR13; or


(iii) —C(O)NR11R12; or


(iv) C1-C12 alkyl or C1-C12 haloalkyl, each of which is:

    • (a) substituted with 1 Rh, and
    • (b) optionally further substituted with from 1-5 Ra


In embodiments, each of n, R10, R11, R12, R13, Rh, Ra, and Rd can be, independently, as defined anywhere herein. In embodiments, R13 can be other than hydrogen.


Variables R3, R4, and R5


In some embodiments, each of R3, R4, and R5 can be, independently:


(i) hydrogen; or


(ii) halo; or


(iii) C1-C6 alkyl or C1-C6 haloalkyl, each of which is optionally substituted with from 1-3 Ra.


In certain embodiments, each of R3, R4, and R5 can be, independently:


(i) hydrogen; or


(ii) halo; or


(iii) C1-C3 alkyl or C1-C3 haloalkyl (e.g., perhaloalkyl, e.g., perfluoroalkyl), each of which is optionally substituted with from 1-3 Ra.


In certain embodiments, each of R3, R4, and R5 can be, independently, hydrogen or halo (e.g., fluoro).


In certain embodiments, each of R3, R4, and R5 can be hydrogen.


In certain embodiments, each of R3, R4, and R5 can be a substituent other than hydrogen.


In certain embodiments, one or two of R3, R4, and R5 can be hydrogen, and the other can be:


(ii) halo; or


(iii) C1-C6 (e.g., C1-C3) alkyl or C1-C6 (e.g., C1-C3) haloalkyl (e.g., perhaloalkyl, e.g., perfluoroalkyl), each of which is optionally substituted with from 1-3 Ra.


In some embodiments, when: (i) R2 is phenyl that is substituted with 1 WA and 0 Re (e.g., monosubstituted at the meta position with WA only); and (ii) W is a bond; and (iii) A is phenyl that is substituted with 1 R9 and 0 Rg (e.g., monosubstituted at the meta position with R9 only); and (iv) R9 is —W2—C(O)OR13; and (v) R13 is C1-C6 alkyl (e.g., CH2CH3); then one or more of R3, R4, and R5 (and optionally R1 and/or R6) can be be a substituent other than hydrogen.


Variable R6


In some embodiments, R6 can be:


(ii) halo; or


(iii) C1-C6 alkyl or C1-C6 haloalkyl, each of which is optionally substituted with from 1-3 Ra; or


(iv) cyano.


In some embodiments, R6 can be halo, cyano, C1-C6 (e.g., C1-C3) alkyl, or C1-C6 (e.g., C1-C3) haloalkyl.


In some embodiments, R6 can be chloro or bromo (e.g., chloro), cyano, C1-C6 (e.g., C1-C3) alkyl, or C1-C6 (e.g., C1-C3) haloalkyl.


In some embodiments, R6 can be halo, C1-C6 (e.g., C1-C3) alkyl, or C1-C6 (e.g., C1-C3) haloalkyl.


In some embodiments, R6 can be chloro or bromo (e.g., chloro), C1-C6 (e.g., C1-C3) alkyl, or C1-C6 (e.g., C1-C3) haloalkyl.


In some embodiments, R6 can be halo (e.g., chloro) or C1-C6 (e.g., C1-C3) haloalkyl (e.g., CF3).


In some embodiments, R6 can be chloro or bromo (e.g., chloro) or C1-C6 (e.g., C1-C3) haloalkyl (e.g., CF3).


In certain embodiments, R6 can be chloro, cyano, CH3, CF3, or SO2CH3. In certain embodiments, R6 can be chloro, CH3, or CF3. In certain embodiments, R6 can be chloro or CF3.


In some embodiments, R6 can be hydrogen.


In some embodiments, R6 can be hydrogen, halo, cyano, C1-C6 (e.g., C1-C3) alkyl, or C1-C6 (e.g., C1-C3) haloalkyl.


In some embodiments, R6 can be hydrogen, chloro or bromo (e.g., chloro), cyano, C1-C6 (e.g., C1-C3) alkyl, or C1-C6 (e.g., C1-C3) haloalkyl.


In some embodiments, R6 can be hydrogen, halo, C1-C6 (e.g., C1-C3) alkyl, or C1-C6 (e.g., C1-C3) haloalkyl.


In some embodiments, R6 can be hydrogen, chloro or bromo (e.g., chloro), C1-C6 (e.g., C1-C3) alkyl, or C1-C6 (e.g., C1-C3) haloalkyl.


In some embodiments, R6 can be hydrogen, halo (e.g., chloro), or C1-C6 (e.g., C1-C3) haloalkyl (e.g., CF3).


In some embodiments, R6 can be hydrogen, chloro or bromo (e.g., chloro), or C1-C6 (e.g., C1-C3) haloalkyl.


In certain embodiments, R6 can be hydrogen, chloro, cyano, CH3, or CF3. In certain embodiments, R6 can be hydrogen, chloro, CH3, or CF3. In certain embodiments, R6 can be hydrogen, chloro, or CF3.


In some embodiments, R6 can be C1-C6 (e.g., C1-C3) haloalkyl (e.g., perfluoroalkyl, e.g., CF3).


In some embodiments, R6 can be halo (e.g., chloro). In some embodiments, R6 can be C1-C6 (e.g., C1-C3) alkyl (e.g., CH3).


In some embodiments, R6 can be cyano.


In some embodiments, when R9 is —W2—S(O)nR10 or —W2—S(O)nNR11R12, then R6 can be hydrogen or hydrogen and any one or more of the permissible non-hydrogen substitutents delineated above for R6.


In some embodiments, when R9 is other than —W2—S(O)nR10 or —W2—S(O)nNR11R12, then R6 can be other than hydrogen.


In some embodiments, when: (i) R2 is phenyl that is substituted with 1 WA and 0 Re (e.g., monosubstituted at the meta position with WA only); and (ii) W is a bond; and (iii) A is phenyl that is substituted with 1 R9 and 0 Rg (e.g., monosubstituted at the meta position with R9 only); and (iv) R9 is —W2—C(O)OR13; and (v) R13 is C1-C6 alkyl (e.g., CH2CH3); then R6 (and optionally one or more of R1, R3, R4, and R5) can be a substituent other than hydrogen.


A subset of compounds includes those in which:


R2 can be C6-C10 aryl, which is (a) substituted with 1 R7; and (b) optionally substituted with from 1-4 (e.g., 1-2) Re; and


A can be C6-C10 aryl, which is (a) substituted with from 1 R9; and (b) optionally substituted with from 1-4 Rg. In these embodiments, each of R7, R9, Re, and Rg can be, independently, as defined anywhere herein.


In certain embodiments:


R2 can be phenyl, which is (a) substituted with 1 R7 (i.e., WA); and (b) optionally substituted with from 1 Re; and


A can be phenyl, which is (a) substituted with 1 R9; and (b) optionally substituted with from 1-4 Rg. In these embodiments, each of R7, R9, Re, and Rg can be, independently, as defined anywhere herein.


For example, R2 can have formula (C-1):




embedded image


In some embodiments:


each of R22, R23, and R24 is, independently, hydrogen or Re; and one of RA2, RA3, RA4, RA5, and RA6 is R9, and the others are each, independently, hydrogen or Rg; and


W can be as defined anywhere herein.


In some embodiments:


(i) each of R22, R23, and R24 is hydrogen; or


(ii) one of R22, R23, and R24 is Re, and the other two are hydrogen; and


one of RA2, RA3, RA4, RA5, and RA6 is R9, and the others are each, independently, hydrogen or Rg.


Embodiments can include one or more of the following features.


W can be —O—, a bond, —OCH2—, or —NH— (e.g., —O—, a bond, or —OCH2—).


Re, R9, and Rg can each be, independently, as defined anywhere herein.


Each of R22, R23, and R24 can be hydrogen; or each of R22, R23, and R24 can be a substituent other than hydrogen; or one or two of R22, R23, and R24 can be Re, and the other(s) can be hydrogen.


One of R22, R23, and R24 can be Re, and the other two can be hydrogen. For example, R22 can be Re, and each of R23 and R24 can be hydrogen. In embodiments, Re can be: halo (e.g., chloro); C1-C3 alkyl; or C1-C3 haloalkyl (e.g., C1-C3 fluoroalkyl, e.g., 1-5 fluorines can be present; or C1-C3 perfluoroalkyl). In certain embodiments, Re can be halo (e.g., chloro).


One of RA3 and RA4 can be R9, the other of RA3 and RA4 can be hydrogen; and each of RA2, RA5, and RA6 can be, independently, hydrogen or Rg.


RA3 can be R9, RA4 can be hydrogen, and each of RA2, RA5, and RA6 can be hydrogen; or RA3 can be R9; RA4 can be hydrogen; one of RA2, RA5, and RA6 (e.g., RA5) can be Rg (e.g., halo, e.g., fluoro) and the other two of RA2, RA5, and RA6 can be hydrogen.


RA4 can be R9, RA3 can be hydrogen, and each of RA2, RA5, and RA6 can be hydrogen. RA3 can be R9; RA4 can be hydrogen; one of RA2, RA5, and RA6 can be Rg (e.g., halo) and the other two of RA2, RA5, and RA6 can be hydrogen.


R9 can be —W2—S(O)nR10, in which n is 2, and each of W2 and R10 can be as defined anywhere herein. For example, W2 can be a bond. As another example, R10 can be C1-C10 alkyl, optionally substituted with from 1-2 Ra. In embodiments, R10 can be CH3, CH2CH3, or isopropyl.


By way of example, RA3 can be —W2—S(O)nR10 can be 2. W2 can be a bond. R10 can be C1-C10 alkyl, optionally substituted with from 1-2 Ra. R10 can be C1-C3 alkyl (e.g., CH3). R10 can be C2-C8 alkyl substituted with 1 Ra (e.g., Ra can be hydroxyl or C1-C3 alkoxy). Each of RA2, RA4, RA5, and RA6 can be hydrogen. RA5 can be Rg, and each of RA2, RA4, and RA6 can be hydrogen.


R9 can be —W2—C(O)OR13. Each of W2 and R13 can be as defined anywhere herein. For example, W2 can be a bond or C1-C6 alkylene. As another example, R13 can be hydrogen.


By way of example, RA4 can be —W2—C(O)OR13. W2 can be a bond or C1-C6 alkylene (e.g., CH2). R13 can be hydrogen. Each of RA2, RA3, RA5, and RA6 can be hydrogen.


Other embodiments can include one of more other features described herein and present in combination with the features delineated above.


As another example, R2 can have formula (C-2):




embedded image


In some embodiments, one of RA2, RA3, RA4, RA5, and RA6 is R9, and the others are each, independently, hydrogen or Rg.


In some embodiments, one of RA3 and RA4 is R9, and the other of RA3 and RA4 is hydrogen; and each of RA2, RA5, and RA6 is, independently, hydrogen or Rg.


In these and other embodiments related to formula (C-2), each of R9 and Rg can be, independently, as defined anywhere herein.


Embodiments can include, for example, one or more of the following features (and/or any one or more other features described anywhere herein).


W can be —O—. W can be a bond. W can be —W1(C1-6 alkylene)-; in embodiments, W1 can be —O—, and W can be, for example, —OCH2—. W can be a bond or —W1(C1-6 alkylene)-.


In certain embodiments, RA3 can be R9, and RA4 can be hydrogen. For example, when RA3 is R9, R9 can be —W2—S(O)nR10. W2 can be a bond; n can be 2. R10 can be C1-C6 alkyl, optionally substituted with from 1-2 Ra. For example, R10 can be C1-C5 alkyl (e.g., CH3, CH3CH2, (CH3)2CH, e.g., CH3). As another example, R10 can be C2-C6 alkyl substituted with 1 Ra. In embodiments, Ra can be hydroxyl, C1-C3 alkoxy, or NRmRn. As another example, R10 can be C3-C6 cycloalkyl (e.g., cyclopropyl). As a further example, R10 is CF3. In embodiments, W2 can be a bond; n can be 2; and R10 can be C1-C5 alkyl (e.g., CH3, CH3CH2, (CH3)2CH, e.g., CH3). RA5 can be hydrogen or Rg (e.g., Rg), and each of RA2 and RA6 can be hydrogen. Each of RA2, RA5, and RA6 can be hydrogen. RA5 can be Rg (e.g., halo, e.g., fluoro), and each of RA2 and RA6 can be hydrogen.


In some embodiments, the compounds can have formula (II):




embedded image


in which each of R1, R2, R3, R4, and R5 can be, independently, as defined anywhere herein (generically, subgenerically, or specifically).


In some embodiments, the compounds can have formula (III):




embedded image


in which each of R1, R2, and R6 can be, independently, as defined anywhere herein (generically, subgenerically, or specifically).


In some embodiments, the compounds can have formula (IV):




embedded image


in which each of R1 and R2 can be, independently, as defined anywhere herein (generically, subgenerically, or specifically).


In some embodiments, the compounds can have formula (V):




embedded image


in which each of R1, R3, R4, R5, R6, Re, W, and A can be, independently, as defined anywhere herein (generically, subgenerically, or specifically).


In some embodiments, the compounds can have formula (VI):




embedded image


in which each of R1, R3, R4, R5, R6, R22, R23, R24, W, and A can be, independently, as defined anywhere herein (generically, subgenerically, or specifically).


In some embodiments, the compounds can have formula (VII):




embedded image


in which each of R1, R3, R4, R5, R6, R22, R23, R24, RA2, RA3, RA4, RA5, RA6, W, and A can be, independently, as defined anywhere herein (generically, subgenerically, or specifically).


In embodiments, the compounds of formulas (II), (III), (IV), (V), (VI), and (VII) can include any one or more of the following features.


R1 can be:


(i) hydrogen; or


(ii) C1-C6 (e.g., C1-C3 or C1-C2) alkyl or C1-C6 (e.g., C1-C3 or C1-C2) haloalkyl; or


(iii) C6-C10 (e.g., phenyl) or heteroaryl including 5-10 (e.g., 5-6 atoms), each of which is optionally substituted with from 1-5 Rd; or


(iv) C3-C6 cycloalkyl, C7-C11 (e.g., C7-C10) aralkyl, or heteroaralkyl including 6-11 (e.g., 6-10) atoms, each of which is optionally substituted with from 1-5 (e.g., 1-4, 1-3, 1-2, 1) Rc.


R1 can be hydrogen.


R1 can be:


(ii) C1-C6 (e.g., C1-C3 or C1-C2) alkyl or C1-C6 (e.g., C1-C3 or C1-C2) haloalkyl; or


(iii) C6-C10 (e.g., phenyl), which is optionally substituted with from 1-5 Rd; or


(iv) C3-C6 cycloalkyl, C7-C11 (e.g., C7-C10) aralkyl, which is optionally substituted with from 1-5 (e.g., 1-4, 1-3, 1-2, 1) Rc.


R1 can be:


(iii) heteroaryl including 5-10 (e.g., 5-6 atoms), which is optionally substituted with from 1-5 Rd; or


(iv) heteroaralkyl including 6-11 (e.g., 6-10) atoms, which is optionally substituted with from 1-5 (e.g., 1-4, 1-3, 1-2, 1) Rc.


R1 can be: H; CH3, CH2CH3, CH(CH3)2, or cyclopropyl; CF3; phenyl, which is optionally substituted with from 1-5 Rd; or benzyl, which is optionally substituted with from 1-5 Rc.


R2 can have formula (A), (A-1), (A-2), (A-3), or (C-1) as defined anywhere herein.


W can be —O—.


W can be a bond.


W can be —W1(C1-6 alkylene)-. In certain embodiments, W1 can be —O—. For example, W can be —O(C1-3 alkylene)- (e.g., —OCH2—).


W can be —(C1-6 alkylene)W1—. In certain embodiments, W1 is —NR9—, in which R9 can be hydrogen; or W1 can be —O—. In certain embodiments, W can be —(C1-3 alkylene)NH— (e.g., —CH2NH—). In certain embodiments, W can be —(C1-3 alkylene)O— (e.g., —CH2O—).


W can be —NR8—, (e.g., —NH—).


In some embodiments, A can be phenyl, which is (i) substituted with 1 R9 and (ii) optionally substituted with from 1-4 (e.g., 1-3, 1-2, 1) Rg, in which Rg can be as defined anywhere herein.


A can have formula (B-1). In embodiments, one of RA3 and RA4 is R9, and the other of RA3 and RA4 is hydrogen; and each of RA2, RA5, and RA6 is, independently, hydrogen or Rg, in which R9 and Rg can be as defined anywhere herein.


A can be heteroaryl including 5-10 atoms, which is (a) substituted with 1 R9; and (b) is optionally substituted with from 1-3 (e.g., 1-2, 1) Rg, in which Rg can be as defined anywhere herein.


Each of Re, R9, and Rg can be, independently, as defined anywhere herein. R9 can be:

    • —W2—S(O)nR10 or W2—S(O)nNR11R12 (e.g., —W2—S(O)nR10); and/or
    • —W2—C(O)OR13.


Each of R10, R11, R12, and R13 can be, independently, as defined anywhere herein (e.g., as defined in conjunction with formula (C-1)).


W2, n, R22, R23, R24, RA2, RA3, RA4, RA5, and RA6 can be as defined in conjunction with formula (C-1).


Each of R3, R4, and R5 can be hydrogen.


R6 can be:


(i) halo; or


(ii) C1-C6 alkyl or C1-C6 haloalkyl, each of which is optionally substituted with from 1-3 Ra; or


(iii) cyano.


R6 can be halo (e.g., chloro) or C1-C6 (e.g., C1-C3) haloalkyl (e.g., CF3).


One or more (e.g., 1, 2, or 3) of R1, R3, R4, R5, and R6 (e.g., R1 and/or R6) can be a substituent other than hydrogen.


In some embodiments, the following set of definitions can apply:


R1 is:


(i) hydrogen; or


(ii) C1-C3 alkyl or C1-C3 haloalkyl; or


(iii) phenyl or heteroaryl including 5-6 atoms, each of which is optionally substituted with from 1-5 Rd; or


(iv) C3-C8 cycloalkyl or C7-C12 aralkyl, each of which is optionally substituted with from 1-3 Rc;


R2 is phenyl, which is (a) substituted with 1 WA; and (b) optionally substituted with 1 Re;


W is a —O—, —OCH2—, or a bond;


A has formula (B-1), wherein one of RA3 and RA4 is R9, and the other of RA3 and RA4 is hydrogen; and each of RA2, RA5, and RA6 is, independently, hydrogen or Rg;


R9 is —W2—S(O)nR10;


each of R3, R4, and R5 is hydrogen; and


R6 is:


(ii) halo; or


(iii) C1-C3 alkyl or C1-C3 haloalkyl, each of which is optionally substituted with from 1-3 Ra; or


(iv) cyano.


Embodiments can include any one or more of the features described anywhere herein.


It is understood that the actual electronic structure of some chemical entities cannot be adequately represented by only one canonical form (i.e. Lewis structure). While not wishing to be bound by theory, the actual structure can instead be some hybrid or weighted average of two or more canonical forms, known collectively as resonance forms or structures. Resonance structures are not discrete chemical entities and exist only on paper. They differ from one another only in the placement or “localization” of the bonding and nonbonding electrons for a particular chemical entity. It can be possible for one resonance structure to contribute to a greater extent to the hybrid than the others. Thus, the written and graphical descriptions of the embodiments of the present invention are made in terms of what the art recognizes as the predominant resonance form for a particular species.


The compounds described herein can be synthesized according to methods described herein (or variations thereof) and/or conventional, organic chemical synthesis methods from commercially available starting materials and reagents or from starting materials and reagents that can be prepared according to conventional organic chemical synthesis methods. The compounds described herein can be separated from a reaction mixture and further purified by a method such as column chromatography, high-pressure liquid chromatography, or recrystallization. As can be appreciated by the skilled artisan, further methods of synthesizing the compounds of the formulae herein will be evident to those of ordinary skill in the art. Additionally, the various synthetic steps may be performed in an alternate sequence or order to give the desired compounds. Synthetic chemistry transformations and protecting group methodologies (protection and deprotection) useful in synthesizing the compounds described herein are known in the art and include, for example, those such as described in R. Larock, Comprehensive Organic Transformations, VCH Publishers (1989); T. W. Greene and P. G. M. Wuts, Protective Groups in Organic Synthesis, 2d. Ed., John Wiley and Sons (1991); L. Fieser and M. Fieser, Fieser and Fieser's Reagents for Organic Synthesis, John Wiley and Sons (1994); and L. Paquette, ed., Encyclopedia of Reagents for Organic Synthesis, John Wiley and Sons (1995), and subsequent editions thereof.


In some embodiments, compounds of formula (I) can be prepared according to Scheme 1.




embedded image


The term “Q” in Scheme 1 corresponds to R3, R4, or R5 in formula (I) or is a substituent precursor thereto. The term “Z” in Scheme 1 corresponds to R6 in formula (I) or is a substituent precursor thereto. The term “Y” in Scheme 1 corresponds to R1 in formula (I) or is a substituent precursor thereto. The term “T” in Scheme 1 corresponds to WA in formula (I) or is a substituent precursor thereto.


According to Scheme 1, the compounds of formula (I) can be prepared by methods that include acylating a 1,2-diaminobenzene (1) with an acid chloride, acid anhydride, or a carboxylic acid with an activating agent (such as dicyclohexylcarbodiimide, HBTU, phosphorus oxychloride, and other reagents known to those skilled in the art) to yield the amide (2). The amide may be isolated or cyclized in situ with an activating/dehydrating agent (such as phosphorus oxychloride) or an acid catalyst (e.g: HCl or para-toluenesulfonic acid) to yield N-arylbenzimidazoles (4). A second method of synthesis involves reacting the 1,2-diaminobenzene with an orthoester, using an acid catalyst such as p-toluenesulfonic acid. Alternatively, (1) may be reacted with an aldehyde (YCHO) to form an imine or aminal intermediate (3) which can be oxidized to the benzimidazole (4) (typically in situ) with air or with an oxidizing agent such as copper (II) acetate, sodium bisulfite, and other such oxidizing reagents known to those skilled in the art.




embedded image


The meanings of “Q,” “Z,” and “T” in Scheme 2 are the same as indicated above for Scheme 2.


Scheme 2 shows methods of synthesizing N-aryl-1,2-diamines (1). N-arylation of anilines such as formula (10) or (11) may be accomplished via a metal/ligand mediated cross-coupling with an aryl-halide or arylboronic acid. Alternatively, nucleophilic displacement of an appropriately substituted aryl halide (typically F, Cl) under basic conditions may lead to the desired N-aryl-anilines of formula (12). Reduction of the nitro group with reagents such as iron powder or hydrogen/metal catalyst may yield the desired N-aryl-1,2-diamines (1).


In some embodiments, compounds of formula (I) can be prepared according to Scheme 3.




embedded image


The meanings of “Q,” “Z,” “T,” and “Y” in Scheme 3 are the same as indicated above for Scheme 1.


N-Arylation of a benzimidazole can be accomplished by reacting a benzimidazole (5) with an arylboronic acid (6) in the presence of a copper salt (e.g.: Cu(OAc)2) and a base (e.g.: pyridine or triethylamine). N-Arylation of a benzimidazole may also be accomplished using an aryl halide and an appropriate ligand/metal catalyst system (e.g.: CuI/1,10-phenanthroline) the presence of base. (J. Org. Chem. 2004, 69, 5578-5587)


In some embodiments, compounds of formula (I) can be prepared according to Scheme 4.




embedded image


The meanings of “Q,” “Z,” “T,” and “Y” in Scheme 4 are the same as indicated above for Scheme 1. The term “V” in Scheme 4 corresponds to hydrogen or Re in formula (I) or is a substituent precursor thereto. The term “W” in Scheme 4 corresponds to hydrogen or Rg in formula (I) or is a substituent precursor thereto. The term “D-X” in Scheme 4 corresponds to WA in formula (I) or is a substituent precursor thereto.


