.beta.-lactam compounds and their production

Information

  • Patent Grant
  • 5227376
  • Patent Number
    5,227,376
  • Date Filed
    Friday, August 14, 1992
    32 years ago
  • Date Issued
    Tuesday, July 13, 1993
    31 years ago
Abstract
A compound of the formula: ##STR1## , which is useful as an antimicrobial agent.
Description

The present invention relates to .beta.-lactam compounds and their production. More particularly, it relates to novel 3-pyrrolidinylthio-1-azabicyclo[3.2.0]-hept -2-en-7-one-2-carboxylic acid compounds bearing a quaternary ammonium group on the pyrrolidine ring and their production.
There are known some .beta.-lactam compounds having a carbapenem skeleton, which possess an excellent antimicrobial spectrum against a wide range of Gram-positive and Gram-negative bacteria. Among them, imipenem is already available on the market. Since, however, imipenem is sensitive to renal dehydropeptidase-I (DHP-I) in a living body and apt to be inactivated, it is normally used in combination with cylastatin for preventing the inactivation with DHP-I. Needless to say, it is clinically favorable that an antimicrobial agent exerts its antimicrobial activity without any auxiliary agent, and a great demand is present towards the development of a .beta.-lactam compound which exerts its antimicrobial activity with resistance to DHP-I, i.e. saving the use of any auxiliary agent.
As the result of an extensive study, it has now been found that some 3-pyrrolidinylthio-1-azabicyclo[3.2.0]-hept-2-en-7-one-2-carboxylic acid compounds having a quaternary ammonium group on the pyrrolidine ring exerts a strong antimicrobial activity with sufficient resistance to DHP-I. The present invention is based on the above finding.
Accordingly, a basic object of the present invention is to provide a novel .beta.-lactam compound of the formula: ##STR2## wherein R.sup.0 is a hydrogen atom or a protective group for hydroxyl, R.sup.1 is a lower alkyl group, R.sup.2 is a protective group for carboxyl or a negative charge, R.sup.3 is a hydrogen atom or a protective group for amino, R.sup.4 is a lower alkyl group or a substituted lower alkyl group, k is an integer of 0 to 4, X is an acid residue or intramolecular COO when R.sup.2 is the negative charge and Q.sup..sym. is a quaternary nitrogen atom-containing group represented by either one of the formulas (1) to (4): ##STR3## wherein R.sup.5 is a hydrogen atom, a lower alkyl group or a 2-hydroxyethyl group, R.sup.6 is a hydrogen atom or a lower alkyl group and n is an integer of 0 to 4; ##STR4## wherein R.sup.7 and R.sup.8 are each a lower alkyl group or may be combined together to form a lower alkylene group, or R.sup.8 represents a substituted lower alkyl group and n is as defined above; ##STR5## wherein R.sup.9 is a lower alkyl group or a substituted lower alkyl group; or ##STR6## wherein R.sup.5, R.sup.6, R.sup.9 and n are each as defined above.
When R.sup.2 is a negative charge and X is intramolecular COO, the .beta.-lactam compound (I) forms an intramolecular quaternary salt, which is represented by the formula: ##STR7## wherein R.sup.0, R.sup.1, R.sup.3, R.sup.4, k and Q.sup..sym. are each as defined above.
Among various .beta.-lactam compounds which fall within the formula (I), the most preferred are those of the formula: ##STR8## wherein R.sup.4, k and Q.sup..sym. and are each as defined above.
According to the present invention, the .beta.-lactam compound (I) can be produced by reacting a .beta.-lactam compound of the formula: ##STR9## wherein R.sup.0, R.sup.1 and k are each as defined above, R.sup.2a is a protective group for carboxyl, R.sup.3a is a protective group for amino and Q is a tertiary nitrogen atom-containing group resulting from elimination of a positive charge from either one of the groups (1) to (4) represented by Q.sup..sym. with a compound of the formula:
R.sup.4 --X.sup.a (III)
wherein R.sup.4 is as defined above and X.sup.a is an acid residue to give a .beta.-lactam compound of the formula: ##STR10## wherein R.sup.0, R.sup.1, R.sup.2a, R.sup.3a, R.sup.4, k, Q.sup..sym. and X.sup.a are each as defined above, optionally followed by subjecting the .beta.-lactam compound (IV) to elimination of the hydroxyl-protecting group represented by R.sup.0, elimination of the carboxyl-protecting group represented by R.sup.2a and/or elimination of the amino-protecting group represented by R.sup.3a , thereby giving the 6-lactam compound (I) wherein R.sup.0 and R.sup.3 are each a hydrogen atom and R.sup.2 is a negative charge.
With respect to the definitions of the symbols as given above, the term "lower" is intended to mean a group normally having not more than 8 carbon atoms, preferably not more than 5 carbon atoms.
The protective group for hydroxyl (i.e. hydroxyl-protecting group) represented by R.sup.0 and the protective group for amino (i.e. amino-protecting group) represented by R.sup.3 or R.sup.3a may be any group as conventionally used in the related art field. Preferred examples are C.sub.1 -C.sub.5 alkoxycarbonyl (e.g. t-butyloxycarbonyl), halo(C.sub.1 -C.sub.5)alkoxycarbonyl (e.g. 2-iodoethyloxycarbonyl, 2,2,2-trichloroethyloxycarbonyl), C.sub.3 -C.sub.7 alkenyloxycarbonyl (e.g. allyloxycarbonyl), ar-(C.sub.1 -C.sub.3)alkyloxycarbonyl such as phenyl(C.sub.1 -C.sub.3)alkyloxycarbonyl (e.g. benzyloxycarbonyl) or substituted phenyl-(C.sub.1 -C.sub.3)alkyloxycarbonyl (e.g. p-methoxybenzyloxycarbonyl, o-nitrobenzyloxycarbonyl, p-nitrobenzyloxycarbonyl), tri-(C.sub.1 -C.sub.5)alkylsilyl (e.g. trimethylsilyl, t-butyldimethylsilyl), etc.
The protective group for carboxyl (i.