According to Scheme 4, compounds of formula (4), in which T is a protected hydroxyl group such as a methoxy or benzyloxy, can be deprotected to the hydroxyl group affording compounds (6) (T=OH). Typical conditions for deprotection when T is a methoxy include treatment with pyridine hydrochloride at 200° C. for 0.5-2 h or treatment with BBr3 in dichloromethane or other methods known to those skilled in the art. Compounds of formula (6) where T=OH can then be alkylated with an alkylating agent (7) using potassium carbonate, sodium carbonate, or cesium carbonate as the base providing compounds of formula (I) (L=OCH2). If the X group of the compound of formula (I) contains a carboxylic acid ester moiety, this moiety can be transformed to the carboxylic acid upon treatment with aqueous lithium hydroxide, sodium hydroxide, or potassium hydroxide in a suitable organic solvent, typically one miscible with water such as THF, 1,4-dioxane, or an alcohol such as methanol or ethanol. If the X group of the compound of formula (I) contains a CH2X′ where X′ is a halogen like Br or Cl, then this group can be transformed to CH2CN upon treatment with sodium cyanide in a suitable organic solvent.


Alternatively, compounds in which T=OH can be treated with a halogenated aromatic ring-containing compound (8) to provide a biarylether of formula (I L=O). If the leaving group (LG) is a fluorine or chlorine atom, the formation of the biarylether of formula (I) can be accomplished by treatment with a base such as potassium carbonate, typically in a polar solvent such as dimethylformamide or dimethylsulfoxide, at elevated temperatures, typically 100° C. to 150° C. for several hours. Alternatively, where LG is a bromine or iodine, the formation of the biarylether (I) can be accomplished with a coupling reaction using a metal catalyst such as a copper salt or a palladium salt in the presence of a base and a solvent such as dioxane at elevated temperatures. When LG is a boronic acid, the formation of the biarylether (I) can be accomplished with a coupling reaction using a copper salt such as Cu(OAc)2. Where a compound of formula (I) in which the group L is a bond is desired, the phenol of compounds of formula (6) in which T=OH can be converted into a triflate using triflic anhydride and a tertiary amine such as triethylamine. The resulting triflate or bromine of formula (6) (T=OSO2CF3, Br or I) can be coupled to an arylboronic acid of formula (9) under catalysis with a palladium catalyst, a reaction known as a Suzuki reaction to those skilled in the art.


In some embodiments, compounds of formula (I) can be prepared according to Scheme 5.




embedded image


The meanings of “Q,” “Z,” “V,” “T,” “W,” “D-X,” and “Y” in Scheme 5 are the same as indicated above for Schemes 1 and 4.


According to Scheme 5, certain compounds of formula (6) prepared by Scheme 1 or Scheme 3 may contain a protected NH2 moiety on the phenyl ring that is attached to the 1-position of the benzimidazole ring system. Deprotection of the amine followed by treatment of the free NH2 compound of formula (6) with an aryl halide (or aryltriflate or arylboronic acid) of formula Hal-Ar-D-X (8), optionally substituted with a group W, can provide the corresponding biarylamine of formula (I). Alternatively, when certain compounds of formula (6) where T=Cl, Br, I, or B(OH)2, are reacted with an aniline of the formula H2N—Ar-D-X (9), optionally substituted with a group W, can provide the corresponding biarylamine of formula (I). These cross-couplings are typically mediated by an appropriate palladium or copper catalyst. (See J. Am. Chem. Soc. 2003, 125, 6653-6655 and references therein)


In some embodiments, compounds of formula (I) can be prepared according to Scheme 6.




embedded image


The meanings of “Q,” “Z,” “V,” “T,” “W,” “D-X,” and “Y” in Scheme 6 are the same as indicated above for Schemes 1 and 4.


According to Scheme 6, a compound of formula (6) (T=Br or I) can be converted to a borolane of formula (6), in which T=B(OR)2 and R═OH or alkyl, using a palladium salt and a bis-boron species. Such a borolane can be coupled under conditions described above with an aryl chloride, aryl bromide or aryl iodide (8) to afford compounds of formula (I) (L=bond).




embedded image


The meanings of “Q,” “Z,” and “Y” in Scheme 5 are the same as indicated above for Schemes 1 and 4.


According to Scheme 7, compounds of formula (5) can be prepared by reaction of an aniline (13) with a nitrile (14) in the presence of trimethylaluminum at elevated temperatures to form an amidine (15). Amidines of formula (15) can be converted to benzimidazoles of formula (5) by treatment with an oxidizing reagent such as iodosobenzenediacetate as described by Ramsden and Rose (J. Chem Soc., Perkin Trans. 1, 1997, 2319-2327) typically in refluxing toluene. Compounds of formula (5) can be used as described in Scheme 2 and further elaborated as described in Schemes 4, 5, and 6.


In some embodiments, compounds of formula (4) can be prepared according to Scheme 8.




embedded image


The meanings of “Q,” “Z,” “T,” and “Y” in Scheme 8 are the same as indicated above for Scheme 1.


According to Scheme 8, compounds of formula (4) can be prepared by heating an ortho-chloro or ortho-bromoaniline (16), typically at 90 to 120° C., with an acid chloride YC(O)Cl in the presence of excess organic acid YCO2H, typically for a period of 1 to 3 h, to provide amides of formula (17). Alternatively, the aniline can be heated at reflux for 1 to 3 h in the presence of a catalytic amount of a strong acid such as methanesulfonic acid or toluenesulfonic acid in a solvent such as toluene to afford amides of formula (17). Compounds of formula (17) can be treated with triflic anhydride in the presence of 2,6-lutidine in a solvent such as dichloromethane, initially at 0° C. and then at ambient temperature, for typically 0.5 to 2 h, and then treated with an aniline of formula (18) at ambient temperature for 3-24 h. The resulting amidines of formula (19) can be heated at 110° C. in the presence of sodium tert-butoxide and potassium carbonate with 5 to 15% of Pd(PPh3)4 as a catalyst in a solvent such as toluene, typically for 18 to 48 h, to provide compounds of formula (4). This procedure is essentially the same as that of Brain and Brunton (Tetrahedron Letters 43, 1893-1895, 2002) used to prepare benzimidazoles from analogous ortho-bromoamidines. Alternatively, heating at 130° C. in DMF or xylenes with lower amounts of catalyst afforded compounds of formula (4) in comparable yields.


The compounds of this invention may contain one or more asymmetric centers and thus occur as racemates and racemic mixtures, single enantiomers, individual diastereomers and diastereomeric mixtures. All such isomeric forms of these compounds are expressly included in the present invention. The compounds of this invention may also contain linkages (e.g., carbon-carbon bonds, carbon-nitrogen bonds such as amide bonds) wherein bond rotation is restricted about that particular linkage, e.g. restriction resulting from the presence of a ring or double bond. Accordingly, all cis/trans and E/Z isomers and rotational isomers are expressly included in the present invention. The compounds of this invention may also be represented in multiple tautomeric forms, in such instances, the invention expressly includes all tautomeric forms of the compounds described herein, even though only a single tautomeric form may be represented (e.g., alkylation of a ring system may result in alkylation at multiple sites, the invention expressly includes all such reaction products). All such isomeric forms of such compounds are expressly included in the present invention.


The compounds of this invention include the compounds themselves, as well as their salts and their prodrugs, if applicable. A salt, for example, can be formed between an anion and a positively charged substituent (e.g., amino) on a compound described herein. Suitable anions include chloride, bromide, iodide, sulfate, nitrate, phosphate, citrate, methanesulfonate, trifluoroacetate, and acetate Likewise, a salt can also be formed between a cation and a negatively charged substituent (e.g., carboxylate) on a compound described herein. Suitable cations include sodium ion, potassium ion, magnesium ion, calcium ion, and an ammonium cation such as tetramethylammonium ion. Examples of prodrugs include esters and other pharmaceutically acceptable derivatives, which, upon administration to a subject, are capable of providing active compounds.


Pharmaceutically acceptable salts of the compounds of this invention include those derived from pharmaceutically acceptable inorganic and organic acids and bases. Examples of suitable acid salts include acetate, adipate, alginate, aspartate, benzoate, benzenesulfonate, bisulfate, butyrate, citrate, camphorate, camphorsulfonate, digluconate, dodecylsulfate, ethanesulfonate, formate, fumarate, glucoheptanoate, glycolate, hemisulfate, heptanoate, hexanoate, hydrochloride, hydrobromide, hydroiodide, 2-hydroxyethanesulfonate, lactate, maleate, malonate, methanesulfonate, 2-naphthalenesulfonate, nicotinate, nitrate, palmoate, pectinate, persulfate, 3-phenylpropionate, phosphate, picrate, pivalate, propionate, salicylate, succinate, sulfate, tartrate, thiocyanate, tosylate and undecanoate. Other acids, such as oxalic, while not in themselves pharmaceutically acceptable, may be employed in the preparation of salts useful as intermediates in obtaining the compounds of the invention and their pharmaceutically acceptable acid addition salts. Salts derived from appropriate bases include alkali metal (e.g., sodium), alkaline earth metal (e.g., magnesium), ammonium and N-(alkyl)4+ salts. This invention also envisions the quaternization of any basic nitrogen-containing groups of the compounds disclosed herein. Water or oil-soluble or dispersible products may be obtained by such quaternization. Salt forms of the compounds of any of the formulae herein can be amino acid salts of carboxy groups (e.g. L-arginine, -lysine, -histidine salts).


The term “pharmaceutically acceptable carrier or adjuvant” refers to a carrier or adjuvant that may be administered to a subject (e.g., a patient), together with a compound of this invention, and which does not destroy the pharmacological activity thereof and is nontoxic when administered in doses sufficient to deliver a therapeutic amount of the compound.


Pharmaceutically acceptable carriers, adjuvants and vehicles that may be used in the compositions of this invention include, but are not limited to, ion exchangers, alumina, aluminum stearate, lecithin, self-emulsifying drug delivery systems (SEDDS) such as d-α-tocopherol polyethyleneglycol 1000 succinate, surfactants used in pharmaceutical dosage forms such as Tweens or other similar polymeric delivery matrices, serum proteins, such as human serum albumin, buffer substances such as phosphates, glycine, sorbic acid, potassium sorbate, partial glyceride mixtures of saturated vegetable fatty acids, water, salts or electrolytes, such as protamine sulfate, disodium hydrogen phosphate, potassium hydrogen phosphate, sodium chloride, zinc salts, colloidal silica, magnesium trisilicate, polyvinyl pyrrolidone, cellulose-based substances, polyethylene glycol, sodium carboxymethylcellulose, polyacrylates, waxes, polyethylene-polyoxypropylene-block polymers, polyethylene glycol and wool fat. Cyclodextrins such as α-, β-, and γ-cyclodextrin, or chemically modified derivatives such as hydroxyalkylcyclodextrins, including 2- and 3-hydroxypropyl-β-cyclodextrins, or other solubilized derivatives may also be advantageously used to enhance delivery of compounds of the formulae described herein.


In general, the compounds described herein can be used for treating (e.g., controlling, ameliorating, alleviating, slowing the progression of, delaying the onset of, or reducing the risk of developing) or preventing one or more diseases, disorders, conditions or symptoms mediated by LXRs (e.g., cardiovascular diseases (e.g., acute coronary syndrome, restenosis), atherosclerosis, atherosclerotic lesions, type I diabetes, type II diabetes, Syndrome X, obesity, lipid disorders (e.g., dyslipidemia, hyperlipidemia, hypertriglyceridemia, hypercholesterolemia, low HDL and high LDL), cognitive disorders (e.g., Alzheimer's disease, dementia), inflammatory diseases (e.g., multiple sclerosis, rheumatoid arthritis, inflammatory bowel disease, Crohn's disease, endometriosis, LPS-induced sepsis, acute contact dermatitis of the ear, chronic atherosclerotic inflammation of the artery wall), celiac, thyroiditis, skin aging (e.g., skin aging is derived from chronological aging, photoaging, steroid-induced skin thinning, or a combination thereof), or connective tissue disease (e.g., osteoarthritis or tendonitis).


A disorder or physiological condition that is mediated by LXR refers to a disorder or condition wherein LXR can trigger the onset of the condition, or where inhibition of a particular LXR can affect signaling in such a way so as to treat, control, ameliorate, alleviate, prevent, delay the onset of, slow the progression of, or reduce the risk of developing the disorder or condition. Examples of such disorders include, but are not limited to cardiovascular diseases (e.g., acute coronary syndrome, restenosis), atherosclerosis, atherosclerotic lesions, type I diabetes, type II diabetes, Syndrome X, obesity, lipid disorders (e.g., dyslipidemia, hyperlipidemia, hypertriglyceridemia, hypercholesterolemia, low HDL and high LDL), cognitive disorders (e.g., Alzheimer's disease, dementia), inflammatory diseases (e.g., multiple sclerosis, rheumatoid arthritis, inflammatory bowel disease, Crohn's disease, endometriosis, LPS-induced sepsis, acute contact dermatitis of the ear, chronic atherosclerotic inflammation of the artery wall), celiac, thyroiditis, skin aging (e.g., skin aging is derived from chronological aging, photoaging, steroid-induced skin thinning, or a combination thereof), or connective tissue disease (e.g., osteoarthritis or tendonitis). While not wishing to be bound by theory, it is believed that LXR modulators that activate cholesterol efflux (e.g., upregulate ABCA1), but do not substantially increase SREBP-1c expression and triglyceride synthesis in liver, can both reduce atherosclerotic risk and minimize the likelihood of concommitantly increasing serum and hepatic triglyceride levels. Candidate compounds having differential activity for regulating ABCA1 (ABCG1) vs. SREBP-1c can be can be evaluated using conventional pharmacological test procedures, which measure the affinity of a candidate compound to bind to LXR and to upregulate the gene ABCA1.


In some embodiments, LXR ligands can be identified initially in cell-free LXR beta and LXR alpha competition binding assays. LXR ligands can be further characterized by gene expression profiling for tissue selective gene regulation.


In some embodiments, the compounds described herein have agonist activity for ABCA1 transactivation but do not substantially affect (e.g., inhibit) SREBP-1c gene expression in differentiated THP-1 macrophages. Gene expression analysis in an antagonist mode can be used to further delineate differential regulation of ABCA1 and SREBP-1c gene expression. In certain embodiments, the compounds described herein preferentially antagonize SREBP-1c activation (a marker for genes involved in cholesterol and fatty acid homeostasis) but do not substantially affect (e.g., have relatively minimal or additive effects) on ABCA1 gene expression or genes known to enhance HDL biogenesis (based on a competition assay with known potent synthetic LXR agonists). Cell type or tissue specificity may be further evaluated in additional cell lines, intestinal, CaCo2 or liver, HepG2 and Huh-7 cells where ABCA1 activity is believed to influence net cholesterol absorption and reverse cholesterol transport. The test procedures performed, and results obtained therefrom are described in the Examples section.


In some embodiments, the compounds described herein have agonist activity for ABCA1 and antagonist activity for SREBP-1c (e.g., as determined by gene specific modulation in cell based assays). In certain embodiments, the compounds described herein (in the agonist mode) have at least about 20% efficacy for ABCA1 activation by LXR and do not substantially agonize SREBP-1c (at most about 25% efficacy relative to a reference compound N-(2,2,2-trifluoro-ethyl)-N-[4-(2,2,2-trifluoro-1-hydroxy-1-trifluoromethyl-ethyl)-phenyl]-benzenesulfonamide (Schultz, Joshua R., Genes & Development (2000), 14(22), 2831-2838)). In certain embodiments, the compounds described herein (in the antagonist mode) do not substantially antagonize ABCA1 gene expression. While not wishing to be bound by theory, it is believed that there may be an additive effect on ABCA1 gene expression relative to the reference compound at their EC50 concentration. In certain embodiments, the compounds described herein (in the antagonist mode) inhibited agonist-mediated SREBP-1c gene expression in a dose dependent fashion.


In some embodiments, to study the effect of the compounds of formula (I) on skin aging, for example, in a clinical trial, cells can be isolated and RNA prepared and analyzed for the levels of expression of TIMP1, ABCA12, decorin, TNFα, MMP1, MMP3, and/or IL-8. The levels of gene expression (i.e., a gene expression pattern) can be quantified, for example, by Northern blot analysis or RT-PCR, by measuring the amount of protein produced, or by measuring the levels of activity of TIMP1, ABCA12, decorin, TNFα, MMP1, MMP3, and/or IL-8, all by methods known to those of ordinary skill in the art. In this way, the gene expression pattern can serve as a marker, indicative of the physiological response of the cells to the compounds of formula (I). Accordingly, this response state may be determined before, and at various points during, treatment of the individual with the compounds of formula (I).


In one embodiment, expression levels of cytokines and metalloproteases described herein can be used to facilitate design and/or identification of compounds that treat skin aging through an LXR-based mechanism. Accordingly, the invention provides methods (also referred to herein as “screening assays”) for identifying modulators, i.e., LXR modulators, that have a stimulatory or inhibitory effect on, for example, TIMP1, ABCA12, decorin, TNFα, MMP1, MMP3, and/or IL-8 expression.


An exemplary screening assay is a cell-based assay in which a cell that expresses LXR is contacted with a test compound, and the ability of the test compound to modulate TIMP1, ABCA12, decorin, TNFα, MMP1, MMP3, and/or IL-8 expression through an LXR-based mechanism. Determining the ability of the test compound to modulate TIMP1, ABCA12, decorin, TNFα, MMP1, MMP3, and/or IL-8 expression can be accomplished by monitoring, for example, DNA, mRNA, or protein levels, or by measuring the levels of activity of TIMP1, ABCA12, decorin, TNFα, MMP1, MMP3, and/or IL-8, all by methods known to those of ordinary skill in the art. The cell, for example, can be of mammalian origin, e.g., human.


In some embodiments, to study the effect of the compounds of formula (I) on osteoarthritis, for example, in a clinical trial, cells can be isolated and RNA prepared and analyzed for the levels of expression of ApoD and other genes implicated in osteoarthritis (for example, TNFα). The levels of gene expression (i.e., a gene expression pattern) can be quantified by Northern blot analysis or RT-PCR, by measuring the amount of protein produced, or by measuring the levels of activity of ApoD or other genes, all by methods known to those of ordinary skill in the art. In this way, the gene expression pattern can serve as a marker, indicative of the physiological response of the cells to the LXR modulator. Accordingly, this response state may be determined before, and at various points during, treatment of the individual with the LXR modulator.


An exemplary screening assay is a cell-based assay in which a cell that expresses LXR is contacted with a test compound, and the ability of the test compound to modulate ApoD expression and/or aggrecanase activity and/or cytokine elaboration through an LXR-based mechanism. Determining the ability of the test compound to modulate ApoD expression and/or aggrecanase activity and/or cytokine elaboration can be accomplished by monitoring, for example, DNA, mRNA, or protein levels, or by measuring the levels of activity of ApoD, aggrecanase, and/or TNFα, all by methods known to those of ordinary skill in the art. The cell, for example, can be of mammalian origin, e.g., human.


In some embodiments, the compounds described herein can be coadministered with one or more other threapeutic agents. In certain embodiments, the additional agents may be administered separately, as part of a multiple dose regimen, from the compounds of this invention (e.g., sequentially, e.g., on different overlapping schedules with the administration of one or more compounds of formula (I) (including any subgenera or specific compounds thereof)). In other embodiments, these agents may be part of a single dosage form, mixed together with the compounds of this invention in a single composition. In still another embodiment, these agents can be given as a separate dose that is administered at about the same time that one or more compounds of formula (I) (including any subgenera or specific compounds thereof) are administered (e.g., simultaneously with the administration of one or more compounds of formula (I) (including any subgenera or specific compounds thereof)). When the compositions of this invention include a combination of a compound of the formulae described herein and one or more additional therapeutic or prophylactic agents, both the compound and the additional agent can be present at dosage levels of between about 1 to 100%, and more preferably between about 5 to 95% of the dosage normally administered in a monotherapy regimen.


The compounds and compositions described herein can, for example, be administered orally, parenterally (e.g., subcutaneously, intracutaneously, intravenously, intramuscularly, intraarticularly, intraarterially, intrasynovially, intrasternally, intrathecally, intralesionally and by intracranial injection or infusion techniques), by inhalation spray, topically, rectally, nasally, buccally, vaginally, via an implanted reservoir, by injection, subdermally, intraperitoneally, transmucosally, or in an ophthalmic preparation, with a dosage ranging from about 0.01 mg/Kg to about 1000 mg/Kg, (e.g., from about 0.01 to about 100 mg/kg, from about 0.1 to about 100 mg/Kg, from about 1 to about 100 mg/Kg, from about 1 to about 10 mg/kg) every 4 to 120 hours, or according to the requirements of the particular drug. The interrelationship of dosages for animals and humans (based on milligrams per meter squared of body surface) is described by Freireich et al., Cancer Chemother. Rep. 50, 219 (1966). Body surface area may be approximately determined from height and weight of the patient. See, e.g., Scientific Tables, Geigy Pharmaceuticals, Ardsley, N.Y., 537 (1970). In certain embodiments, the compositions are administered by oral administration or administration by injection. The methods herein contemplate administration of an effective amount of compound or compound composition to achieve the desired or stated effect. Typically, the pharmaceutical compositions of this invention will be administered from about 1 to about 6 times per day or alternatively, as a continuous infusion. Such administration can be used as a chronic or acute therapy. The amount of active ingredient that may be combined with the carrier materials to produce a single dosage form will vary depending upon the host treated and the particular mode of administration. A typical preparation will contain from about 5% to about 95% active compound (w/w). Alternatively, such preparations contain from about 20% to about 80% active compound.


Lower or higher doses than those recited above may be required. Specific dosage and treatment regimens for any particular patient will depend upon a variety of factors, including the activity of the specific compound employed, the age, body weight, general health status, sex, diet, time of administration, rate of excretion, drug combination, the severity and course of the disease, condition or symptoms, the patient's disposition to the disease, condition or symptoms, and the judgment of the treating physician.


Upon improvement of a patient's condition, a maintenance dose of a compound, composition or combination of this invention may be administered, if necessary. Subsequently, the dosage or frequency of administration, or both, may be reduced, as a function of the symptoms, to a level at which the improved condition is retained when the symptoms have been alleviated to the desired level. Patients may, however, require intermittent treatment on a long-term basis upon any recurrence of disease symptoms.


The compositions of this invention may contain any conventional non-toxic pharmaceutically-acceptable carriers, adjuvants or vehicles. In some cases, the pH of the formulation may be adjusted with pharmaceutically acceptable acids, bases or buffers to enhance the stability of the formulated compound or its delivery form.


The compositions may be in the form of a sterile injectable preparation, for example, as a sterile injectable aqueous or oleaginous suspension. This suspension may be formulated according to techniques known in the art using suitable dispersing or wetting agents (such as, for example, Tween 80) and suspending agents. The sterile injectable preparation may also be a sterile injectable solution or suspension in a non-toxic parenterally acceptable diluent or solvent, for example, as a solution in 1,3-butanediol. Among the acceptable vehicles and solvents that may be employed are mannitol, water, Ringer's solution and isotonic sodium chloride solution. In addition, sterile, fixed oils are conventionally employed as a solvent or suspending medium. For this purpose, any bland fixed oil may be employed including synthetic mono- or diglycerides. Fatty acids, such as oleic acid and its glyceride derivatives are useful in the preparation of injectables, as are natural pharmaceutically-acceptable oils, such as olive oil or castor oil, especially in their polyoxyethylated versions. These oil solutions or suspensions may also contain a long-chain alcohol diluent or dispersant, or carboxymethyl cellulose or similar dispersing agents which are commonly used in the formulation of pharmaceutically acceptable dosage forms such as emulsions and or suspensions. Other commonly used surfactants such as Tweens or Spans and/or other similar emulsifying agents or bioavailability enhancers which are commonly used in the manufacture of pharmaceutically acceptable solid, liquid, or other dosage forms may also be used for the purposes of formulation.


The compositions of this invention may be orally administered in any orally acceptable dosage form including, but not limited to, capsules, tablets, emulsions and aqueous suspensions, dispersions and solutions. In the case of tablets for oral use, carriers which are commonly used include lactose and corn starch. Lubricating agents, such as magnesium stearate, are also typically added. For oral administration in a capsule form, useful diluents include lactose and dried corn starch. When aqueous suspensions and/or emulsions are administered orally, the active ingredient may be suspended or dissolved in an oily phase is combined with emulsifying and/or suspending agents. If desired, certain sweetening and/or flavoring and/or coloring agents may be added.


The compositions of this invention may also be administered in the form of suppositories for rectal administration. These compositions can be prepared by mixing a compound of this invention with a suitable non-irritating excipient which is solid at room temperature but liquid at the rectal temperature and therefore will melt in the rectum to release the active components. Such materials include, but are not limited to, cocoa butter, beeswax and polyethylene glycols.


Topical administration of the compositions of this invention is useful when the desired treatment involves areas or organs readily accessible by topical application. For application topically to the skin, the composition should be formulated with a suitable ointment containing the active components suspended or dissolved in a carrier. Carriers for topical administration of the compounds of this invention include, but are not limited to, mineral oil, liquid petroleum, white petroleum, propylene glycol, polyoxyethylene polyoxypropylene compound, emulsifying wax and water. Alternatively, the composition can be formulated with a suitable lotion or cream containing the active compound suspended or dissolved in a carrier with suitable emulsifying agents. Suitable carriers include, but are not limited to, mineral oil, sorbitan monostearate, polysorbate 60, cetyl esters wax, cetearyl alcohol, 2-octyldodecanol, benzyl alcohol and water. The compositions of this invention may also be topically applied to the lower intestinal tract by rectal suppository formulation or in a suitable enema formulation.


In some embodiments, topical administration of the compounds and compositions described herein may be presented in the form of an aerosol, a semi-solid pharmaceutical composition, a powder, or a solution. By the term “a semi-solid composition” is meant an ointment, cream, salve, jelly, or other pharmaceutical composition of substantially similar consistency suitable for application to the skin. Examples of semi-solid compositions are given in Chapter 17 of The Theory and Practice of Industrial Pharmacy, Lachman, Lieberman and Kanig, published by Lea and Febiger (1970) and in Remington: The Science and Practice of Pharmacy by University of the Sciences in Philadelphia (Editor); Publisher: Lippincott Williams & Wilkins; Twenty first Edition (May 1, 2005), which is incorporated herein by reference in its entirety.


Topically-transdermal patches are also included in this invention. Also within the invention is a patch to deliver active chemotherapeutic combinations herein. A patch includes a material layer (e.g., polymeric, cloth, gauze, bandage) and the compound of the formulae herein as delineated herein. One side of the material layer can have a protective layer adhered to it to resist passage of the compounds or compositions. The patch can additionally include an adhesive to hold the patch in place on a subject. An adhesive is a composition, including those of either natural or synthetic origin, that when contacted with the skin of a subject, temporarily adheres to the skin. It can be water resistant. The adhesive can be placed on the patch to hold it in contact with the skin of the subject for an extended period of time. The adhesive can be made of a tackiness, or adhesive strength, such that it holds the device in place subject to incidental contact, however, upon an affirmative act (e.g., ripping, peeling, or other intentional removal) the adhesive gives way to the external pressure placed on the device or the adhesive itself, and allows for breaking of the adhesion contact. The adhesive can be pressure sensitive, that is, it can allow for positioning of the adhesive (and the device to be adhered to the skin) against the skin by the application of pressure (e.g., pushing, rubbing,) on the adhesive or device.


The compositions of this invention may be administered by nasal aerosol or inhalation. Such compositions are prepared according to techniques well-known in the art of pharmaceutical formulation and may be prepared as solutions in saline, employing benzyl alcohol or other suitable preservatives, absorption promoters to enhance bioavailability, fluorocarbons, and/or other solubilizing or dispersing agents known in the art.


A composition having the compound of the formulae herein and an additional agent (e.g., a therapeutic agent) can be administered using any of the routes of administration described herein. In some embodiments, a composition having the compound of the formulae herein and an additional agent (e.g., a therapeutic agent) can be administered using an implantable device. Implantable devices and related technology are known in the art and are useful as delivery systems where a continuous, or timed-release delivery of compounds or compositions delineated herein is desired. Additionally, the implantable device delivery system is useful for targeting specific points of compound or composition delivery (e.g., localized sites, organs). Negrin et al., Biomaterials, 22(6):563 (2001). Timed-release technology involving alternate delivery methods can also be used in this invention. For example, timed-release formulations based on polymer technologies, sustained-release techniques and encapsulation techniques (e.g., polymeric, liposomal) can also be used for delivery of the compounds and compositions delineated herein.


The invention will be further described in the following examples. It should be understood that these examples are for illustrative purposes only and are not to be construed as limiting this invention in any manner.


EXAMPLES

The following describes the preparation of representative compounds of this invention. Compounds described as homogeneous are determined to be of 90% or greater purity (exclusive of enantiomers) by analytical reverse phase chromatographic analysis with 254 nM UV detection. Melting points are reported as uncorrected in degrees centigrade. Mass spectral data is reported as the mass-to-charge ratio, m/z; and for high resolution mass spectral data, the calculated and experimentally found masses, [M+H]+, for the neutral formulae M are reported. All reactions are stirred and run under a nitrogen atmosphere unless otherwise noted. Ethyl acetate and hexanes are abbreviated as E and H, respectively, in the experimental section when referring to solvents for chromatography. Room temperature is abbreviated as rt and is taken to be typically 18-22° C.


Example 1



embedded image


2-methyl-7-(trifluoromethyl)-1H-benzimidazole

Under a nitrogen atmosphere, MeOH (10 mL) was added to a vial containing N-(4-bromo-2-nitro-6-trifluoromethyl-phenyl)-acetamide (U.S. Pat. No. 5,514,680) (500 mg, 1.53 mmol), ammonium formate (1.0 g), and 5% Pd—C (100 mg). The mixture was stirred at rt for 20 min, heated at 40° C. for 10 min, then stirred for 2 h at rt. The solids were filtered through Celite and the filtrate was diluted with EtOAc (60 mL) and water (40 mL). The layers were separated and the organic layer was further washed with water (2×20 mL) and brine (30 mL). The solution was dried over Na2SO4 and concentrated. The solid residue was dissolved in AcOH (5 mL) and was heated at 100° C. for 4 h. The solvent was removed in vacuo and the residual AcOH was removed by reconcentration from MeOH. The title compound was obtained as a white solid (231 mg) and used without further purification. MS (ES) m/z 201.1; HRMS: calcd for C9H7F3N2+H+, 201.06341; found (ESI, [M+H]+), 201.0638.


Example 2



embedded image


N-(3-methoxyphenyl)-2-nitro-3-(trifluoromethyl)aniline

A mixture of 2-nitro-3-(trifluoromethyl)aniline (206 mg, 1.00 mmol) (for preparation, see Biochemistry, 43(38), 12367-12374; (2004)), 3-iodoanisole (281 mg, 1.20 mmol), Pd2 dba3 (18 mg, 0.020 mmol), X-Phos (48 mg, 0.100 mmol), and K2CO3 (166 mg, 1.20 mmol) in tert-butyl alcohol (2.0 mL) was stirred for 3 h at 90° C. After cooling, the mixture was partitioned between EtOAc (40 mL) and water (20 mL). The layers were separated and the organic layer was further washed with water (2×10 mL) and brine (20 mL) and was dried over Na2SO4. The solution was filtered, concentrated, and the residue was purified by SiO2 flash chromatography eluting with a 0:100 to 25:75 E:H gradient. The title compound was obtained as an orange solid (226 mg, 74%). MS (ES) m/z 312.9.


Example 3



embedded image


1-(3-methoxyphenyl)-2-methyl-4-(trifluoromethyl)-1H-benzimidazole

A mixture of iron powder (657 mg, 11.8 mmol) and N-(3-methoxyphenyl)-2-nitro-3-(trifluoromethyl)aniline (368 mg, 1.18 mmol) from Example 2) in ethanol/AcOH/conc HCl (15 mL/5 mL/1 drop) was heated at 70° C. for 2 h. Methanol (5 mL) and EtOAc (40 mL) were added and the solid residue was filtered and washed with EtOAc. Water (40 mL) and EtOAc (50 mL) were added to the filtrate and the layers were separated. The organic layer was washed with water (3×30 mL), saturated aqueous NaHCO3 (30 mL), and brine (30 mL). The solution was dried (Na2SO4), concentrated, and the residue was dissolved in acetic acid (4.0 mL). Acetic anhydride (1.0 mL) was added and the solution was heated at 100° C. for 4 h. The volatiles were removed in vacuo and the residue was purified by SiO2 flash chromatography eluting with a 2:98 to 30:50 E:H gradient to yield the title compound as a white solid. MS (ES) m/z 307.




embedded image


1-(3-methoxyphenyl)-2-methyl-4-(trifluoromethyl)-1H-benzimidazole

A mixture of 2-methyl-7-(trifluoromethyl)-1H-benzimidazole (200 mg, 1.00 mmol), 3-iodoanisole (468 mg, 2.00 mmol), Cs2CO3 (715 mg, 2.20 mmol), CuI (19 mg, 0.10 mmol), and trans-N,N′-dimethyl-1,2-cyclohexane-diamine (65 mg, 0.40 mmol) in dimethylacetamide (2.0 mL) was stirred at 130° C. for 3 h. Additional CuI (10 mg) was added each of the next 2 hours and the suspension turned blue. The mixture was stirred for 16 h at 130° C. then cooled. The mixture was partitioned between EtOAc (40 mL) and water (20 mL) and the layers were separated. The organic layer was further washed with saturated aqueous NaHCO3 (20 mL), water (3×20 mL) and brine (20 mL). The solution was dried over Na2SO4, concentrated, and the residue was purified by SiO2 flash chromatography eluting with a 2:98 to 30:50 E:H gradient to yield the title compound as a colorless foam. MS (ES) m/z 307.


Example 4



embedded image


3-[2-methyl-4-(trifluoromethyl)-1H-benzimidazol-1-yl]phenol

A mixture of 1-(3-methoxyphenyl)-2-methyl-4-(trifluoromethyl)-1H-benzimidazole (1.41 g, 4.6 mmol) and pyridine hydrochloride (12 g) was heated at 200° C. for 1 h. After cooling to rt the solid mass was dissolved in a mixture of water (30 mL) and EtOAc (70 mL). The layers were separated and the EtOAc was further washed with 5% aqueous citric acid (2×20 mL), water (2×30 mL), and brine (30 mL). The organic solution was dried over Na2SO4, concentrated in vacuo, and the residue purified by SiO2 flash chromatography eluting with a 5:95 to 50:50 E:H gradient to yield the title compound as a colorless gum-foam. MS (ES) m/z 290.8; HRMS: calcd for C15H11F3N2O+H+, 293.08962; found (ESI, [M+H]+ Obs'd), 293.0899.


Example 5



embedded image


1-{3-[3-(ethylsulfonyl)phenoxy]phenyl}-2-methyl-4-(trifluoromethyl)-1H-benzimidazole

A mixture of 3-[2-methyl-4-(trifluoromethyl)-1H-benzimidazol-1-yl]phenol (90 mg, 0.30 mmol), 1-(ethylsulfonyl)-3-fluorobenzene (86 mg, 0.45 mmol), and K2CO3 (84 mg, 0.60 mmol) in DMA (3 mL) was heated at 150° C. for 18 h. After cooling, the mixture was partitioned between EtOAc (50 mL) and water (20 mL). The layers were separated and the organic layer was washed with water (4×20 mL) and brine (20 mL). The solution was dried over Na2SO4, concentrated, and the residue was purified by SiO2 flash chromatography eluting with a 2:98 to 40:60 E:H gradient to yield the title compound as a colorless foam. MS (ES) m/z 288.9; HRMS: calcd for C14H13BrN2+H+, 289.03348; found (ESI, [M+H]+), 289.0336.


Examples 6 to 15



embedded image


Compounds below are prepared in a similar fashion to Example 5, using the appropriate halogenated arylsulfones in place of 1-(ethylsulfonyl)-3-fluorobenzene, varying reaction times from 18 to 48 h. Compounds were purified by SiO2 chromatography using an appropriate E:H gradient. Some compounds were further purified using C18 reverse-phase chromatography using an appropriate CH3CN:H2O gradient, typically 0:100 to 100: CH3CN:H2O.


Example 6
1-{3-[3-(isopropylsulfonyl)phenoxy]phenyl}-2-methyl-4-(trifluoromethyl)-1H-benzimidazole

Prepared as in Example 5 but using 1-fluoro-3-(isopropylsulfonyl)-benzene. MS (ES) m/z 474.9; HRMS: calcd for C24H21F3N2O3S+H+, 475.12977; found (ESI, [M+H]+), 475.1300.


Example 7
1-{3-[3-(ethylsulfonyl)-5-fluorophenoxy]phenyl}-2-methyl-4-(trifluoromethyl)-1H-benzimidazole

Prepared as in Example 5 but using 1,3-dichloro-5-(ethylsulfonyl)benzene. MS (ES) m/z 478.9; HRMS: calcd for C23H18F4N2O3S+H+, 479.10470; found (ESI, [M+H]+), 479.1049.


Example 8
1-{3-[3-fluoro-5-(methylsulfonyl)phenoxy]phenyl}-2-methyl-4-(trifluoromethyl)-1H-benzimidazole

Prepared as in Example 5 but using 1,3-difluoro-5-(methylsulfonyl)benzene. MS (ES) m/z 464.9.


Example 9
3-[(3-{3-[2-methyl-4-(trifluoromethyl)-1H-benzimidazol-1-yl]phenoxy}-phenyl)sulfonyl]propan-1-ol

Prepared as in Example 5 but using 3-[(3-fluorophenyl)sulfonyl]propan-1-ol. MS (ES) m/z 490.8; HRMS: calcd for C24H21F3N2O4S+H+, 491.12469; found (ESI, [M+H]+), 491.1248.


Example 10
2-methyl-1-{3-[3-(propylsulfonyl)phenoxy]phenyl}-4-(trifluoromethyl)-1H-benzimidazole

Prepared as in Example 5 but using 1-fluoro-3-(propylsulfonyl)benzene. MS (ES) m/z 474.9; HRMS: calcd for C24H21F3N2O3S+H+, 475.12977; found (ESI, [M+H]+), 475.1296.


Example 11
2-methyl-4-[(3-{3-[2-methyl-4-(trifluoromethyl)-1H-benzimidazol-1-yl]phenoxy}-phenyl)sulfonyl]butan-2-ol

Prepared as in Example 5 but using 4-[(3-fluorophenyl)sulfonyl]-2-methylbutan-2-ol. MS (ES) m/z 518.9; HRMS: calcd for C26H25F3N2O4S+H+, 519.15599; found (ESI, [M+H]+), 519.1561.


Example 12
2-methyl-1-{3-[2-(methylsulfonyl)phenoxy]phenyl}-4-(trifluoromethyl)-1H-benzimidazole

Prepared as in Example 5 but using 1-fluoro-2-(methylsulfonyl)benzene. MS (ES) m/z 446.9; HRMS: calcd for C22H17F3N2O3S+H+, 447.09847; found (ESI, [M+H]+), 447.0983.


Example 13
3-[(2-{3-[2-methyl-4-(trifluoromethyl)-1H-benzimidazol-1-yl]phenoxy}phenyl)sulfonyl]propan-1-ol

Prepared as in Example 5 but using 3-[(2-fluorophenyl)sulfonyl]propan-1-ol. MS (ES) m/z 490.9; HRMS: calcd for C24H21F3N2O4S+H+, 491.12469; found (ESI, [M+H]+), 491.1249.


Example 14
2-methyl-1-{3-[4-(methylsulfonyl)phenoxy]phenyl}-4-(trifluoromethyl)-1H-benzimidazole

Prepared as in Example 5 but using 1-fluoro-4-(methylsulfonyl)benzene. MS (ES) m/z 446.9; HRMS: calcd for C22H17F3N2O3S+H+, 447.09847; found (ESI, [M+H]+), 447.0987.


Example 15
3-[(4-{3-[2-methyl-4-(trifluoromethyl)-1H-benzimidazol-1-yl]phenoxy}phenyl)sulfonyl]propan-1-ol

Prepared as in Example 5 but using 3-[(4-fluorophenyl)sulfonyl]propan-1-ol. MS (ES) m/z 490.9; HRMS: calcd for C24H21F3N2O4S+H+, 491.12469; found (ESI, [M+H]+), 491.1248.


Examples 16 to 21



embedded image


Compounds below are prepared in a similar fashion to Example 5, using the appropriate halogenated arylsulfones in place of 1-ethanesulfonyl-3-fluoro-benzene, reacting for 24 h, and using DMF as the solvent in place of DMA. Compounds were purified by SiO2 chromatography using an appropriate E:H gradient. Some compounds were further purified using C18 reverse-phase chromatography using an appropriate CH3CN:H2O gradient, typically 0:100 to 100: CH3CN:H2O.


Example 16
2-isopropyl-{3-[3-(methylsulfonyl)phenoxy]phenyl}-4-chloro-M-benzimidazole



embedded image


Step 1: N-(2-chlorophenyl)-2-methylpropanimidamide

A stirred mixture of 2-chloroaniline (2.55 g, 20.0 mmol) in toluene (70 ml) under nitrogen was cooled in an ice bath and treated with 2.0 M Me3Al in toluene (15.0 mL, 30.0 mmol) over 15 in and then stirred an additional 15 min. The cold bath was removed and the reaction stirred at ambient temperature for 2 h. A solution of 2-propylcyanide (2.76 g, 40.0 mmol) in toluene (70 mL) was added over 20 min and then heated for 17 h at reflux. The reaction was poured onto ice (150 g) and stirred 1 h. The reaction was treated with dichloromethane (100 mL) and filtered through filter paper. The layers were separated and the aqueous washed with additional dichloromethane (100 mL). The combined layers were dried over MgSO4, filtered, concentrated in vacuo, and chromatographed eluting with a gradient of 50:50 to 100:0 E:H to afford the title compound as a waxy, orange solid (2.85 g). MS (ES) m/z 196.7. HRMS: calcd for C10H13ClN2+H+, 197.08400; found (ESI, [M+H]+ Obs'd), 197.0840.




embedded image


Step 2: 4-chloro-2-isopropyl-1H-benzimidazole

A stirred mixture of iodosobenzenediacetate (322 mg, 1.00 mmol) in toluene (5.0 mL) heated at reflux was treated with N-(2-chlorophenyl)-2-methylpropanimidamide (197 mg, 1.00 mmol) in toluene (3.0 mL) over 3 min. After an additional 5 min, the reaction was cooled, then was concentrated in vacuo. The residue was chromatographed eluting with a 20:80 to 50:50 E:H gradient to afford the title compound as a white solid (104 mg). MS (ES) m/z 194.8; HRMS: calcd for C10H11ClN2+H+, 195.06835; found (ESI, [M+H]+ Obs'd), 195.0684.




embedded image


Step 3: 4-chloro-2-isopropyl-1-(3-methoxyphenyl)-1H-benzimidazole

A well-stirred mixture of 4-chloro-2-isopropyl-1H-benzimidazole (1.40 g, 7.19 mmol), 3-methoxyphenylboronic acid (1.82 g, 11.97 mmol), Cu(OAc)2 (1.32 g, 7.27 mmol), pyridine (2.03 mL, 21.6 mmol), and powdered 4 Å molecular sieves (5.0 g) in dichloromethane (70 mL) was stirred at ambient temperature. The reaction vessel was partly open to the atmosphere. After 2 d, the reaction was filtered through Celite to remove the molecular sieves, treated with water (50 mL), and extracted with dichloromethane (2×100 mL). The combined extracts were dried (MgSO4), concentrated in vacuo, and the residue purified by silica gel chromatography eluting with a 20:80 to 50:50 E:H gradient to afford the title compound contaminated with an impurity. Reverse phase chromatography eluting with a 0:100 to 100:0 acetonitrile:water gradient gave the title compound as a white solid (1.10 g, Rf ˜0.5 in 50:50 E:H). MS (ESI) m/z 301.




embedded image


Step 4: 3-(4-chloro-2-isopropyl-1H-benzimidazol-1-yl)phenol

The title compound was prepared essentially as in Example 4 except using 4-chloro-2-isopropyl-1-(3-methoxyphenyl)-1H-benzimidazole as the substrate and using 1:1 EtOAc:CH2Cl2 to extract the product from the aqueous layer. The organic solution was dried over MgSO4, concentrated in vacuo, and the residue purified by SiO2 chromatography eluting with a 20:80 to 50:50 E:H gradient to yield the title compound as a white solid (0.697 g, Rf˜0.45 in 50:50 E:H). MS (ESI) m/z 286.8; HRMS: calcd for C16H15ClN2O+H+, 287.09457; found (ESI, [M+H]+ Obs'd), 287.0949.


Step 5: 2-isopropyl-{3-[3-(methylsulfonyl)phenoxy]phenyl}-4-chloro-1H-benzimidazole

Prepared as in Example 5 except using DMF as the solvent, using 1-fluoro-3-(methylsulfonyl)benzene in place of 1-(ethylsulfonyl)-3-fluorobenzene, and using 3-(4-chloro-2-isopropyl-1H-benzimidazol-1-yl)phenol in place of 3-[2-methyl-4-(trifluoromethyl)-1H-benzimidazol-1-yl]phenol isolating the title compound as white solid. MS (ES) m/z 440.7, HRMS: calcd for C23H21ClN2O3S+H+, 441.10342; found (ESI, [M+H]+ Obs'd), 441.1038.


Example 17
2-isopropyl-{3-[3-(ethylsulfonyl)phenoxy]phenyl}-4-chloro-1H-benzimidazole

Prepared as in Example 5 but using 3-(4-chloro-2-isopropyl-1H-benzimidazol-1-yl)phenol in place of 3-[2-methyl-4-(trifluoromethyl)-1H-benzimidazol-1-yl]phenol isolating the title compound as white solid. MS (ES) m/z 454.7. HRMS: calcd for C24H23ClN2O3S+H+, 455.11907; found (ESI, [M+H]+ Obs'd), 455.1200.


Example 18
2-isopropyl-{3-[3-(isopropylsulfonyl)phenoxy]phenyl}-4-chloro-1H-benzimidazole

Prepared as in Example 5 but using 1-fluoro-3-(isopropylsulfonyl)benzene in place of 1-(ethylsulfonyl)-3-fluorobenzene and 3-(4-chloro-2-isopropyl-1H-benzimidazol-1-yl)phenol in place of 3-[2-methyl-4-(trifluoromethyl)-1H-benzimidazol-1-yl]phenol isolating the title compound as white solid. MS (ES) m/z 468.13


Example 19
2-isopropyl-{3-[5-fluoro-3-(methylsulfonyl)phenoxy]phenyl}-4-chloro-1H-benzimidazole

Prepared as in Example 5 but using 1,3-difluoro-5-(methylsulfonyl)benzene in place of 1-(ethylsulfonyl)-3-fluorobenzene and 3-(4-chloro-2-isopropyl-1H-benzimidazol-1-yl)phenol in place of 3-[2-methyl-4-(trifluoromethyl)-1H-benzimidazol-1-yl]phenol isolating the title compound as white solid. MS (ES) m/z 458.6. HRMS: calcd for C23H20ClFN2O3S+H+, 459.09399; found (ESI, [M+H]+ Obs'd), 459.0947.


Example 20
2-isopropyl-{3-[5-fluoro-3-(ethylsulfonyl)phenoxy]phenyl}-4-chloro-1H-benzimidazole

Prepared as in Example 5 but using 1,3-difluoro-5-(ethylsulfonyl)benzene in place of 1-(ethylsulfonyl)-3-fluorobenzene and 3-(4-chloro-2-isopropyl-1H-benzimidazol-1-yl)phenol in place of 3-[2-methyl-4-(trifluoromethyl)-1H-benzimidazol-1-yl]phenol isolating the title compound as white solid. MS (ES) m/z 472.7. HRMS: calcd for C24H22ClFN2O3S+H+, 473.10964; found (ESI, [M+H]+ Obs'd), 473.1102.


Example 21
2-isopropyl-{3-[5-chloro-3-(methylsulfonyl)phenoxy]phenyl}-4-chloro-1H-benzimidazole

Prepared as in Example 5 but using 1,3-dichloro-5-(methylsulfonyl)benzene in place of 1-(ethylsulfonyl)-3-fluorobenzene and 3-(4-chloro-2-isopropyl-1H-benzimidazol-1-yl)phenol in place of 3-[2-methyl-4-(trifluoromethyl)-1H-benzimidazol-1-yl]phenol isolating the title compound as white solid. MS (ES) m/z 474.6. HRMS: calcd for C23H20Cl2N2O3S+H+, 475.06444; found (ESI, [M+H]+ Obs'd), 475.0646.


Example 22



embedded image


1-iodo-3-[3-(methylsulfonyl)phenoxy]benzene

A mixture of 3-iodophenol (2.64 g, 12.0 mmol), 1-fluoro-3-(methylsulfonyl)benzene (1.74 g, 10.0 mmol), and K2CO3 (2.07 g, 15 mmol) in DMF (40 mL) was heated at 150° C. for 48 h. After cooling, the mixture was partitioned between EtOAc (150 mL) and water (80 mL). The layers were separated and the organic layer was washed with aqueous 2N HCl (40 mL), aqueous 2N NaOH (3×40 mL), water (4×40 mL) and brine (80 mL). The solution was dried over Na2SO4, concentrated, and the residue was purified by SiO2 flash chromatography eluting with a 0:100 to 25:75 E:H gradient. The residue was then purified by C18-reverse phase chromatography eluting with a gradient of 5:95 to 50:50 CH3CN:H2O to yield the title compound as a light-yellow gum (1.00 g, 28%). MS (ES) m/z 374.6.




embedded image


1-iodo-3-[3-(methylsulfonyl)phenoxy]benzene

In a flask open to air, a mixture of 3-iodophenol (389 mg, 1.77 mmol), 3-(methylsulfonyl)-benzeneboronic acid (424 mg, 2.12 mmol), pyridine (0.71 μL, 8.85 mmol), copper (II) acetate (320 mg, 1.77 mmol), and 4 Å molecular sieves (5 g) was stirred in dichloromethane (35 mL) for 72 h. The solvent was evaporated and the residue was partitioned between EtOAc (60 mL) and water (60 mL). The mixture was filtered through Celite and the layers were separated. The organic layer was washed with saturated aqueous NH4Cl (4×20 mL), saturated aqueous NaHCO3 (2×20 mL), water (20 mL), and brine (20 mL). The solution was dried over Na2SO4, concentrated, and the residue was purified by SiO2 flash chromatography eluting with a gradient of 0:100 to 25:75 E:H. The title compound was isolated as a colorless gum and was spectroscopically identical to the compound isolated in Example 22, Method A.


Example 23



embedded image


N-{3-[3-(methylsulfonyl)phenoxy]phenyl}-2-nitro-3-(trifluoromethyl)aniline

Prepared as in Example 2, using 2-nitro-3-(trifluoromethyl)aniline (1.14 g, 5.55 mmol), 1-iodo-3-[3-(methylsulfonyl)phenoxy]benzene (1.66 g, 1.20 mmol), Pd2 dba3 (122 mg, 0.030 mmol), X-Phos (318 mg, 0.150 mmol), and K2CO3 (828 mg, 6.00 mmol) in tert-butyl alcohol (6.0 mL). The title compound was obtained as an orange gum. MS (ES) m/z 452.8; HRMS: calcd for C20H15F3N2O5S+H+, 453.07265; found (ESI, [M+H]+ Obs'd), 453.0728.


Example 24



embedded image


N1-[3-(3-Methanesulfonyl-phenoxy)-phenyl]-3-trifluoromethyl-benzene-1,2-diamine

To a solution of N-{3-[3-(methylsulfonyl)phenoxy]phenyl}-2-nitro-3-(trifluoromethyl)aniline (1.20 g, 2.65 mmol) in EtOH (25 mL) was added iron powder (1.47 g, 26.5 mmol), followed by 2N HCl (1 mL) and AcOH (3 mL). The mixture was vigorously stirred at 70° C. for 45 min, during which a white/gray precipitate formed. EtOAc (25 mL) was added and the mixture was filtered. Additional EtOAc (75 mL) and saturated aqueous NaHCO3 (50 mL) were added to the filtrate and the layers were separated. The organic layer was further washed with saturated aqueous NaHCO3 (3×40 mL), water (3×30 mL), and brine (50 mL). The solution was dried over Na2SO4, concentrated, and the residue was purified by SiO2 flash chromatography eluting with a gradient of 0:100 to 35:65 E:H. The title compound was isolated as a colorless gum, which slowly turned pink over time. The compound slowly degraded over time and was therefore used immediately without further purification.


Example 25



embedded image


1-{3-[3-(methylsulfonyl)phenoxy]phenyl}-4-(trifluoromethyl)-1H-benzimidazole

A mixture of N1-[3-(3-methanesulfonyl-phenoxy)-phenyl]-3-trifluoromethyl-benzene-1,2-diamine (100 mg, 0.24 mmol, from Example 18) and benzenesulfonic acid (10 mg) in THF (1.5 mL) and trimethylorthoformate (0.50 mL) was heated at 65° C. for 20 min. The solvent was evaporated and the residue was dissolved in CHCl3 (2 mL). Solid NaHCO3 (100 mg) was added and the mixture was stirred for 1 h. The solution was loaded onto a SiO2 column and eluted using a 5:95 to 40:60 E:H gradient. The title compound was isolated as a white foam. MS (ES) m/z 432.8; HRMS: calcd for C21H15F3N2O3S+H+, 433.08282; found (ESI, [M+H]+ Obs'd), 433.0831.


Example 26



embedded image


2-ethyl-1-{3-[3-(methylsulfonyl)phenoxy]phenyl}-4-(trifluoromethyl)-1H-benzimidazole

To a solution of N1-[3-(3-Methanesulfonyl-phenoxy)-phenyl]-3-trifluoromethyl-benzene-1,2-diamine (100 mg, 0.24 mmol, from Example 18) and diisopropylethylamine (83 μL, 0.50 mmol) in THF (2.0 mL) was added propionyl chloride (23 μL, 0.26 mmol) over 10 min. The solution was stirred for 16 h and POCl3 (47 μL, 0.50 mmol) was added. The mixture was heated for 1 h at 65° C. and diisopropylethylamine (83 μL, 0.50 mmol) was added. The mixture was stirred for 1 h and additional POCl3 (47 μL, 0.50 mmol) and diisopropylethylamine (83 μL, 0.50 mmol) were added. After stirring 2 h at 65° C., the mixture was poured into a mixture of EtOAc (40 mL) and saturated aqueous NaHCO3 (30 mL). The layers were separated and the organic layer was further washed with citric acid (2×20 mL), saturated aqueous NaHCO3 (3×30 mL), water (20 mL), and brine (30 mL). The solution was dried over Na2SO4, concentrated, and the residue was purified by SiO2 flash chromatography eluting with a gradient of 0:100 to 40:60 E:H. The title compound was isolated as a white foam. MS (ES) m/z 460.8; HRMS: calcd for C23H19F3N2O3S+H+, 461.11412; found (ESI, [M+H]+ Obs'd), 461.1144.


Examples 27 to 31



embedded image


Compounds below are prepared in a similar fashion to Example 26, using the appropriate acid chlorides in place of propionyl chloride, varying reaction times from 2-20 h. Compounds were purified by SiO2 chromatography using an appropriate E:H gradient. If necessary, compounds were further purified using C18 reverse-phase chromatography using an appropriate CH3CN:H2O gradient.


Example 27
1-{3-[3-(methylsulfonyl)phenoxy]phenyl}-2-propyl-4-(trifluoromethyl)-1H-benzimidazole

Prepared as in Example 26 but using butyryl chloride. MS (ES) m/z 474.9; HRMS: calcd for C24H21F3N2O3S+H+, 475.12977; found (ESI, [M+H]+Obs'd), 475.1300.


Example 28
2-isopropyl-1-{3-[3-(methylsulfonyl)phenoxy]phenyl}-4-(trifluoromethyl)-1H-benzimidazole

Prepared as in Example 26 but using isobutyryl chloride. MS (ES) m/z 474.8; HRMS: calcd for C24H21F3N2O3S+H+, 475.12977; found (ESI, [M+H]+ Obs'd), 475.1304.


Example 29
2-isobutyl-1-{3-[3-(methylsulfonyl)phenoxy]phenyl}-4-(trifluoromethyl)-1H-benzimidazole

Prepared as in Example 26 but using isovaleryl chloride. MS (ES) m/z 488.8; HRMS: calcd for C25H23F3N2O3S+H+, 489.14542; found (ESI, [M+H]+ Obs'd), 489.1455.


Example 30
1-{3-[3-(methylsulfonyl)phenoxy]phenyl}-2-phenyl-4-(trifluoromethyl)-1H-benzimidazole

Prepared as in Example 26 but using benzoyl chloride. MS (ES) m/z 508.7; HRMS: calcd for C27H19F3N2O3S+H+, 509.11412; found (ESI, [M+H]+Obs'd), 509.1142.


Example 31
2-cyclopropyl-1-{3-[3-(methylsulfonyl)phenoxy]phenyl}-4-(trifluoromethyl)-1H-benzimidazole

Prepared as in Example 26 but using cyclopropanecarbonyl chloride. HRMS: calcd for C24H19F3N2O3S+H+, 473.11412; found (ESI, [M+H]+), 473.1145.


Example 32



embedded image


2-(4-fluorobenzyl)-1-{3-[3-(methylsulfonyl)phenoxy]phenyl}-4-(trifluoromethyl)-1H-benzimidazole

A solution of 4-fluorophenylacetic acid (46 mg, 0.30 mmol), POCl3 (47 L, 0.50 mmol) and diisopropylethylamine (83 μL, 0.50 mmol) in THF (1.0 mL) was stirred for 30 min. N1-[3-(3-methanesulfonyl-phenoxy)-phenyl]-3-trifluoromethyl-benzene-1,2-diamine (100 mg, 0.24 mmol, from Example 18) in THF (1.0 mL) was added along with diisopropylethylamine (83 μL, 0.50 mmol). The reaction sequence (addition of POCl3 and diisopropylethylamine) was continued as in Example 26. Analogous workup and purification yielded the title compound as a white foam. MS (ES) m/z 540.8; HRMS: calcd for C28H20F4N2O3S+H+, 541.12035; found (ESI, [M+H]+ Obs'd), 541.1206.


Examples 33 to 34



embedded image


Compounds below are prepared in a similar fashion to Example 32 using the appropriate carboxylic acids, varying reaction times from 2-20 h. Compounds were purified by SiO2 chromatography using an appropriate E:H gradient. If necessary, compounds were further purified using C18 reverse-phase chromatography using an appropriate CH3CN:H2O gradient.


Example 33
2-(difluoromethyl)-1-{3-[3-(methylsulfonyl)phenoxy]phenyl}-4-(trifluoromethyl)-1H-benzimidazole

Prepared as in Example 32 but using excess difluoroacetic acid (200 μL) in place of 4-fluorophenylacetic acid. MS (ES) m/z 482.9.


Example 34
1-{3-[3-(methylsulfonyl)phenoxy]phenyl}-2,4-bis(trifluoromethyl)-1H-benzimidazole

Prepared as in Example 32 but using an excess of trifluoroacetic acid (200 μL) in place of 4-fluorophenylacetic acid. MS (ES) m/z 500.6; HRMS: calcd for C22H14F6N2O3S+H+, 501.07021; found (ESI, [M+H]+ Obs'd), 501.0702.


Example 35



embedded image


2-methyl-1-{3-[3-(methylsulfonyl)phenoxy]phenyl}-4-(trifluoromethyl)-1H-benzimidazole

A mixture of 2-methyl-7-(trifluoromethyl)-1H-benzimidazole (216 mg, 1.08 mmol), 1-iodo-3-[3-(methylsulfonyl)phenoxy]benzene (200 mg, 0.54 mmol), Cs2CO3 (702 mg, 2.16 mmol), CuI (103 mg, 0.54 mmol), and 1,10-phenanthroline (95 mg, 1.08 mmol) in dimethylformamide (2 mL) was stirred at 110° C. for 48 h, then at 150° C. for 24 h. The mixture was partitioned between EtOAc (40 mL) and water (20 mL) and the layers were separated. The organic layer was further washed with aqueous 5% citric acid (3×20 mL), saturated aqueous NaHCO3 (20 mL), water (3×20 mL) and brine (20 mL). The solution was dried over Na2SO4, concentrated, and the residue was purified by SiO2 flash chromatography eluting with a 2:98 to 30:50 E:H gradient to yield the title compound as a colorless foam (32 mg). MS (ES) m/z 447.0; HRMS: calcd for C22H17F3N2O3S+H+, 447.09847; found (ESI, [M+H]+), 447.098.




embedded image


2-methyl-1-{3-[3-(methylsulfonyl)phenoxy]phenyl}-4-(trifluoromethyl)-1H-benzimidazole

Prepared as in Example 25 but using triethylorthoacetate as the orthoformate and chloroform in place of THF as solvent. MS (ES) m/z 447.0.


Example 36



embedded image


1-{3-[3-(3-iodo-propane-1-sulfonyl)-phenoxy]-phenyl}-2-methyl-4-trifluoromethyl-1H-benzimidazole

To a solution of 3-[(3-{3-[2-methyl-4-(trifluoromethyl)-1H-benzimidazol-1-yl]phenoxy}phenyl)sulfonyl]propan-1-ol (150 mg, 0.31 mmol, from Example 9) and diisopropylethylamine (65 μL, 0.39 mmol) at 0° C. in dichloromethane (3.0 mL) was added methanesulfonyl chloride (27 μL, 0.34 mmol). The solution was stirred for 2 h during which it warmed to rt. An additional 10 μL of methanesulfonyl chloride was added and the solution was stirred 16 h. The mixture was partitioned between EtOAc (40 mL) and aqueous 5% citric acid (20 mL) and the layers were separated. The organic layer was washed with aqueous citric acid (20 mL), saturated aqueous NaHCO3 (2×20 mL), water (20 mL), and brine (20 mL). The solution was dried over Na2SO4, concentrated, and the residue (185 mg) was dissolved in dry acetone (10 mL). Sodium iodide (1.0 g) was added and the mixture was heated at 50° C. for 3 h. Ethyl acetate (40 mL) was added and was then washed with water (2×30 mL) and brine (30 mL). The solution was dried over Na2SO4, concentrated, and the residue (200 mg) was carried forward without further purification.


Example 37



embedded image


3-[(3-{3-[2-methyl-4-(trifluoromethyl)-1H-benzimidazol-1-yl]phenoxy}phenyl)sulfonyl]propan-1-amine

To a heavy-walled tube containing 1-{3-[3-(3-iodo-propane-1-sulfonyl)-phenoxy]-phenyl}-2-methyl-4-trifluoromethyl-1H-benzimidazole (73 mg, 0.12 mmol, from Example 36) was added 7N ammonia in methanol (5.0 mL). The tube was sealed and the mixture was heated at 55° C. for 16 h. The mixture was cooled and the volatile components were evaporated. The residue was purified by C18 reverse-phase chromatography eluting with a 5:95 to 100:0 CH3CN:H2O gradient. MS (ES) m/z 489.9; HRMS: calcd for C24H22F3N3O3S+H+, 490.14067; found (ESI, [M+H]+ Obs'd), 490.1408.


Example 38



embedded image


1-{3-[3-(cyclopropylsulfonyl)phenoxy]phenyl}-2-methyl-4-(trifluoromethyl)-1H-benzimidazole

A solution of potassium tert-butoxide (1.0 M in THF, 100 μL, 0.10 mmol) was added drop wise over 1 min to a solution of 1-{3-[3-(3-iodo-propane-1-sulfonyl)-phenoxy]-phenyl}-2-methyl-4-trifluoromethyl-1H-benzimidazole (50 mg, 0.080 mmol, from Example 36) in THF (2.5 mL) at 0° C. After 5 min, a precipitate was present and the starting material had disappeared by TLC. Acetic acid (100 μL) and MeOH (1.0 mL) were added and the volatile components were removed in vacuo. The residue was purified by SiO2 flash chromatography eluting with a gradient of 0:100 to 40:60 E:H. A second purification of the material by C18 reverse-phase chromatography eluting with a 5:95 to 100:0 CH3CN:H2O gradient, yielded the title compound as a white foam. MS (ES) m/z 472.8; HRMS: calcd for C24H19F3N2O3S+H+, 473.11412; found (ESI, [M+H]+ Obs'd), 473.1143.


Example 39



embedded image


2-methyl-1-{3-[3-(methylsulfonyl)phenoxy]phenyl}-M-benzimidazole

The title compound was prepared essentially as in Example 35, Method A, except using 2-methyl-1H-benzimidazole in place of 2-methyl-7-trifluoromethyl-1H-benzimidazole. MS (ES) m/z 379.1; HRMS: calcd for C21H18N2O3S+H+, 379.11109; found (ESI, [M+H]+), 379.1111.


Example 40



embedded image


Step 1: (1Z)-N′-(2,6-dichlorophenyl)-N-(3-methoxyphenyl)ethanimidamide

To a stirred solution of 2,6-dichloroacetanilide (816 mg, 4.00 mmol) in dichloromethane (20 mL) and 2,6-lutidine (0.94 g, 8.8 mmol) at 0° C. under nitrogen was added triflic anhydride (0.74 mL, 4.4 mmol) over 5 min. The cold bath was removed. After 40 min, a mixture of 3-methoxyaniline (541 mg, 4.4 mmol) in dichloromethane (3 mL) was added. After stirring at ambient temperature overnight, the reaction was treated with saturated aqueous NaHCO3 and extracted with dichloromethane (20 mL). The combined extracts were dried over MgSO4, concentrated in vacuo, and chromatographed on silica gel with a gradient of 20:80 to 40:60 E:H to afford the title compound as a white solid (890 mg, 72%). MS (ESI) m/z 309.1; HRMS: calcd for C15H14Cl2N2O+H+, 309.05559; found (ESI, [M+H]+Obs'd), 309.0560.




embedded image


Step 2: 4-chloro-1-(3-methoxyphenyl)-2-methyl-1H-benzimidazole

A mixture of (1Z)-N′-(2,6-dichlorophenyl)-N-(3-methoxyphenyl)ethanimidamide (309 mg, 1.00 mmol), K2CO3 (213 mg, 1.60 mmol), NaOtBu (154 mg, 1.60 mmol), and Pd(PPh3)4 (92 mg, 0.080 mmol) in toluene (20 mL) under nitrogen was heated at reflux was heated 24 h. The reaction was cooled, filtered through a pad of Celite with ethyl acetate washes. The filtrate was concentrated in vacuo and the resulting brown oil was chromatographed with a gradient of 20:80 to 50:50 E:H to afford the title compound as an off-white solid (226 mg, 83%). MS (ESI) m/z 273.1; HRMS: calcd for C15H13ClN2O+H+, 273.07892; found (ESI, [M+H]+ Obs'd), 273.0794.




embedded image


Step 3: 3-(4-chloro-2-methyl-M-benzimidazol-1-yl)phenol

The title compound was prepared as in Example 4 except using 4-chloro-1-(3-methoxyphenyl)-2-methyl-1H-benzimidazole as the substrate to give an off-white to tan solid. MS (ESI) m/z 259.1; HRMS: calcd for C14H11ClN2O+H+, 259.06327; found (ESI, [M+H]+ Obs'd), 259.0645.


Step 4: 4-chloro-2-methyl-1-{3-[3-(methylsulfonyl)phenoxy]phenyl}-1H-benzimidazole

Prepared as in Example 16, step 5, except using 1-fluoro-3-(methylsulfonyl)benzene and 3-(4-chloro-2-methyl-1H-benzimidazol-1-yl)phenol as substrates to afford the title compound as a white solid. MS (ES) m/z 412.9; HRMS: calcd for C21H17ClN2O3S+H+, 413.07212; found (ESI, [M+H]+Obs'd), 413.0729.


Example 41
4-chloro-1-{3-[3-(ethylsulfonyl)phenoxy]phenyl}-2-methyl-1H-benzimidazole

Prepared as in Example 16, step 5, except using 1-(ethylsulfonyl)-3-fluorobenzene and 3-(4-chloro-2-methyl-1H-benzimidazol-1-yl)phenol as substrates to afford the title compound as a white solid. MS (ES) m/z 427.0; HRMS: calcd for C22H19ClN2O3S+H+, 427.08777; found (ESI, [M+H]+ Obs'd), 427.0884.


Example 42
4-chloro-1-{3-[3-(isopropylsulfonyl)phenoxy]phenyl}-2-methyl-1H-benzimidazole

Prepared as in Example 16, step 5, except using 1-fluoro-3-(isoproylsulfonyl)benzene and 3-(4-chloro-2-methyl-1H-benzimidazol-1-yl)phenol as substrates to afford the title compound as a white solid. MS (ES) m/z 441.0; HRMS: calcd for C23H21ClN2O3S+H+, 441.10342; found (ESI, [M+H]+ Obs'd), 441.1044.


Example 43
4-chloro-2-methyl-1-{3-[3-(propylsulfonyl)phenoxy]phenyl}-1H-benzimidazole

Prepared as in Example 16, step 5, except using 1-fluoro-3-(propylsulfonyl)benzene and 3-(4-chloro-2-methyl-1H-benzimidazol-1-yl)phenol as substrates to afford the title compound as a very pale yellow solid solid. MS (ESI) m/z 441.1; HRMS: calcd for C23H21ClN2O3S+H+, 441.10342; found (ESI, [M+H]+ Obs'd), 441.1035.


Example 44
4-chloro-1-{3-[3-fluoro-5-(methylsulfonyl)phenoxy]phenyl}-2-methyl-1H-benzimidazole

Prepared as in Example 16, step 5, except heating at 130° C. and using 1,3-difluoro-5-(methylsulfonyl)benzene and 3-(4-chloro-2-methyl-1H-benzimidazol-1-yl)phenol as substrates to afford the title compound as an off-white solid. MS (ESI) m/z 431.1; HRMS: calcd for C21H16ClFN2O3S+H+, 431.06269; found (ESI, [M+H]+ Obs'd), 431.0628.


Example 45
4-chloro-1-{3-[3-(ethylsulfonyl)-5-fluorophenoxy]phenyl}-2-methyl-1H-benzimidazole

Prepared as in Example 16, step 5, except heating at 130° C. and using 1,3-difluoro-5-(ethylsulfonyl)benzene and 3-(4-chloro-2-methyl-1H-benzimidazol-1-yl)phenol as substrates to afford the title compound as a white solid. MS (ESI) m/z 445.1; HRMS: calcd for C22H18ClFN2O3S+H+, 445.07834; found (ESI, [M+H]+ Obs'd), 445.0788.


Example 46
4-chloro-1-{3-[3-chloro-5-(methylsulfonyl)phenoxy]phenyl}-2-methyl-1H-benzimidazole

Prepared as in Example 16, step 5, except heating at 130° C. and using 1,3-dichloro-5-(methylsulfonyl)benzene and 3-(4-chloro-2-methyl-1H-benzimidazol-1-yl)phenol as substrates to afford the title compound as an off-white solid. MS (ESI) m/z 447.1; HRMS: calcd for C21H16Cl2N2O3S+H+, 447.03314; found (ESI, [M+H]+ Obs'd), 447.0329.


Example 47
4-chloro-2-methyl-1-(3-{3-[(trifluoromethyl)sulfonyl]phenoxy}phenyl)-1H-benzimidazole

Prepared as in Example 16, step 5, except heating at 130° C. and using 1-fluoro-3-(trifluoromethylsulfonyl)benzene and 3-(4-chloro-2-methyl-1H-benzimidazol-1-yl)phenol as substrates to afford the title compound as an off-white solid. MS (ESI) m/z 467.1; HRMS: calcd for C21H14ClF3N2O3S+H+, 467.04385; found (ESI, [M+H]+ Obs'd), 467.0438.


Example 48
4-chloro-2-methyl-1-{3-[4-(methylsulfonyl)phenoxy]phenyl}-1H-benzimidazole

Prepared as in Example 16, step 5, except heating at 130° C. and using 1-fluoro-4-(methylsulfonyl)benzene and 3-(4-chloro-2-methyl-1H-benzimidazol-1-yl)phenol as substrates to afford the title compound as a white solid. MS (ESI) m/z 413.1; HRMS: calcd for C21H17ClN2O3S+H+, 413.07212; found (ESI, [M+H]+ Obs'd), 413.0723.


Example 49
4-chloro-1-{3-[4-(ethylsulfonyl)phenoxy]phenyl}-2-methyl-1H-benzimidazole

Prepared as in Example 16, step 5, except heating at 130° C. and using 1-(ethylsulfonyl)-4-fluorobenzene and 3-(4-chloro-2-methyl-1H-benzimidazol-1-yl)phenol as substrates to afford the title compound as an off-white solid. MS (ESI) m/z 427.1; HRMS: calcd for C22H19ClN2O3S+H+, 427.08777; found (ESI, [M+H]+ Obs'd), 427.0885.


Example 50
4-chloro-2-methyl-1-{3-[2-(methylsulfonyl)phenoxy]phenyl}-1H-benzimidazole

Prepared as in Example 16, step 5, except heating at 130° C. and using 2-fluoro-1-(methylsulfonyl)benzene and 3-(4-chloro-2-methyl-1H-benzimidazol-1-yl)phenol as substrates to afford the title compound as a white solid. MS (ESI) m/z 413.1; HRMS: calcd for C21H17ClN2O3S+H+, 413.07212; found (ESI, [M+H]+ Obs'd), 413.0730.


Example 51
1-{3-[2-bromo-5-(methylsulfonyl)phenoxy]phenyl}-4-chloro-2-methyl-1H-benzimidazole

Prepared as in Example 16, step 5, except using 4-bromo-1-fluoro-3-(methylsulfonyl)benzene and 3-(4-chloro-2-methyl-1H-benzimidazol-1-yl)phenol as substrates to afford the title compound as an off-white solid. MS (ESI) m/z 491.0; HRMS: calcd for C21H16BrClN2O3S+H+, 490.98263; found (ESI, [M+H]+ Obs'd), 490.9824.


Example 52
4-chloro-1-{3-[2-fluoro-4-(methylsulfonyl)phenoxy]phenyl}-2-methyl-1H-benzimidazole

Prepared as in Example 16, step 5, except heating at 130° C. and using 1,2-difluoro-4-(methylsulfonyl)benzene and 3-(4-chloro-2-methyl-1H-benzimidazol-1-yl)phenol as substrates to afford the title compound as a white solid. MS (ESI) m/z 431.1; HRMS: calcd for C21H16ClFN2O3S+H+, 431.06269; found (ESI, [M+H]+ Obs'd), 431.0628.


Example 53
4-chloro-2-methyl-1-(3-{3-[3-methylbutyl)sulfonyl]phenoxy}phenyl)-1H-benzimidazole

Prepared as in Example 16, step 5, except using 1-fluoro-3-[(isopentyl) sulfonyl]benzene and 3-(4-chloro-2-methyl-1H-benzimidazol-1-yl)phenol as substrates to afford the title compound as a waxy solid. MS (ESI) m/z 469.2; HRMS: calcd for C25H25ClN2O3S+H+, 469.13472; found (ESI, [M+H]+ Obs'd), 469.1348.


Example 54
4-chloro-1-{2-chloro-5-[3-(methylsulfonyl)phenoxy]phenyl}-2-methyl-1H-benzimidazole
Step 1: (1Z)—N-(2-chloro-5-methoxyphenyl)-N′-(2,6-dichlorophenyl)ethanimidamide

Prepared as in Example 40, step 1, except using 2-chloro-5-methoxyaniline hydrochloride in place of 3-methoxyaniline and using 3.3 mole equivalents of 2,6-lutidine to afford the title compound as a white solid. MS (ESI) m/z 343.0; HRMS: calcd for C15H13Cl3N2O+H+, 343.01662; found (ESI, [M+H]+ Obs'd), 343.0170.


Step 2: 4-chloro-1-(3-methoxyphenyl)-2-methyl-1H-benzimidazole

Prepared as in Example 40, step 2, except using (Z)—N-(2-chloro-5-methoxyphenyl)-N′-(2,6-dichlorophenyl)acetimidamide as substrate to afford the title compound as a white solid.


Step 3: 4-chloro-3-(4-chloro-2-methyl-1H-benzimidazol-1-yl)phenol

Prepared as in Example 4 except using 4-chloro-1-(3-methoxyphenyl)-2-methyl-1H-benzimidazole as substrate to afford the title compound as a tan solid.


Step 4: 4-chloro-1-{2-chloro-5-[3-(methylsulfonyl)phenoxy]phenyl}-2-methyl-1H-benzimidazole

Prepared as in Example 16, step 5, except using 1-fluoro-3-(methylsulfonyl)benzene and 4-chloro-3-(4-chloro-2-methyl-1H-benzimidazol-1-yl)phenol as substrates to afford the title compound as a white foam-solid. MS (ESI) m/z 447.1; HRMS: calcd for C21H16Cl2N2O3S+H+, 447.03314; found (ESI, [M+H]+ Obs'd), 447.0334.


Example 55
4-chloro-1-{2-chloro-5-[3-(ethylsulfonyl)phenoxy]phenyl}-2-methyl-1H-benzimidazole

Prepared as in Example 16, step 5, except using 1-(ethylsulfonyl)-3-fluorobenzene and 4-chloro-3-(4-chloro-2-methyl-1H-benzimidazol-1-yl)phenol as substrates to afford the title compound as a white foam-solid. MS (ESI) m/z 461.1


Example 56
4-chloro-1-{2-chloro-5-[3-(propylsulfonyl)phenoxy]phenyl}-2-methyl-1H-benzimidazole

Prepared as in Example 16, step 5, except using 1-fluoro-3-(propylsulfonyl)benzene and 4-chloro-3-(4-chloro-2-methyl-1H-benzimidazol-1-yl)phenol as substrates to afford the title compound as an off-white solid. MS (ESI) m/z 475.1; HRMS: calcd for C23H20Cl2N2O3S+H+, 475.06444; found (ESI, [M+H]+ Obs'd), 475.0644.


Example 57
4-chloro-1-{2-chloro-5-[3-(isopropylsulfonyl)phenoxy]phenyl}-2-methyl-1H-benzimidazole

Prepared as in Example 16, step 5, except using 1-fluoro-3-(isopropylsulfonyl)benzene and 4-chloro-3-(4-chloro-2-methyl-1H-benzimidazol-1-yl)phenol as substrates to afford the title compound as an off-white solid. MS (ESI) m/z 475.1; HRMS: calcd for C23H20Cl2N2O3S+H+, 475.06444; found (ESI, [M+H]+ Obs'd), 475.0645.


Example 58
4-chloro-1-{2-chloro-5-[3-fluoro-5-(methylsulfonyl)phenoxy]phenyl}-2-methyl-1H-benzimidazole

Prepared as in Example 16, step 5, except heating at 130° C. and using 1,3-difluoro-5-(methylsulfonyl)benzene and 4-chloro-3-(4-chloro-2-methyl-1H-benzimidazol-1-yl)phenol as substrates to afford the title compound as a white solid. MS (ESI) m/z 465.0; HRMS: calcd for C21H15O2FN2O3S+H+, 465.02372; found (ESI, [M+H]+ Obs'd), 465.0239.


Example 59
4-chloro-1-{2-chloro-5-[3-(ethylsulfonyl)-5-fluorophenoxy]phenyl}-2-methyl-1H-benzimidazole

Prepared as in Example 16, step 5, except heating at 130° C. and using 1,3-difluoro-5-(ethylsulfonyl)benzene and 4-chloro-3-(4-chloro-2-methyl-1H-benzimidazol-1-yl)phenol as substrates to afford the title compound as a white solid. MS (ESI) m/z 479.1; HRMS: calcd for C22H17Cl2FN2O3S+H+, 479.03937; found (ESI, [M+H]+ Obs'd), 479.0392.


Example 60
4-chloro-1-(2-chloro-5-{3-[(trifluoromethyl)sulfonyl]phenoxy}phenyl)-2-methyl-1H-benzimidazole

Prepared as in Example 16, step 5, except heating at 130° C. and using 1-fluoro-3-(trifluoromethylsulfonyl)benzene and 4-chloro-3-(4-chloro-2-methyl-1H-benzimidazol-1-yl)phenol as substrates to afford the title compound as an off-white solid. MS (ESI) m/z 501.0; HRMS: calcd for C21H13Cl2F3N2O3S+H+, 501.00488; found (ESI, [M+H]+ Obs'd), 501.0053.


Example 61
4-chloro-1-{2-chloro-5-[4-(methylsulfonyl)phenoxy]phenyl}-2-methyl-1H-benzimidazole

Prepared as in Example 16, step 5, except heating at 130° C. and using 1-fluoro-4-(methylsulfonyl)benzene and 4-chloro-3-(4-chloro-2-methyl-1H-benzimidazol-1-yl)phenol as substrates to afford the title compound as a white solid. MS (ESI) m/z 447.1; HRMS: calcd for C21H16Cl2N2O3S+H+, 447.03314; found (ESI, [M+H]+ Obs'd), 447.0329.


Example 62
4-chloro-1-{2-chloro-5-[4-(ethylsulfonyl)phenoxy]phenyl}-2-methyl-1H-benzimidazole

Prepared as in Example 16, step 5, except heating at 130° C. and using 1-(ethylsulfonyl)-4-fluorobenzene and 4-chloro-3-(4-chloro-2-methyl-1H-benzimidazol-1-yl)phenol as substrates to afford the title compound as a white solid. MS (ESI) m/z 461.1; HRMS: calcd for C22H18Cl2N2O3S+H+, 461.04879; found (ESI, [M+H]+ Obs'd), 461.0477.


Example 63
4-chloro-1-{2-chloro-5-[2-(methylsulfonyl)phenoxy]phenyl}-2-methyl-1H-benzimidazole

Prepared as in Example 16, step 5, except heating at 130° C. and using 1-fluoro-2-(methylsulfonyl)benzene and 4-chloro-3-(4-chloro-2-methyl-1H-benzimidazol-1-yl)phenol as substrates to afford the title compound as a white solid. MS (ESI) m/z 447.1; HRMS: calcd for C21H16Cl2N2O3S+H+, 447.03314; found (ESI, [M+H]+ Obs'd), 447.0329.


Example 64
2-methyl-1-{4-[3-(methylsulfonyl)phenoxy]phenyl}-4-(trifluoromethyl)-1H-benzimidazole
Step 1: N-(4-methoxyphenyl)-2-nitro-3-(trifluoromethyl)aniline

The title compound was prepared essentially as in Example 2, except using 4-iodoanisole in place of 3-iodoanisole. MS (ES) m/z 312.9; HRMS: calcd for C14H11F3N2O3+H+, 313.07945; found (ESI, [M+H]+ Obs'd), 313.0801.


Step 2: N1-(4-methoxyphenyl)-3-(trifluoromethyl)benzene-1,2-diamine

The title compound was prepared essentially as in Example 24, except using N-(4-methoxyphenyl)-2-nitro-3-(trifluoromethyl)aniline in place of N-{3-[3-(methylsulfonyl)phenoxy]phenyl}-2-nitro-3-(trifluoromethyl)aniline and 50 μL of concentrated HCl in place of 1 mL 2N HCl. MS (ES) m/z 283.1; HRMS: calcd for C14H13F3N2O+H+, 283.10527; found (ESI, [M+H]+ Obs'd), 283.1058.


Step 3: 1-(4-methoxyphenyl)-2-methyl-4-(trifluoromethyl)-1H-benzimidazole

The title compound was prepared essentially as in Example 25, except using N1-(4-methoxyphenyl)-3-(trifluoromethyl)benzene-1,2-diamine in place of N1-[3-(3-methanesulfonyl-phenoxy)-phenyl]-3-trifluoromethyl-benzene-1,2-diamine and triethylorthoacetate in place of trimethylorthoformate. MS (ES) m/z 307.2.


Step 4: 4-[2-methyl-4-(trifluoromethyl)-1H-benzimidazol-1-yl]phenol

The title compound was prepared essentially as in Example 4, except using 1-(4-methoxyphenyl)-2-methyl-4-(trifluoromethyl)-1H-benzimidazole in place of 1-(3-methoxyphenyl)-2-methyl-4-(trifluoromethyl)-1H-benzimidazole. MS (ES) m/z 293.1.


Step 5: 2-methyl-1-{4-[3-(methylsulfonyl)phenoxy]phenyl}-4-(trifluoromethyl)-1H-benzimidazole

A stirred mixture of 3-(3-methyl-8-(trifluoromethyl)quinolin-4-yl)phenol (90 mg, 0.31 mmol), 1-bromo-3-(methylsulfonyl)benzene (105 mg, 0.45 mmol), N,N-dimethylglycine hydrochloride (16 mg, 0.011 mmol), CuI (12 mg, 0.06 mmol) and Cs2CO3 (392 mg, 1.20 mmol) was heated in 1,4-dioxane (1.5 mL) at 95° C. for 16 h under nitrogen. The reaction was cooled, treated with water, and extracted with EtOAc. The extracts were dried with Na2SO4 and concentrated in vacuo. Chromatography on silica gel eluting with ethyl acetate:hexane gradient of 0:100 to 40/60 afforded the title compound as a white foam-solid. MS (ES) m/z 446.8; HRMS: calcd for C22H17F3N2O3S+H+, 447.09847; found (ESI, [M+H]+ Obs'd), 447.0988.


Example 65
1-{4-[3-(ethylsulfonyl)phenoxy]phenyl}-2-methyl-4-(trifluoromethyl)-1H-benzimidazole

The title compound was prepared essentially as in Example 64, step 5 except using 1-bromo-3-(ethylsulfonyl)benzene in place of 1-bromo-3-(methylsulfonyl)benzene. HRMS: calcd for C23H19F3N2O3S+H+, 461.11412; found (ESI, [M+H]+ Obs'd), 461.1145.


Example 66
1-{4-[3-fluoro-5-(methylsulfonyl)phenoxy]phenyl}-2-methyl-4-(trifluoromethyl)-1H-benzimidazole

The title compound was prepared essentially as in Example 5 using 3-[(3-methyl-8-(trifluoromethyl)]quinolin-4-yl)phenol and 1,3-difluoro-5-(methylsulfonyl)benzene as substrates. MS (ES) m/z 465.1; HRMS: calcd for C22H16F4N2O3S+H+, 465.08905; found (ESI, [M+H]+ Obs'd), 465.0892.


Example 67
2 ethyl-1-{4-[3-(methylsulfonyl)phenoxy]phenyl}-4-(trifluoromethyl)-1H-benzimidazole
Step 1: 2-ethyl-1-(4-methoxyphenyl)-4-(trifluoromethyl)-1H-benzimidazole

The title compound was prepared essentially as in Example 25, except using N1-(4-methoxyphenyl)-3-(trifluoromethyl)benzene-1,2-diamine in place of N1-[3-(3-methanesulfonyl-phenoxy)-phenyl]-3-trifluoromethyl-benzene-1,2-diamine and triethylorthopropionate in place of trimethylorthoformate. MS (ES) m/z 320.6; HRMS: calcd for C17H15F3N2O+H+, 321.12092; found (ESI, [M+H]+ Obs'd), 321.1213.


Step 2: 4-[2-ethyl-4-(trifluoromethyl)-1H-benzimidazol-1-yl]-phenol

The title compound was prepared essentially as in Example 4, except using 2-ethyl-1-(4-methoxyphenyl)-4-(trifluoromethyl)-1H-benzimidazole in place of 1-(3-methoxyphenyl)-2-methyl-4-(trifluoromethyl)-1H-benzimidazole. MS (ES) m/z 307; HRMS: calcd for C16H13F3N2O+H+, 307.10527; found (ESI, [M+H]+ Obs'd), 307.1059.


Step 3: 2-ethyl-1-{4-[3-(methylsulfonyl)phenoxy]phenyl}-4-(trifluoromethyl)-1H-benzimidazole

The title compound was prepared essentially as in Example 64, step 5 using 1-bromo-3-(methylsulfonyl)benzene and 4-[2-ethyl-4-(trifluoromethyl)-1H-benzimidazol-1-yl]phenol as the substrates. MS (ES) m/z 460.9; HRMS: calcd for C23H19F3N2O3S+H+, 461.11412; found (ESI, [M+H]+ Obs'd), 461.1148.


Example 68
2-ethyl-1-{4-[3-(ethylsulfonyl)phenoxy]phenyl}-4-(trifluoromethyl)-1H-benzimidazole

The title compound was prepared essentially as in Example 64, step 5 using 1-bromo-3-(ethylsulfonyl)benzene and 4-[2-ethyl-4-(trifluoromethyl)-1H-benzimidazol-1-yl]phenol as the substrates. MS (ESI) m/z 475.2; HRMS: calcd for C24H21F3N2O3S+H+, 475.12977; found (ESI, [M+H]+ Obs'd), 475.1300.


Example 69
2-ethyl-1-{4-[3-fluoro-5-(methylsulfonyl)phenoxy]-phenyl}-4-(trifluoromethyl)-1H-benzimidazole

The title compound was prepared essentially as in Example 5 using 1,3-difluoro-5-(methylsulfonyl)benzene and 4-[2-ethyl-4-(trifluoromethyl)-1H-benzimidazol-1-yl]phenol as the substrates. MS (ES) m/z 478.9; HRMS: calcd for C23H18F4N2O3S+H+, 479.10470; found (ESI, [M+H]+ Obs'd), 479.1051.


Example 70
1-{4-[3-(methylsulfonyl)phenoxy]phenyl}-2,4-bis(trifluoromethyl)-1H-benzimidazole
Step 1: 1-(4-methoxyphenyl)-2,4-bis(trifluoromethyl)-1H-benzimidazole

The title compound was prepared essentially as in Example 34, except using N1-(4-methoxyphenyl)-3-(trifluoromethyl)benzene-1,2-diamine in place of N1-[3-(3-methanesulfonyl-phenoxy)-phenyl]-3-trifluoromethyl-benzene-1,2-diamine. MS (ES) m/z 360.9; HRMS: calcd for C16H10F6N2O+H+, 361.07701; found (ESI, [M+H]+ Obs'd), 361.0777.


Step 2: 4-[2,4-bis(trifluoromethyl)-1H-benzimidazol-1-yl]phenol

The title compound was prepared essentially as in Example 4, except using 1-(4-methoxyphenyl)-2,4-bis(trifluoromethyl)-1H-benzimidazole in place of 1-(3-methoxyphenyl)-2-methyl-4-(trifluoromethyl)-1H-benzimidazole. MS (ES) m/z 346.8; HRMS: calcd for C15H8F6N2O+H+, 347.06136; found (ESI, [M+H]+ Obs'd), 347.0619.


Step 3: 1-{4-[3-(methylsulfonyl)phenoxy]phenyl}-2,4-bis(trifluoromethyl)-1H-benzimidazole

The title compound was prepared essentially as in Example 64, step 5 using 1-bromo-3-(methylsulfonyl)benzene and 4-[2,4-bis(trifluoromethyl)-1H-benzimidazol-1-yl]phenol as the substrates. HRMS: calcd for C22H14F6N2O3S+H+, 501.07021; found (ESI, [M+H]+ Obs'd), 501.0707.


Example 71
1-{4-[3-(ethylsulfonyl)phenoxy]phenyl}-2,4-bis(trifluoromethyl)-1H-benzimidazole

The title compound was prepared essentially as in Example 64, step 5 using 1-bromo-3-(ethylsulfonyl)benzene and 4-[2,4-bis(trifluoromethyl)-1H-benzimidazol-1-yl]phenol as the substrates. MS (ES) m/z 515.0; HRMS: calcd for C23H16F6N2O3S+H+, 515.08586; found (ESI, [M+H]+ Obs'd), 515.0860.


Example 72
1-{4-[3-fluoro-5-(methylsulfonyl)phenoxy]phenyl}-2,4-bis(trifluoromethyl)-1H-benzimidazole

The title compound was prepared essentially as in Example 5 using 1,3-difluoro-5-(methylsulfonyl)benzene and 4-[2,4-bis(trifluoromethyl)-1H-benzimidazol-1-yl]phenol as the substrates. MS (ES) m/z 518.9.


Example 73
1-{4-[3-(isopropylsulfonyl)phenoxy]phenyl}-2,4-bis(trifluoromethyl)-1H-benzimidazole

The title compound was prepared essentially as in Example 64, step 5 using 1-bromo-3-(isopropylsulfonyl)benzene and 4-[2,4-bis(trifluoromethyl)-1H-benzimidazol-1-yl]phenol as the substrates. HRMS: calcd for C24H18F6N2O3S+H+, 529.10151; found (ESI, [M+H]+ Obs'd), 529.1020.


Example 74
2-[difluoro(phenyl)methyl]-1-(4-methoxyphenyl)-4-(trifluoromethyl)-1H-benzimidazole

The title compound s prepared essentially as in Example 32, except using N1-(4-methoxyphenyl)-3-(trifluoromethyl)benzene-1,2-diamine and 2,2-difluoro-2-phenylacetic acid as the substrates. MS (ES) m/z 419.1; HRMS: calcd for C22H15F5N2O+H+, 419.11773; found (ESI, [M+H]+ Obs'd), 419.1184.


Example 75
2-methyl-1-[3′-(methylsulfonyl)biphenyl-3-yl]-4-(trifluoromethyl)-1H-benzimidazole
Step 1: 3-[2-methyl-4-(trifluoromethyl)-1H-benzimidazol-1-yl]phenyl trifluoromethanesulfonate

Trifluoromethanesulfonic anhydride (224 μL, 1.33 mmol) was added over 1 min to a 0° C. solution of 3-[2-methyl-4-(trifluoromethyl)-1H-benzimidazol-1-yl]phenol (354 mg, 1.21 mmol) and diisopropylethylamine (234 μL, 1.82 mmol) in DCM (6 mL). The solution was stirred for 2 h during which it warmed to rt. The reaction was poured into a mixture of EtOAc (40 mL) and citric acid (10 mL) and the layers were separated. The organic layer was washed with citric acid (10 mL), NaHCO3 (10 mL), and brine (20 mL). The solution was dried over Na2SO4, concentrated, and purified by chromatography on SiO2 eluting with a 0:100 to 30:70 EtOAc:Hex gradient. The product was isolated as a colorless glass. MS (ES) m/z 425.1; HRMS: calcd for C16H10F6N2O3S+H+, 425.03891; found (ESI, [M+H]+ Obs'd), 425.0395.


Step 2: 2-methyl-1-[3′-(methylsulfonyl)biphenyl-3-yl]-4-(trifluoromethyl)-1H-benzimidazole

A mixture of 3-[2-methyl-4-(trifluoromethyl)-1H-benzimidazol-1-yl]phenyl trifluoromethanesulfonate (150 mg, 0.35 mmol), 3-(methanesulfonyl)phenylboronic acid (140 mg, 0.7 mmol), K3PO4 (593 mg, 2.8 mmol)) and Pd(PPh3)4 (40 mg, 0.035 mmol) in dioxane (5 mL) was heated at 100° C. for 2 h. The reaction was filtered and the filtrate concentrated in vacuo. The residue was purified by chromatography on SiO2 elution with a gradient of 0:100 to 50:50 EtOAc:Hex to yield the product as white foam. MS (ES) m/z 431.0; HRMS: calcd for C22H17F3N2O2S+H+, 431.10356; found (ESI, [M+H]+ Obs'd), 431.1045.


Example 76
2-methyl-1-[3-(3-{[3-(methylsulfonyl)propyl]sulfonyl}phenoxy)phenyl]-4-(trifluoromethyl)-1H-benzimidazole

Sodium methanesulfonate (56 mg, 0.55 mmol) and 1-{3-[3-(3-iodo-propane-1-sulfonyl)-phenoxy]-phenyl}-2-methyl-4-trifluoromethyl-1H-benzimidazole (110 mg, 0.18 mmol) was heated in dimethylacetamide (2 mL) at 80° C. for 4 h. The mixture was added to EtOAc (40 mL) and water (20 mL) and the layers were separated. The organic layer was washed with water (5×20 mL), brine (20 mL), was dried over Na2SO4 and was concentrated. The residue was purified by chromatography on silica gel, eluting with 10:90 to 60:40 EtOAc:Hex, to yield the title compound as a colorless glass. MS (ES) m/z 553.1; HRMS: calcd for C25H23F3N2O5S2+H+, 553.10732; found (ESI, [M+H]+ Obs'd), 553.1077.


Example 77
1-{3-[3-(ethylsulfonyl)phenoxy]phenyl}-2,4-bis(trifluoromethyl)-1H-benzimidazole
Step 1: N1-(3-Methoxy-phenyl)-3-trifluoromethyl-benzene-1,2-diamine

Prepared as in Example 24 but using 3-(3-methoxyphenyl)-(2-nitro-3-trifluoromethyl-phenyl)-amine as substrate MS (ES) m/z 361.0; HRMS: calcd for C16H10F6N2O+H+, 361.07701; found (ESI, [M+H]+ Obs'd), 361.0771.


Step 2: 1-(3-methoxyphenyl)-2,4-bis(trifluoromethyl)-1H-benzimidazole

Prepared as in Example 32 but using trifluoracetic acid. MS (ES) m/z 474.8; HRMS: calcd for C24H21F3N2O3S+H+, 475.12977; found (ESI, [M+H]+ Obs'd), 475.1304.


Step 3: 3-[2,4-bis(trifluoromethyl)-1H-benzimidazol-1-yl]phenol

Prepared as in Example 4 but using 3-[2,4-bis(trifluoromethyl)-1H-benzimidazol-1-yl]phenol as substrate. MS (ES) m/z 346.9HRMS: calcd for C15H8F6N2O+H+, 347.06136; found (ESI, [M+H]+ Obs'd), 347.0616.


Step 4: 1-{3-[3-(ethylsulfonyl)phenoxy]phenyl}-2,4-bis(trifluoromethyl)-1H-benzimidazole

Prepared as in Example 64, step 5 but using 3-[2,4-bis(trifluoromethyl)-1H-benzimidazol-1-yl]phenol and 1-bromo-3-(ethylsulfonyl)benzene as the substrates. MS (ES) m/z 514.9.


Example 78
1-{3-[3-(isopropylsulfonyl)phenoxy]phenyl}-2,4-bis(trifluoromethyl)-1H-benzimidazole

Prepared as in Example 64, step 5 but using 3-[2,4-bis(trifluoromethyl)-1H-benzimidazol-1-yl]phenol and 1-bromo-3-(isopropylsulfonyl)benzene as the substrates. MS (ES) m/z 528.9.


Example 79
1-{2-chloro-5-[3-(methylsulfonyl)phenoxy]phenyl}-4-(trifluoromethyl)-1H-benzimidazole
Step 1: N-(2-chloro-5-methoxyphenyl)-2-nitro-3-(trifluoromethyl)aniline

Prepared as in Example 2 but using 2-bromo-1-chloro-4-methoxy-benzene as substrate MS (ES) m/z 344.7.


Step 2: N1-(2-chloro-5-methoxyphenyl)-3-(trifluoromethyl)benzene-1,2-diamine

Prepared as in Example 24 but using N-(2-chloro-5-methoxyphenyl)-2-nitro-3-(trifluoromethyl)aniline as the substrates. MS (ES) m/z 316.8; HRMS: calcd for C14H12ClF3N2O+H+, 317.06630; found (ESI, [M+H]+ Obs'd), 317.0652.


Step 3: 1-(2-chloro-5-methoxyphenyl)-4-(trifluoromethyl)-1H-benzimidazole

Prepared as in Example 25 but using N1-(2-chloro-5-methoxyphenyl)-3-(trifluoromethyl)benzene-1,2-diamine as the substrate. MS (ES) m/z 326.8; HRMS: calcd for C15H10ClF3N2O+H+, 327.05065; found (ESI, [M+H]+ Obs'd), 327.0515.


Step 4: 4-chloro-3-[4-(trifluoromethyl)-1H-benzimidazol-1-yl]phenol

Prepared as in Example 4 but using 1-(2-chloro-5-methoxyphenyl)-4-(trifluoromethyl)-1H-benzimidazole as substrate. MS (ES) m/z 312.8; HRMS: calcd for C14H8ClF3N2O+H+, 313.03500; found (ESI, [M+H]+ Obs'd), 313.0348.


Step 5: 1-{2-chloro-5-[3-(methylsulfonyl)phenoxy]phenyl}-4-(trifluoromethyl)-1H-benzimidazole

Prepared as in Example 5 but using 4-chloro-3-[4-(trifluoromethyl)-1H-benzimidazol-1-yl]phenol and 1-fluoro-3-(methyl)sulfonylbenzene the as substrate. MS (ES) m/z 466.8; HRMS: calcd for C21H14ClF3N2O3S+H+, 467.04385; found (ESI, [M+H]+ Obs'd), 467.0439.


Example 80
1-{2-chloro-5-[3-(ethylsulfonyl)phenoxy]phenyl}-4-(trifluoromethyl)-1H-benzimidazole

Prepared as in Example 5 but using 4-chloro-3-[4-(trifluoromethyl)-1H-benzimidazol-1-yl]phenol and 1-(ethylsulfonyl)-3-fluorobenzene as substrate. MS (ES) m/z 481.1; HRMS: calcd for C22H16ClF3N2O3S+H+, 481.05950; found (ESI, [M+H]+ Obs'd), 481.0596.


Example 81
1-{2-chloro-5-[3-(isopropylsulfonyl)phenoxy]phenyl}-4-(trifluoromethyl)-1H-benzimidazole

Prepared as in Example 5 but using 4-chloro-3-[4-(trifluoromethyl)-1H-benzimidazol-1-yl]phenol and 3-fluoro-1-methanesulfonylbenzene as the substrates. MS (ES) m/z 495.1; HRMS: calcd for C23H18ClF3N2O3S+H+, 495.07515; found (ESI, [M+H]+ Obs'd), 495.0751.


Example 82
1-{2-chloro-5-[3-fluoro-5-(methylsulfonyl)phenoxy]phenyl}-4-(trifluoromethyl)-1H-benzimidazole

Prepared as in Example 5 but using 4-chloro-3-[4-(trifluoromethyl)-1H-benzimidazol-1-yl]phenol and 1,3-difluoro-5-(methylsulfonyl)benzene as the substrates. MS (ES) m/z 485.1 HRMS: calcd for C21H13ClF4N2O3S+H+, 485.03443; found (ESI, [M+H]+ Obs'd), 485.0344.


Example 83
1-{2-chloro-5-[4-(methylsulfonyl)phenoxy]phenyl}-4-(trifluoromethyl)-1H-benzimidazole

Prepared as in Example 5 but using 4-chloro-3-[4-(trifluoromethyl)-1H-benzimidazol-1-yl]phenol and 1-fluoro-4-(methylsulfonyl)benzene as substrate. MS (ES) m/z 467.1; HRMS: calcd for C21H14ClF3N2O3S+H+, 467.04385; found (ESI, [M+H]+ Obs'd), 467.0439.


Example 84
1-(2-chloro-5-{[3-(methylsulfonyl)benzyl]oxy}phenyl)-4-(trifluoromethyl)-1H-benzimidazole

Prepared as in Example 5 but using 4-chloro-3-[4-(trifluoromethyl)-1H-benzimidazol-1-yl]phenol and 1-(bromomethyl)-3-(methylsulfonyl)benzene as substrates. MS (ES) m/z 481.1; HRMS: calcd for C22H16ClF3N2O3S+H+, 481.05950; found (ESI, [M+H]+ Obs'd), 481.0601.


Example 85
2-ethyl-1-(4-{[3-(methylsulfonyl)benzyl]oxy}phenyl)-4-(trifluoromethyl)-1H-benzimidazole

A mixture of Cs2CO3 (163 mg, 0.5 mmol), 4-[2-ethyl-4-(trifluoromethyl)-1H-benzimidazol-1-yl]phenol (76 mg, 0.25 mmol), and 1-(bromomethyl)-3-(methylsulfonyl)benzene (87 mg, 0.35 mmol) were stirred in acetonitrile for 16 h at rt. Ammonia in MeOH was added and the mixture was stirred for 24 h. EtOAc was added and the solids were filtered off. The solution was concentrated and the residue was purified via chromatography on silica gel, eluting with ethyl acetate:hexane gradient of 0:100 to 40/60 afforded the title compound as a white foam-solid. MS (ESI) m/z 475.2; HRMS: calcd for C24H21F3N2O3S+H+, 475.12977; found (ESI, [M+H]+ Obs'd), 475.1306.


Example 86
1-(4-{[3-(methylsulfonyl)benzyl]oxy}phenyl)-2,4-bis(trifluoromethyl)-1H-benzimidazole

Prepared as in Example 85 but using 4-[2,4-bis(trifluoromethyl)-1H-benzimidazol-1-yl]phenol and 1-(bromomethyl)-3-(methylsulfonyl)benzene as substrates. MS (ESI) m/z 515.1; HRMS: calcd for C23H16F6N2O3S+H+, 515.08586; found (ESI, [M+H]+ Obs'd), 515.0863.


Example 87
2-methyl-1(4-{[3-(methylsulfonyl)benzyl]oxy}phenyl)-4-(trifluoromethyl)-1H-benzimidazole

Prepared as in Example 85 but using 4-[2-methyl-4-(trifluoromethyl)-1H-benzimidazol-1-yl]phenol and 1-(bromomethyl)-3-(methylsulfonyl)benzene as substrates. MS (ESI) m/z 461.1; HRMS: calcd for C23H19F3N2O3S+H+, 461.11412; found (ESI, [M+H]+ Obs'd), 461.1152.


Example 88
4-{4-[2-ethyl-4-(trifluoromethyl)-1H-benzimidazol-1-yl]phenoxy}-2-(methylsulfonyl)benzonitrile

Prepared as in Example 5 but using 4-[2-ethyl-4-(trifluoromethyl)-1H-benzimidazol-1-yl]phenol and 4-fluoro-2-(methylsulfonyl)benzonitrile as substrates. The reaction temperature was 40° C. MS (ESI) m/z 486.1; HRMS: calcd for C24H18F3N3O3S+H+, 486.10937; found (ESI, [M+H]+ Obs'd), 486.1098.


Example 90
1-{2-methyl-4-[3-(methylsulfonyl)phenoxy]phenyl}-4-(trifluoromethyl)-1H-benzimidazole
Step 1: N-(4-methoxy-2-methylphenyl)-2-nitro-3-(trifluoromethyl)aniline

Prepared as in Example 2 but using 2-nitro-3-(trifluoromethyl)aniline and 1-bromo-4-methoxy-2-methylbenzene as substrates to afford the title compound as a orange solid. HRMS: calcd for C15H13F3N2O3+H+, 327.09510; found (ESI, [M+H]+ Obs'd), 327.0952.


Step 2: N1-(4-methoxy-2-methylphenyl)-3-(trifluoromethyl)benzene-1,2-diamine

Prepared as in Example 24 but using N-(2-chloro-4-methoxyphenyl)-2-nitro-3-(trifluoromethyl)aniline as the substrate to afford the title compound as a clear glassy solid. MS (ESI) m/z 297.1; HRMS: calcd for C15H15F3N2O+H+, 297.12092; found (ESI, [M+H]+ Obs'd), 297.1209.


Step 3: 1-(4-methoxy-2-methylphenyl)-4-(trifluoromethyl)-1H-benzimidazole

Prepared as in Example 25 but using N1-(4-methoxy-2-methylphenyl)-3-(trifluoromethyl)benzene-1,2-diamine as the substrate to afford the title compound as a red syrup. MS (ESI) m/z 307.1; HRMS: calcd for C16H13F3N2O+H+, 307.10527; found (ESI, [M+H]+ Obs'd), 307.1062.


Step 4: 3-methyl-4-(4-trifluoromethyl)-1H-benzimidazol-1-yl]phenol

Prepared as in Example 4 but using 1-(4-methoxy-2-methylphenyl)-4-(trifluoromethyl)-1H-benzimidazole as the substrate to afford the title compound as a tan solid. MS (ESI) m/z 291.3; HRMS: calcd for C15H11ClF3N2O+H+, 293.0903; found (ESI, [M+H]+ Obs'd), 293.0903.


Step 5: 1-{2-methyl-4-[3-(methylsulfonyl)phenoxy]phenyl}-4-(trifluoromethyl)-1H-benzimidazole

A stirred mixture of 3-methyl-4-(4-trifluoromethyl-benzoimidazol-1-yl)-phenol (100 mg, 0.34 mmol), 1-bromo-3-(methylsulfonyl)benzene (120 mg, 0.51 mmol), N,N-dimethylglycine hydrochloride (36 mg, 0.18 mmol), CuI (24 mg, 0.17 mmol) and Cs2CO3 (555 mg, 1.70 mmol) was heated in 1,4-dioxane (3.0 mL) at 105-110° C. for 44 h under nitrogen. The reaction was cooled, treated with water, and extracted with ethyl acetate. The extracts were dried with MgS O4 and concentrated in vacuo. Chromatography on silica gel eluting with ethyl acetate/hexane gradient of 5/95 to 100/0 afforded the title compound as a white foamy-solid. MS (ESI) m/z 447.1; HRMS: calcd for C22H17F3N2O3S+H+, 447.09847; found (ESI, [M+H]+ Obs'd), 447.0987.


Example 91
1-{4-[3-(ethylsulfonyl)phenoxy]-2-methylphenyl}-4-(trifluoromethyl)-1H-benzimidazole

Prepared as in Example 90, step 5 but using 3-methyl-4-(4-trifluoromethyl-benzimidazol-1-yl)-phenol and 1-bromo-3-(ethylsulfonyl)benzene as substrates to afford the title compound as a clear tacky solid. HRMS:calcd for C23H19F3N2O3S+H+, 461.11412; found (ESI, [M+H]+ Obs'd), 461.1149.


Example 92
1-(2-methyl-4-{3-[(1-methylethyl)sulfonyl]phenoxy}phenyl)-4-(trifluoromethyl)-1H-benzimidazole

Prepared as in Example 90, step 5 but using 3-methyl-4-(4-trifluoromethyl-benzimidazol-1-yl)-phenol and 1-bromo-3-(isopropylsulfonyl)benzene as substrates to afford the title compound as a clear tacky solid. MS (ESI) m/z 475.2; HRMS: calcd for C24H21F3N2O3S+H+, 475.12977; found (ESI, [M+H]+ Obs'd), 475.1303.


Example 93
2-methyl-1-{2-methyl-4-[3-(methylsulfonyl)phenoxy]phenyl}-4-(trifluoromethyl)-1H-benzimidazole
Step 1: 1-(4-methoxy-2-methylphenyl)-2-methyl-4-(trifluoromethyl)-1H-benzimidazole

Prepared as in Example 25 but using N1-(4-methoxy-2-methylphenyl)-3-(trifluoromethyl)benzene-1,2-diamine and trimethylorthoacetate as substrates to afford the title compound as a white solid. MS (ESI) m/z 321.1; HRMS: calcd for C17H15F3N2O+H+, 321.12092; found (ESI, [M+H]+ Obs'd), 321.1214.


Step 2: 3-methyl-4-[2-methyl-4-(trifluoromethyl)-1H-benzimidazol-1-yl]phenol

Prepared as in Example 4 but using 1-(4-methoxy-2-methylphenyl)-2-methyl-4-(trifluoromethyl)-1H-benzimidazole as the substrate to afford the title compound as a tan solid. MS (ESI) m/z 307.1; HRMS: calcd for C16H13F3N2O+H+, 307.10527; found (ESI, [M+H]+ Obs'd), 307.1053.


Step 3: 2-methyl-1-{2-methyl-4-[3-(methylsulfonyl)phenoxy]phenyl}-4-(trifluoromethyl)-1H-benzimidazole

Prepared as in Example 90, step 5 but using 3-methyl-4-[2-methyl-4-(trifluoromethyl)-1H-benzimidazol-1-yl]phenol and 1-bromo-3-(methylsulfonyl)benzene as substrates to afford the title compound as a white solid. MS (ESI) m/z 461.1; HRMS: calcd for C23H19F3N2O3S+H+, 461.11412; found (ESI, [M+H]+ Obs'd), 461.1152.


Example 94
1-{4-[3-(ethylsulfonyl)phenoxy]-2-methylphenyl}-2-methyl-44 trifluoromethyl)-1H-benzimidazole

Prepared as in Example 90, step 5 but using 3-methyl-4-[2-methyl-4-(trifluoromethyl)-1H-benzimidazol-1-yl]phenol and 1-bromo-3-(ethylsulfonyl)benzene as substrates to afford the title compound as a white solid. MS (ESI) m/z 475.1; HRMS: calcd for C24H21F3N2O3S+H+, 475.12977; found (ESI, [M+H]+ Obs'd), 475.1321.


Example 95
2-methyl-1-(2-methyl-4-{3-[(1-methylethyl)sulfonyl]phenoxy}phenyl)-4-(trifluoromethyl)-1H-benzimidazole

Prepared as in Example 90, step 5 but using 3-methyl-4-[2-methyl-4-(trifluoromethyl)-1H-benzimidazol-1-yl]phenol and 1-bromo-3-(isopropylsulfonyl)benzene as substrates to afford the title compound as a clear tacky solid. MS (ESI) m/z 489.2; HRMS: calcd for C25H23F3N2O3S+H+, 489.14542; found (ESI, [M+H]+ Obs'd), 489.1463.


Example 96
1-{4-[3-fluoro-5-(methylsulfonyl)phenoxy]-2-methylphenyl}-4-(trifluoromethyl)-1H-benzimidazole

Prepared as in Example 5 but using 3-methyl-4-(4-trifluoromethyl-benzimidazol-1-yl)-phenol and 1,3-difluoro-5-(methylsulfonyl)benzene as substrates to afford the title compound as a white solid. MS (ESI) m/z 465.1; HRMS: calcd for C22H16F4N2O3S+H+, 465.08905; found (ESI, [M+H]+ Obs'd), 465.0899.


Example 97
1-{4-[3-(ethylsulfonyl)-5-fluorophenoxy]-2-methylphenyl}-4-(trifluoromethyl)-1H-benzimidazole

Prepared as in Example 5 but using 3-methyl-4-(4-trifluoromethyl-benzimidazol-1-yl)-phenol and 1,3-difluoro-5-(ethylsulfonyl)benzene as substrates to afford the title compound as a clear tacky solid. MS (ESI) m/z 479.1; HRMS: calcd for C23H18F4N2O3S+H+, 479.10470; found (ESI, [M+H]+ Obs'd), 479.1055.


Example 98
1-{2-methyl-4-[4-(methylsulfonyl)phenoxy]phenyl}-4-(trifluoromethyl)-1H-benzimidazole

Prepared as in Example 5 but using 3-methyl-4-(4-trifluoromethyl-benzimidazol-1-yl)-phenol and 1-fluoro-4-(methylsulfonyl)benzene as substrates to afford the title compound as a white solid. MS (ESI) m/z 447.1; HRMS: calcd for C22H17F3N2O3S+H+, 447.09847; found (ESI, [M+H]+ Obs'd), 447.0996.


Example 99
1-{4-[3-(ethylsulfonyl)-5-fluorophenoxy]-2-methylphenyl}-2-methyl-44 trifluoromethyl)-1H-benzimidazole

Prepared as in Example 5 but using 3-methyl-4-(2-methyl-4-trifluoromethyl-benzimidazol-1-yl)-phenol and 1,3-difluoro-5-(ethylsulfonyl)benzene as substrates to afford the title compound as a white solid. MS (ESI) m/z 493.1; HRMS: calcd for C24H20F4N2O3S+H+, 493.12035; found (ESI, [M+H]+ Obs'd), 493.1212.


Example 100
2-methyl-1-{2-methyl-4-[4-(methylsulfonyl)phenoxy]phenyl}-4-(trifluoromethyl)-1H-benzimidazole

Prepared as in Example 5 but using 3-methyl-4-(2-methyl-4-trifluoromethyl-benzimidazol-1-yl)-phenol and 1-fluoro-4-(methylsulfonyl)benzene as substrates to afford the title compound as a white solid. MS (ESI) m/z 461.1; HRMS: calcd for C23H19F3N2O3S+H+, 461.11412; found (ESI, [M+H]+ Obs'd), 461.1151.


Example 101
1-{4-[3-fluoro-5-(methylsulfonyl)phenoxy]-2-methylphenyl}-2-methyl-4-(trifluoromethyl)-1H-benzimidazole

Prepared as in Example 5 but using 3-methyl-4-(2-methyl-4-trifluoromethyl-benzimidazol-1-yl)-phenol and 1,3-difluoro-5-(methylsulfonyl)benzene as substrates to afford the title compound as a white solid. MS (ESI) m/z 479.1; HRMS: calcd for C23H18F4N2O3S+H+, 479.10470; found (ESI, [M+H]+ Obs'd), 479.1046.


Example 102
1-{2-chloro-4-[3-(methylsulfonyl)phenoxy]phenyl}-2-methyl-4-(trifluoromethyl)-1H-benzimidazole
Step 1: N-(2-chloro-4-methoxyphenyl)-2-nitro-3-(trifluoromethyl)aniline

Prepared as in Example 2 but using 2-nitro-3-(trifluoromethyl)aniline and 1-bromo-2-chloro-4-methoxy-benzene as substrates to afford the title compound as a dark yellow solid. MS (ESI) m/z 345.3; HRMS: calcd for C14H10ClF3N2O3+H+, 347.04048; found (ESI, [M+H]+ Obs'd), 347.0403.


Step 2: N1-(2-chloro-4-methoxyphenyl)-3-(trifluoromethyl)benzene-1,2-diamine

Prepared as in Example 24 but using N-(2-chloro-4-methoxyphenyl)-2-nitro-3-(trifluoromethyl)aniline as the substrate to afford the title compound as a tan solid. MS (ESI) m/z 317.1; HRMS: calcd for C14H12ClF3N2O+H+, 317.06630; found (ESI, [M+H]+ Obs'd), 317.0662.


Step 3: 1-(2-chloro-4-methoxyphenyl)-2-methyl-4-(trifluoromethyl)-1H-benzimidazole

Prepared as in Example 25 but using N1-(2-chloro-4-methoxyphenyl)-3-(trifluoromethyl)benzene-1,2-diamine and trimethylorthoacetate as substrates to afford the title compound as a brown solid. MS (ESI) m/z 341.1; HRMS: calcd for C16H12ClF3N2O+H+, 341.06630; found (ESI, [M+14]+ Obs'd), 341.0667.


Step 4: 3-chloro-4-(2-methyl-4-trifluoromethyl-benzoimidazol-1-yl)-phenol

Prepared as in Example 4 but using 1-(2-chloro-4-methoxyphenyl)-2-methyl-4-(trifluoromethyl)-1H-benzimidazole as the substrate to afford the title compound as a tan solid. MS (ESI) m/z 327; HRMS: calcd for C15H10ClF3N2O+H+, 327.0513; found (ESI, [M+H]+ Obs'd), 327.0507.


Step 5: 1-{2-chloro-4-[3-(methylsulfonyl)phenoxy]phenyl}-2-methyl-4-(trifluoromethyl)-1H-benzimidazole

Prepared as in Example 5 but using 3-chloro-4-(2-methyl-4-trifluoromethyl-benzimidazol-1-yl)-phenol and 1-fluoro-3-(methylsulfonyl)benzene as substrates to afford the title compound as a white solid. MS (ESI) m/z 481.1; HRMS: calcd for C22H16ClF3N2O3S+H+, 481.05950; found (ESI, [M+H]+ Obs'd), 481.0595.


Example 103
1-{2-chloro-4-[3-fluoro-5-(methylsulfonyl)phenoxy]phenyl}-2-methyl-4-(trifluoromethyl)-1H-benzimidazole

Prepared as in Example 5 but using 3-chloro-4-(2-methyl-4-trifluoromethyl-benzimidazol-1-yl)-phenol and 1,3-difluoro-5-(methylsulfonyl)benzene as substrates to afford the title compound as a white solid. MS (ESI) m/z 499.1; HRMS: calcd for C22H15ClF4N2O3S+H+, 499.05008; found (ESI, [M+H]+ Obs'd), 499.0505.


Example 104
1-{2-chloro-4-[3-(methylsulfonyl)phenoxy]phenyl}-4-(trifluoromethyl)-1H-benzimidazole
Step 1: 1-(2-chloro-4-methoxyphenyl)-4-(trifluoromethyl)-1H-benzimidazole

Prepared as in Example 25 but using N1-(2-chloro-4-methoxyphenyl)-3-(trifluoromethyl)benzene-1,2-diamine as the substrate to afford the title compound as a brown solid. MS (ESI) m/z 327.0; HRMS: calcd for C15H10ClF3N2O+H+, 327.05065; found (ESI, [M+H]+ Obs'd), 327.0509.


Step 2: 3-chloro-4-(4-trifluoromethyl-benzoimidazol-1-yl)-phenol

Prepared as in Example 4 but using 1-(2-chloro-4-methoxyphenyl)-4-(trifluoromethyl)-1H-benzimidazole as the substrate to afford the title compound as a tan solid. MS (ESI) m/z 313.0; HRMS: calcd for C14H8ClF3N2O+H+, 313.0354; found (ESI, [M+H]+ Obs'd), 313.0350.


Step 3: 1-{2-chloro-4-[3-(methylsulfonyl)phenoxy]phenyl}-4-(trifluoromethyl)-1H-benzimidazole

Prepared as in Example 5 but using 3-chloro-4-(4-trifluoromethyl-benzimidazol-1-yl)-phenol and 1-fluoro-3-(methylsulfonyl)benzene as substrates to afford the title compound as a white solid. MS (ESI) m/z 467.1; HRMS: calcd for C21H14ClF3N2O3S+H+, 467.04385; found (ESI, [M+H]+ Obs'd), 467.0437.


Example 105
1-{2-chloro-4-[3-(ethylsulfonyl)phenoxy]phenyl}-4-(trifluoromethyl)-1H-benzimidazole

Prepared as in Example 5 but using 3-chloro-4-(4-trifluoromethyl-benzimidazol-1-yl)-phenol and 1-(ethylsulfonyl)-3-fluorobenzene as substrates to afford the title compound as a white solid. MS (ESI) m/z 481.1; HRMS calcd for C22H16ClF3N2O3S+H+, 481.05950; found (ESI, [M+H]+ Obs'd), 481.0601.


Example 106
1-{2-chloro-4-[3-fluoro-5-(methylsulfonyl)phenoxy]phenyl}-4-(trifluoromethyl)-1H-benzimidazole

Prepared as in Example 5 but using 3-chloro-4-(4-trifluoromethyl-benzimidazol-1-yl)-phenol and 1,3-difluoro-5-(methylsulfonyl)benzene as substrates to afford the title compound as a white solid. MS (ESI) m/z 485.1; HRMS: calcd for C21H13ClF4N2O3S+H+, 485.03443; found (ESI, [M+H]+ Obs'd), 485.0346.


Example 107
2-methyl-1-(3-{[3-(methylsulfonyl)benzyl]oxy}phenyl)-4-(trifluoromethyl)-1H-benzimidazole

Prepared as in Example 85 but using 3-[2-methyl-4-(trifluoromethyl)-1H-benzimidazol-1-yl]phenol in place of 3-[2-ethyl-4-(trifluoromethyl)-1H-benzimidazol-1-yl]phenol. MS (ESI) m/z 461.1; HRMS: calcd for C23H19F3N2O3S+H+, 461.11412; found (ESI, [M+H]+ Obs'd), 461.1146.


The structures of the title compounds of Examples 1-88 and 90-107 are set forth below.













Example
Chemical Structure







 1


embedded image







 2


embedded image







 3


embedded image







 4


embedded image







 5


embedded image







 6


embedded image







 7


embedded image







 8


embedded image







 9


embedded image







 10


embedded image







 11


embedded image







 12


embedded image







 13


embedded image







 14


embedded image







 15


embedded image







 16


embedded image







 17


embedded image







 18


embedded image







 19


embedded image







 20


embedded image







 21


embedded image







 22


embedded image







 23


embedded image







 24


embedded image







 25


embedded image







 26


embedded image







 27


embedded image







 28


embedded image







 29


embedded image







 30


embedded image







 31


embedded image







 32


embedded image







 33


embedded image







 34


embedded image







 35


embedded image







 36


embedded image







 37


embedded image







 38


embedded image







 39


embedded image







 40


embedded image







 41


embedded image







 42


embedded image







 43


embedded image







 44


embedded image







 45


embedded image







 46


embedded image







 47


embedded image







 48


embedded image







 49


embedded image







 50


embedded image







 51


embedded image







 52


embedded image







 53


embedded image







 54


embedded image







 55


embedded image







 56


embedded image







 57


embedded image







 58


embedded image







 59


embedded image







 60


embedded image







 61


embedded image







 62


embedded image







 63


embedded image







 64


embedded image







 65


embedded image







 66


embedded image







 67


embedded image







 68


embedded image







 69


embedded image







 70


embedded image







 71


embedded image







 72


embedded image







 73


embedded image







 74


embedded image







 75


embedded image







 76


embedded image







 77


embedded image







 78


embedded image







 79


embedded image







 80


embedded image







 81


embedded image







 82


embedded image







 83


embedded image







 84


embedded image







 85


embedded image







 86


embedded image







 87


embedded image







 88


embedded image







 90


embedded image







 91


embedded image







 92


embedded image







 93


embedded image







 94


embedded image







 95


embedded image







 96


embedded image







 97


embedded image







 98


embedded image







 99


embedded image







100


embedded image







101


embedded image







102


embedded image







103


embedded image







104


embedded image







105


embedded image







106


embedded image







107


embedded image











Example 108
Biological Testing

Representative compounds of this invention were evaluated in conventional pharmacological test procedures, which measured their affinity to bind to LXR and to upregulate the gene ABCA1, which causes cholesterol efflux from atherogenic cells, such as macrophages.


LXR activation can be critical for maintaining cholesterol homeostasis, but its coincident regulation of fatty acid metabolism may lead to increased serum and hepatic triglyceride levels. Selective LXR modulators that activate cholesterol efflux with minimal impact on SREBP-1c expression and triglyceride synthesis in liver would be expected to reduce atherosclerotic risk with an improved therapeutic index and minimize the potential for deleterious effects on metabolic balance.


The test procedures performed, and results obtained are briefly described in the following sections:


I. Ligand-Binding Test Procedure for Human LXRβ


II. Ligand-Binding Test Procedure for Human LXRα


III. Quantitative Analysis of ABCA1 Gene Regulation in THP-1 Cells


IV. Results


I. Ligand-Binding Test Procedure For Human LXRβ.

Ligand-binding to the human LXRβ was demonstrated for representative compounds of this invention by the following procedure.


Materials and Methods:

Buffer: 100 mM KCl, 100 mM TRIS (pH 7.4 at +4° C.), 8.6% glycerol, 0.1 mM PMSF*, 2 mM MTG*, 0.2% CHAPS (* not used in wash buffer)


Tracer: 3H T0901317

Receptor source: E. coli extracted from cells expressing biotinylated hLXRβ. Extract was made in a similar buffer as above, but with 50 mM TRIS.


Day 1

Washed streptavidin and coated flash plates with wash buffer.


Diluted receptor extract to give Bmax ˜4000 cpm and add to the wells.


Wrapped the plates in aluminum foil and stored them at +4° C. overnight.


Day 2

Made a dilution series in DMSO of the test ligands.


Made a 5 nM solution of the radioactive tracer in buffer.


Mixed 250 μl diluted tracer with 5 μl of the test ligand from each concentration of the dilution series.


Washed the receptor-coated flash plates.


Added 200 μl per well of the ligand/radiolabel mixture to the receptor-coated flash plates. Wrapped the plates in aluminum foil and incubate at +4° C. over night.


Day 3

Aspirated wells, and washed the flashed plates. Sealed the plate.


Measured the remaining radioactivity in the plate.


II. Ligand-Binding Test Procedure for Human LXRα.

Ligand-binding to the human LXRα was demonstrated for representative compounds of this invention by the following procedure.


Materials and Methods:

Buffer: 100 mM KCl, 100 mM TRIS (pH 7.4 at +4° C.), 8.6% glycerol, 0.1 mM PMSF*,


2 mM MTG*, 0.2% CHAPS (* not used in wash buffer)


Tracer: 3H T0901317

Receptor source: E. coli extract from cells expressing biotinylated hLXRcc. Extract was made in a similar buffer as above, but with 50 mM TRIS.


Day 1

Washed streptavidin and coated flash plates with wash buffer.


Diluted receptor extract to give Bmax ˜4000 cpm and add to the wells.


Wrapped the plates in aluminum foil and stored them at +4° C. over night.


Day 2

Made a dilution series in DMSO of the test ligands.


Made a 5 nM solution of the radioactive tracer in buffer.


Mixed 250 μl diluted tracer with 5 μl of the test ligand from each concentration of the dilution series.


Washed the receptor-coated flash plates.


Added 200 μl per well of the ligand/radiolabel mixture to the receptor-coated flash plates.


Wrapped the plates in aluminum foil and incubate at +4° C. over night.


Day 3

Aspirated wells, and wash the flashed plates. Sealed the plate.


Measured the remaining radioactivity in the plate.


III. Quantitative Analysis of ABCA1 Gene Regulation in THP-1 Cells.

The compounds of formula (I) effect on the regulation of the ABCA1 gene was evaluated using the following procedure.


Materials and Methods
Cell Culture:

The THP-1 monocytic cell line (ATCC # TIB-202) was obtained from American Type Culture Collection (Manassas, Va.) and cultured in RPMI 1640 medium (Gibco, Carlsbad, Calif.) containing 10% FBS, 2 mM L-glutamine, and 55 uM beta-Mercaptoethanol (BME). Cells were plated in 96-well format at a density of 7.5×104 in complete medium containing 50-100 ng/ml phorbal 12,13-dibutyrate (Sigma, St. Louis, Mo.) for three days to induce differentiation into adherent macrophages. Differentiated THP-1 cells were treated with test compounds or ligands dissolved in DMSO (Sigma, D-8779) in culture medium lacking phorbal ester. Final concentrations of DMSO did not exceed 0.3% of the media volume. Dose response effects were measured in duplicate, in the range of 0.001 to 30 micromolar concentrations and treated cells were incubated for an additional 18 hrs prior to RNA isolation. Unstimulated cells treated with vehicle were included as negative controls on each plate. An LXR agonist reference, N-(2,2,2-trifluoro-ethyl)-N-[4-(2,2,2-trifluoro-1-hydroxy-1-trifluoromethyl-ethyl)-phenyl]-benzenesulfonamide (Schultz, Joshua R., Genes & Development (2000), 14(22), 2831-2838), was dosed at 1.0 uM and served as a positive control. In antagonist mode, the compound under study is analyzed in the presence of 150 nM GW3965, trifluoromethyl-benzyl)-(2,2-diphenyl-ethyl)-amino]-propoxy]-phenyl)-acetic acid (Collins, J. L., J. Med. Chem. (2000), 45, 1963-1966.). Results of antagonist analysis are expressed as % antagonism and IC50 (in μM).


RNA Isolation and Quantitation:

Total cellular RNA was isolated from treated cells cultured in 96-well plates using PrepStation 6100 (Applied Biosystems, Foster City, Calif.), according to the manufacturer's recommendations. RNA was resuspended in ribonuclease-free water and stored at −70° C. prior to analysis. RNA concentrations were quantitated with RiboGreen test procedure, #R-11490 (Molecular Probes, Eugene, Oreg.).


Gene Expression Analysis:

Gene-specific mRNA quantitation was performed by real-time PCR with the Perkin Elmer Corp. chemistry on an ABI Prism 7700 Sequence detection system (Applied Biosystems, Foster City, Calif.) according to the manufacturer's instructions. Samples (50-100 ng) of total RNA were assayed in duplicate or triplicate in 50 μl reactions using one-step RT-PCR and the standard curve method to estimate specific mRNA concentrations. Sequences of gene-specific primer and probe sets were designed with Primer Express Software (Applied Biosystems, Foster City, Calif.). The human ABCA1 primer and probe sequences are: forward, CAACATGAATGCCATTTTCCAA, reverse, ATAATCCCCTGAACCCAAGGA, and probe, 6FAM-TAAAGCCATGCCCTCTGCAGGAACA-TAMRA. RT and PCR reactions were performed according to PE Applied Biosystem's protocol for Taqman Gold RT-PCR or Qiagen's protocol for Quantitect probe RT-PCR. Relative levels of ABCA1 mRNA are normalized using GAPDH mRNA or 18S rRNA probe/primer sets purchased commercially (Applied Biosystems, Foster City, Calif.).


Statistics:

Mean, standard deviation and statistical significance of duplicate evaluations of RNA samples were assessed using ANOVA, one-way analysis of variance using SAS analysis.


Reagents:





    • GAPDH Probe and Primers—Taqman GAPDH Control Reagents 402869 or 4310884E





18S Ribosomal RNA—Taqman 18S Control Reagents 4308329


10 Pack Taqman PCR Core Reagent Kit 402930


Qiagen Quantitect probe RT-PCR 204443.


IV. Results











TABLE I






hLXRβ binding
hLXRα binding


Example
IC50 (uM)
IC50 (uM)

















5
0.0043
0.151


6
0.0054
0.248


7
0.038
0.489


8
0.0093
0.355


9
0.011
0.426


10
0.022
0.791


11
0.290
7.0


12
>1
>1


13
1.9
>1


14
0.435
2.95


15
0.945
4.84


25
0.039
0.895


26
0.0013
0.026


27
0.0009
0.0039


28
0.0010
0.016


29
0.0008
0.0032


30
0.0011
0.0047


31
0.0042
0.093


32
0.0011
0.0026


33
0.0020
0.036


34
0.0084
0.051


35
0.0068
0.121


37
0.041
1.47


38
0.0058
0.141


39
0.268
6.38


40
0.0061
0.084


41
0.0051
0.098


42
0.0056
0.138


43
0.0037
0.014


44
0.0035
0.012


45
0.0066
0.031


46
0.0036
0.036


47
0.0047
0.044


48
0.0060
0.064


49
0.017
0.085


50
0.170
0.746


51
0.100
0.646


52
0.357
3.0


53
0.020
0.258


54
0.015
0.265


55
0.030
0.406


56
0.164
2.5


57
0.025
0.196


58
0.302
2.4


59
0.432
2.0


60
0.017
0.085


61
0.357
3.0


62
0.065
0.812


63
0.309
2.5


64
0.0017
0.0084


65
0.0013
0.0072


66
0.051
0.261


67
0.099
0.197


68
1.23
>1.00


69
0.020
0.280


70
0.278
4.5


71
0.083
1.10


72
0.512
4.7


73
0.047
0.800


74
0.032
0.635


75
0.0127
0.304


76
0.020
0.319


77
0.198
2.5


78
0.092
1.37


79
0.0027
0.034


80
0.0024
0.035


81
0.0040
0.045


82
0.0049
0.102


83
0.033
0.277


84
0.110
1.50


85
1.89
5.07


86
>1
>1


87
>1
>1


88
1.92
15.1


90
0.802
6.53


01
0.634
6.11


92
0.348
3.26


93
0.191
2.78


94
0.122
2.10


95
0.061
1.29


96
2.62
16.0


97
1.11
8.00


98
0.581
5.20


99
0.301
3.69


100
1.31
12.0


101
0.405
4.83


102
0.304
1.96


103
0.235
2.67


104
0.479
2.58


105
0.357
2.71


106
1.23
3.99


107
0.120
1.96



















TABLE II









Gene regulation by LXR (Human)











EC50 ABCA1
Agonism ABCA1


Example
(uM)
(%)












5
0.395
116


6
0.710
137


7
1.24
112


8
0.430
90


9
0.610
85


10
0.620
79


25
0.907
74


26
0.140
93


27
0.022
96


28
0.137
75


29
0.010
92


30
0.160
56


31
0.760
98


33
0.190
121


34
0.014
94


35
0.425
126


37
4.7
14


38
0.650
63


40
0.315
165


41
0.745
107


42
1.31
135


47
0.215
110


48
1.12
96


65
0.355
123


66
0.355
119


67
0.846
82


69
0.245
157


71
0.29
95


73
0.47
178


74
0.44
168


75
0.215
120


76
0.155
113


79
0.425
104


80
0.155
122


81
0.24
100


82
1.21
96


83
0.11
100


95
0.409
101


107
3.53
74









Based on the results obtained in the standard pharmacological test procedures, the compounds of this invention can be useful in treating or inhibiting LXR mediated diseases. In particular, the compounds of this invention can be useful in the treatment and inhibition of atherosclerosis and atherosclerotic lesions, lowering LDL cholesterol levels, increasing HDL cholesterol levels, increasing reverse cholesterol transport, inhibiting cholesterol absorption, treatment or inhibition of cardiovascular diseases (e.g., acute coronary syndrome, restenosis), atherosclerosis, atherosclerotic lesions, type I diabetes, type II diabetes, Syndrome X, obesity, lipid disorders (e.g., dyslipidemia, hyperlipidemia, hypertriglyceridemia, hypercholesterolemia, low HDL and high LDL), cognitive disorders (e.g., Alzheimer's disease, dementia), inflammatory diseases (e.g., multiple sclerosis, rheumatoid arthritis, inflammatory bowel disease, Crohn's disease, endometriosis, LPS-induced sepsis, acute contact dermatitis of the ear, chronic atherosclerotic inflammation of the artery wall), celiac, thyroiditis, skin aging (e.g., skin aging is derived from chronological aging, photoaging, steroid-induced skin thinning, or a combination thereof), or connective tissue disease (e.g., osteoarthritis or tendonitis).


A number of embodiments of the invention have been described. Nevertheless, it will be understood that various modifications may be made without departing from the spirit and scope of the invention. Accordingly, other embodiments are in the claims.

Claims
  • 1. A compound having formula (I):
  • 2. The compound of claim 1, wherein R2 is C6-C10 aryl, which is (a) substituted with 1 R7; and (b) optionally substituted with from 1-4 Re.
  • 3. The compound of claim 1, wherein R2 is phenyl, which is (a) substituted with 1 R7; and (b) optionally substituted with 1 Re.
  • 4. The compound of claim 3, wherein R2 has formula (A-2):
  • 5. The compound of claim 3, wherein R2 has formula (A-3):
  • 6. The compound of claim 1, wherein W is —O—.
  • 7. The compound of claim 1, wherein A is C6-C10 aryl, which is (a) substituted with 1 R9; and (b) optionally substituted with from 1-4 Rg.
  • 8. The compound of claim 1, wherein A is phenyl, which is (a) substituted with 1 R9; and (b) optionally substituted with from 1-4 Rg.
  • 9. The compound of claim 1, wherein A has formula (B-1):
  • 10. The compound of claim 1, wherein R9 is —W2—S(O)nR10.
  • 11. The compound of claim 10, wherein W2 is a bond, and n is 2.
  • 12. The compound of claim 1, wherein R10 is: C1-C6 alkyl or C1-C6haloalkyl, each of which is optionally substituted with from 1-2 Ra; orC3-C6 cycloalkyl, optionally substituted with from 1-3 Rc.
  • 13. The compound of claim 1, wherein R10 is C1-C6 alkyl, optionally substituted with from 1-2 Ra.
  • 14. The compound of claim 1, wherein R10 is C1-C5 alkyl.
  • 15. The compound of claim 1, wherein: R2 is phenyl, which is (a) substituted with 1 R7; and (b) optionally substituted with from 1 Re; andA is phenyl, which is (a) substituted with 1 R9; and (b) optionally substituted with from 1-4 Rg.
  • 16. The compound of claim 15, wherein R2 has formula (C-1):
  • 17. The compound of claim 16, wherein each of R22, R23, and R24 is hydrogen.
  • 18. The compound of claim 16, wherein one of R22, R23, and R24 is Re, and the other two are hydrogen.
  • 19. The compound of claim 18, wherein R22 is Re, and each of R23 and R24 is hydrogen.
  • 20. The compound of claim 19, wherein R22 is halo.
  • 21. The compound of claim 20, wherein R22 is chloro.
  • 22. The compound of claim 1, wherein W is —O—.
  • 23. The compound of claim 1, wherein R9 is —W2—S(O)nR10.
  • 24. The compound of claim 1, wherein one of RA3 and RA4 is R9, and the other of RA3 and RA4 is hydrogen; and each of RA2, RA5, and RA6 is, independently, hydrogen or Rg.
  • 25. The compound of claim 24, wherein RA3 is R9, and RA4 is hydrogen.
  • 26. The compound of claim 1, wherein R9 is —W2—S(O)nR10.
  • 27. The compound of claim 26, wherein W2 is a bond, and n is 2.
  • 28. The compound of claim 1, wherein R10 is C1-C5 alkyl.
  • 29. The compound of claim 28, wherein R10 is CH3.
  • 30. The compound of claim 28, wherein R1 is CH3CH2.
  • 31. The compound of claim 28, wherein R1 is CH(CH3)2.
  • 32. The compound of claim 1, wherein R10 is C2-C6 alkyl substituted with 1 Ra.
  • 33. The compound of claim 32, wherein Ra is hydroxyl, C1-C3 alkoxy, or NRmRn.
  • 34. The compound of claim 1, wherein R10 is C3-C6 cycloalkyl.
  • 35. The compound of claim 34, wherein R10 is cyclopropyl.
  • 36. The compound of claim 1, wherein R10 is CF3.
  • 37. The compound of claim 1, wherein each of RA2, RA5, and RA6 is hydrogen.
  • 38. The compound of claim 1, wherein RA5 is Rg, and each of RA2 and RA6 is hydrogen.
  • 39. The compound of claim 38, wherein RA5 is halo.
  • 40. The compound of claim 15, wherein R2 has formula (C-2):
  • 41. The compound of claim 40, wherein W is —O—.
  • 42. The compound of claim 1, wherein RA3 is R9, and RA4 is hydrogen.
  • 43. The compound of claim 1, wherein R9 is —W2—S(O)nR10, wherein W2 is a bond; n is 2; and R10 is C1-C5 alkyl.
  • 44. The compound of claim 1, wherein each of RA2, RA5, and RA6 is hydrogen; or RA5 is Rg, and each of RA2 and RA6 is hydrogen.
  • 45. The compound of claim 1, wherein R1 is hydrogen.
  • 46. The compound of claim 1, wherein R1 is C1-C6 alkyl.
  • 47. The compound of claim 46, wherein R1 is CH3, CH2CH3, or CH2CH2CH3.
  • 48. The compound of claim 46, wherein R1 is branched C3-C6 alkyl.
  • 49. The compound of claim 1, wherein R1 is C1-C3 haloalkyl.
  • 50. The compound of claim 49, wherein R1 is CF3 or CHF2.
  • 51. The compound of claim 1, wherein R1 is phenyl, which is optionally substituted with from 1-5 Rd.
  • 52. The compound of claim 1, wherein R1 is benzyl, which is optionally substituted with from 1-5 Rc.
  • 53. The compound of claim 1, wherein R1 is C3-C8 cycloalkyl, which is optionally substituted with from 1-3 Rc.
  • 54. The compound of claim 1, wherein each of R3, R4, and R5 is hydrogen.
  • 55. The compound of claim 1, wherein R6 is: (ii) halo; or(iii) C1-C6 alkyl or C1-C6 haloalkyl, each of which is optionally substituted with from 1-3 Ra; or(iv) nitro; C1-C6 alkoxy; C1-C6 haloalkoxy; C1-C6 thioalkoxy; C1-C6 thiohaloalkoxy; or cyano.
  • 56. The compound of claim 1, wherein R6 is C1-C3 perfluoroalkyl.
  • 57. The compound of claim 56, wherein R6 is CF3.
  • 58. The compound of any claim 1, wherein R6 is halo.
  • 59. The compound of claim 1, wherein: R1 is:(i) hydrogen; or(ii) C1-C3 alkyl or C1-C3 haloalkyl; or(iii) phenyl or heteroaryl including 5-6 atoms, each of which is optionally substituted with from 1-5 Rd; or(iv) C3-C8 cycloalkyl or C7-C12 aralkyl, each of which is optionally substituted with from 1-3 Rc;R2 is phenyl, which is (a) substituted with 1 WA; and (b) optionally substituted with 1 Re;W is a —O—, —OCH2—, or a bond;A has formula (B-1), wherein one of RA3 and RA4 is R9, and the other of RA3 and RA4 is hydrogen; and each of RA2, RA5, and RA6 is, independently, hydrogen or Rg;
  • 60. The compound of claim 1 selected from: 1-{3-[3-(ethylsulfonyl)phenoxy]phenyl}-2-methyl-4-(trifluoromethyl)-1H-benzimidazole;1-{3-[3-(isopropylsulfonyl)phenoxy]phenyl}-2-methyl-4-(trifluoromethyl)-1H-benzimidazole;1-{3-[3-(ethylsulfonyl)-5-fluorophenoxy]phenyl}-2-methyl-4-(trifluoromethyl)-1H-benzimidazole;1-{3-[3-fluoro-5-(methylsulfonyl)phenoxy]phenyl}-2-methyl-4-(trifluoromethyl)-1H-benzimidazole;3-[(3-{3-[2-methyl-4-(trifluoromethyl)-1H-benzimidazol-1-yl]phenoxy}phenyl)sulfonyl]propan-1-ol;2-methyl-1-{3-[3-(propylsulfonyl)phenoxy]phenyl}-4-(trifluoromethyl)-1H-benzimidazole;2-methyl-4-[(3-{3-[2-methyl-4-(trifluoromethyl)-1H-benzimidazol-1-yl]phenoxy}phenyl)sulfonyl]butan-2-ol;2-methyl-1-{3-[2-(methylsulfonyl)phenoxy]phenyl}-4-(trifluoromethyl)-1H-benzimidazole;3-[(2-{3-[2-methyl-4-(trifluoromethyl)-1H-benzimidazol-1-yl]phenoxy}phenyl)sulfonyl]propan-1-ol;2-methyl-1-{3-[4-(methylsulfonyl)phenoxy]phenyl}-4-(trifluoromethyl)-1H-benzimidazole;3-[(4-{3-[2-methyl-4-(trifluoromethyl)-1H-benzimidazol-1-yl]phenoxy}phenyl)sulfonyl]propan-1-ol;2-isopropyl-{3-[3-(methylsulfonyl)phenoxy]phenyl}-4-chloro-1H-benzimidazole;2-isopropyl-{3-[3-(ethylsulfonyl)phenoxy]phenyl}-4-chloro-1H-benzimidazole;2-isopropyl-{3-[3-(isopropylsulfonyl)phenoxy]phenyl}-4-chloro-1H-benzimidazole;2-isopropyl-{3-[5-fluoro-3-(methylsulfonyl)phenoxy]phenyl}-4-chloro-1H-benzimidazole;2-isopropyl-{3-[5-fluoro-3-(ethylsulfonyl)phenoxy]phenyl}-4-chloro-1H-benzimidazole;2-isopropyl-{3-[5-chloro-3-(methylsulfonyl)phenoxy]phenyl}-4-chloro-1H-benzimidazole;1-{3-[3-(methylsulfonyl)phenoxy]phenyl}-4-(trifluoromethyl)-1H-benzimidazole;2-ethyl-1-{3-[3-(methylsulfonyl)phenoxy]phenyl}-4-(trifluoromethyl)-1H-benzimidazole;1-{3-[3-(methylsulfonyl)phenoxy]phenyl}-2-propyl-4-(trifluoromethyl)-1H-benzimidazole;2-isopropyl-1-{3-[3-(methylsulfonyl)phenoxy]phenyl}-4-(trifluoromethyl)-1H-benzimidazole;2-isobutyl-1-{3-[3-(methylsulfonyl)phenoxy]phenyl}-4-(trifluoromethyl)-1H-benzimidazole;1-{3-[3-(methylsulfonyl)phenoxy]phenyl}-2-phenyl-4-(trifluoromethyl)-1H-benzimidazole;2-cyclopropyl-1-{3-[3-(methylsulfonyl)phenoxy]phenyl}-4-(trifluoromethyl)-1H-benzimidazole;2-(4-fluorobenzyl)-1-{3-[3-(methylsulfonyl)phenoxy]phenyl}-4-(trifluoromethyl)-1H-benzimidazole;2-(difluoromethyl)-1-{3-[3-(methylsulfonyl)phenoxy]phenyl}-4-(trifluoromethyl)-1H-benzimidazole;1-{3-[3-(methylsulfonyl)phenoxy]phenyl}-2,4-bis(trifluoromethyl)-1H-benzimidazole;2-methyl-1-{3-[3-(methylsulfonyl)phenoxy]phenyl}-4-(trifluoromethyl)-1H-benzimidazole;1-{3-[3-(3-Iodo-propane-1-sulfonyl)-phenoxy]-phenyl}-2-methyl-4-trifluoromethyl-1H-benzimidazole;3-[(3-{3-[2-methyl-4-(trifluoromethyl)-1H-benzimidazol-1-yl]phenoxy}phenyl)sulfonyl]propan-1-amine;1-{3-[3-(cyclopropylsulfonyl)phenoxy]phenyl}-2-methyl-4-(trifluoromethyl)-1H-benzimidazole;2-methyl-1-{3-[3-(methylsulfonyl)phenoxy]phenyl}-1H-benzimidazole;4-chloro-2-methyl-1-{3-[3-(methylsulfonyl)phenoxy]phenyl}-1H-benzimidazole;4-chloro-1-{3-[3-(ethylsulfonyl)phenoxy]phenyl}-2-methyl-1H-benzimidazole;4-chloro-1-{3-[3-(isopropylsulfonyl)phenoxy]phenyl}-2-methyl-1H-benzimidazole;4-chloro-2-methyl-1-{3-[3-(propylsulfonyl)phenoxy]phenyl}-1H-benzimidazole;4-chloro-1-{3-[3-fluoro-5-(methylsulfonyl)phenoxy]phenyl}-2-methyl-1H-benzimidazole;4-chloro-1-{3-[3-(ethylsulfonyl)-5-fluorophenoxy]phenyl}-2-methyl-1H-benzimidazole;4-chloro-1-{3-[3-chloro-5-(methylsulfonyl)phenoxy]phenyl}-2-methyl-1H-benzimidazole;4-chloro-2-methyl-1-(3-{3-[(trifluoromethyl)sulfonyl]phenoxy}phenyl)-1H-benzimidazole;4-chloro-2-methyl-1-{3-[4-(methylsulfonyl)phenoxy]phenyl}-1H-benzimidazole;4-chloro-1-{3-[4-(ethylsulfonyl)phenoxy]phenyl}-2-methyl-1H-benzimidazole;4-chloro-2-methyl-1-{3-[2-(methylsulfonyl)phenoxy]phenyl}-1H-benzimidazole;1-{3-[2-bromo-5-(methylsulfonyl)phenoxy]phenyl}-4-chloro-2-methyl-1H-benzimidazole;4-chloro-1-{3-[2-fluoro-4-(methylsulfonyl)phenoxy]phenyl}-2-methyl-1H-benzimidazole;4-chloro-2-methyl-1-(3-{3-[(3-methylbutyl)sulfonyl]phenoxy}phenyl)-1H-benzimidazole;4-chloro-1-{2-chloro-5-[3-(methylsulfonyl)phenoxy]phenyl}-2-methyl-1H-benzimidazole;4-chloro-1-{2-chloro-5-[3-(ethylsulfonyl)phenoxy]phenyl}-2-methyl-1H-benzimidazole;4-chloro-1-{2-chloro-5-[3-(propylsulfonyl)phenoxy]phenyl}-2-methyl-1H-benzimidazole;4-chloro-1-{2-chloro-5-[3-(isopropylsulfonyl)phenoxy]phenyl}-2-methyl-1H-benzimidazole;4-chloro-1-{2-chloro-5-[3-fluoro-5-(methylsulfonyl)phenoxy]phenyl}-2-methyl-1H-benzimidazole;4-chloro-1-{2-chloro-5-[3-(ethylsulfonyl)-5-fluorophenoxy]phenyl}-2-methyl-1H-benzimidazole;4-chloro-1-(2-chloro-5-{3-([trifluoromethyl)sulfonyl]phenoxy}phenyl)-2-methyl-1H-benzimidazole;4-chloro-1-{2-chloro-5-[4-(methylsulfonyl)phenoxy]phenyl}-2-methyl-1H-benzimidazole;4-chloro-1-{2-chloro-5-[4-(ethylsulfonyl)phenoxy]phenyl}-2-methyl-1H-benzimidazole;4-chloro-1-{2-chloro-5-[2-(methylsulfonyl)phenoxy]phenyl}-2-methyl-1H-benzimidazole;2-methyl-1-{4-[3-(methylsulfonyl)phenoxy]phenyl}-4-(trifluoromethyl)-1H-benzimidazole;1-{4-[3-(ethylsulfonyl)phenoxy]phenyl}-2-methyl-4-(trifluoromethyl)-1H-benzimidazole;1-{4-[3-fluoro-5-(methylsulfonyl)phenoxy]phenyl}-2-methyl-4-(trifluoromethyl)-1H-benzimidazole;2-ethyl-1-{4-[3-(methylsulfonyl)phenoxy]phenyl}-4-(trifluoromethyl)-1H-benzimidazole;2-ethyl-1-{4-[3-(ethylsulfonyl)phenoxy]phenyl}-4-(trifluoromethyl)-1H-benzimidazole;2-ethyl-1-{4-[3-fluoro-5-(methylsulfonyl)phenoxy]phenyl}-4-(trifluoromethyl)-1H-benzimidazole;1-{4-[3-(methylsulfonyl)phenoxy]phenyl}-2,4-bis(trifluoromethyl)-1H-benzimidazole;1-{4-[3-(ethylsulfonyl)phenoxy]phenyl}-2,4-bis(trifluoromethyl)-1H-benzimidazole;1-{4-[3-fluoro-5-(methylsulfonyl)phenoxy]phenyl}-2,4-bis(trifluoromethyl)-1H-benzimidazole;1-{4-[3-(isopropylsulfonyl)phenoxy]phenyl}-2,4-bis(trifluoromethyl)-1H-benzimidazole;2-methyl-1-[3′-(methylsulfonyl)biphenyl-3-yl]-4-(trifluoromethyl)-1H-benzimidazole;1-{3-[3-(ethylsulfonyl)phenoxy]phenyl}-2,4-bis(trifluoromethyl)-1H-benzimidazole;1-{3-[3-(isopropylsulfonyl)phenoxy]phenyl}-2,4-bis(trifluoromethyl)-1H-benzimidazole;1-{2-chloro-5-[3-(methylsulfonyl)phenoxy]phenyl}-4-(trifluoromethyl)-1H-benzimidazole;1-{2-chloro-5-[3-(ethylsulfonyl)phenoxy]phenyl}-4-(trifluoromethyl)-1H-benzimidazole;1{-2-chloro-5-[3-(isopropylsulfonyl)phenoxy]phenyl}-4-(trifluoromethyl)-1H-benzimidazole;1-{2-chloro-5-[3-fluoro-5-(methylsulfonyl)phenoxy]phenyl}-4-(trifluoromethyl)-1H-benzimidazole;1-{2-chloro-5-[4-(methylsulfonyl)phenoxy]phenyl}-4-(trifluoromethyl)-1H-benzimidazole;1-(2-chloro-5-{[3-(methylsulfonyl)benzyl]oxy}phenyl)-4-(trifluoromethyl)-1H-benzimidazole;2-ethyl-1-(4-{[3-(methylsulfonyl)benzyl]oxy}phenyl)-4-(trifluoromethyl)-1H-benzimidazole;1-(4-{[3-(methylsulfonyl)benzyl]oxy}phenyl)-2,4-bis(trifluoromethyl)-1H-benzimidazole;2-methyl-1-(4-{[3-(methylsulfonyl)benzyl]oxy}phenyl)-4-(trifluoromethyl)-1H-benzimidazole;4-{4-[2-ethyl-4-(trifluoromethyl)-1H-benzimidazol-1-yl]phenoxy}-2-(methylsulfonyl)benzonitrile;1-{2-methyl-4-[3-(methylsulfonyl)phenoxy]phenyl}-4-(trifluoromethyl)-1H-benzimidazole;1-{4-[3-(ethylsulfonyl)phenoxy]-2-methylphenyl}-4-(trifluoromethyl)-1H-benzimidazole; 1-(2-methyl-4-{3-[(1-methylethyl)sulfonyl]phenoxy}phenyl)-4-(trifluoromethyl)-1H-benzimidazole;2-methyl-1-{2-methyl-4-[3-(methylsulfonyl)phenoxy]phenyl}-4-(trifluoromethyl)-1H-benzimidazole;1-{4-[3-(ethylsulfonyl)phenoxy]-2-methylphenyl}-2-methyl-4-(trifluoromethyl)-1H-benzimidazole;2-methyl-1-(2-methyl-4-{3-[(1-methylethyl)sulfonyl]phenoxy}phenyl)-4-(trifluoromethyl)-1H-benzimidazole;1-{4-[3-fluoro-5-(methylsulfonyl)phenoxy]-2-methylphenyl}-4-(trifluoromethyl)-1H-benzimidazole;1-{4-[3-(ethylsulfonyl)-5-fluorophenoxy]-2-methylphenyl}-4-(trifluoromethyl)-1H-benzimidazole;1-{2-methyl-4-[4-(methylsulfonyl)phenoxy]phenyl}-4-(trifluoromethyl)-1H-benzimidazole;1-{4-[3-(ethylsulfonyl)-5-fluorophenoxy]-2-methylphenyl}-2-methyl-4-(trifluoromethyl)-1H-benzimidazole;2-methyl-1-{2-methyl-4-[4-(methylsulfonyl)phenoxy]phenyl}-4-(trifluoromethyl)-1H-benzimidazole;1-{4-[3-fluoro-5-(methylsulfonyl)phenoxy]-2-methylphenyl}-2-methyl-4-(trifluoromethyl)-1H-benzimidazole;1-{2-chloro-4-[3-(methyl sulfonyl)phenoxy]phenyl}-2-methyl-4-(trifluoromethyl)-1H-benzimidazole;1-{2-chloro-4-[3-fluoro-5-(methylsulfonyl)phenoxy]phenyl}-2-methyl-4-(trifluoromethyl)-1H-benzimidazole;1-{2-chloro-4-[3-(methyl sulfonyl)phenoxy]phenyl}-4-(trifluoromethyl)-1H-benzimidazole;1-{2-chloro-4-[3-(ethylsulfonyl)phenoxy]phenyl}-4-(trifluoromethyl)-1H-benzimidazole;1-{2-chloro-4-[3-fluoro-5-(methylsulfonyl)phenoxy]phenyl}-4-(trifluoromethyl)-1H-benzimidazole; and2-methyl-1-(3-{[3-(methylsulfonyl)benzyl]oxy}phenyl)-4-(trifluoromethyl)-1H-benzimidazole;or an N-oxide and/or a pharmaceutically acceptable salt thereof.
  • 61. A composition comprising a compound of claim 1, or a pharmaceutically acceptable salt thereof and a pharmaceutically acceptable carrier.
  • 62. A method of preventing or treating a Liver X receptor-mediated disease or disorder, the method comprising administering to a subject in need of such treatment an effective amount of a claim 1 or a pharmaceutically acceptable salt thereof.
  • 63. A method of preventing or treating atherosclerosis, the method comprising administering to a subject in need of such treatment an effective amount of a compound of claim 1 or a pharmaceutically acceptable salt thereof.
  • 64. A method of preventing or treating a cardiovascular disease, the method comprising administering to a subject in need of such treatment an effective amount of a compound of claim 1 or a pharmaceutically acceptable salt thereof.
  • 65. The method of claim 64, wherein the cardiovascular disease is acute coronary syndrome or restenosis.
  • 66. The method of claim 64, wherein the cardiovascular disease is coronary artery disease.
  • 67. A method of preventing or treating Syndrome X, the method comprising administering to a subject in need of such treatment an effective amount of a compound of claim 1 or a pharmaceutically acceptable salt thereof.
  • 68. A method of preventing or treating obesity, the method comprising administering to a subject in need of such treatment an effective amount of a compound of claim 1 or a pharmaceutically acceptable salt thereof.
  • 69. A method of preventing or treating one or more lipid disorders selected from dyslipidemia, hyperlipidemia, hypertriglyceridemia, hypercholesterolemia, low HDL and/or high LDL, the method comprising administering to a subject in need of such treatment an effective amount of a compound of claim 1 or a pharmaceutically acceptable salt thereof.
  • 70. A method of preventing or treating Alzheimer's disease, the method comprising administering to a subject in need of such treatment an effective amount of a compound of claim 1 or a pharmaceutically acceptable salt thereof.
  • 71. A method of preventing or treating type I or type II diabetes, the method comprising administering to a subject in need of such treatment an effective amount of a compound of claim 1 or a pharmaceutically acceptable salt thereof.
  • 72. A method of preventing or treating an inflammatory disease, the method comprising administering to a subject in need of such treatment an effective amount of a compound of claim 1 or a pharmaceutically acceptable salt thereof.
  • 73. The method of claim 72, wherein the inflammatory disease is rheumatoid arthritis.
  • 74. A method of treating a connective tissue disease, the method comprising administering to a mammal in need thereof an effective amount of a compound of claim 1 or a pharmaceutically acceptable salt thereof.
  • 75. The method of claim 74, wherein the compound of formula (I) inhibits cartilage degradation and induces cartilage regeneration.
  • 76. The method of claim 75, wherein the compound of formula (I) inhibits aggrecanase activity.
  • 77. The method of claim 75, wherein the compound of formula (I) inhibits elaboration of pro-inflammatory cytokines in osteoarthritic lesions.
  • 78. The method of claim 74, wherein the connective tissue disease is osteoarthritis or tendonitis.
  • 79. The method of claim 74, wherein the mammal is a human.
  • 80. A method of treating skin aging, the method comprising administering to a mammal in need thereof an effective amount of a compound of claim 1 or a pharmaceutically acceptable salt thereof.
  • 81. The method of claim 80, wherein the mammal is a human.
  • 82. The method of claim 80, wherein the compound of formula (I) is topically administered.
  • 83. The method of claim 80, wherein the skin aging is derived from chronological aging, photoaging, steroid-induced skin thinning, or a combination thereof.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is the U.S. National Phase filing under 35 U.S.C. §371 of PCT/US2008/087735, filed Dec. 19, 2008, which claims the benefit of U.S. 61/016,070, filed on Dec. 21, 2007, the entire contents of which is incorporated herein by reference.

PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/US08/87735 12/19/2008 WO 00 10/21/2010
Provisional Applications (1)
Number Date Country
61016070 Dec 2007 US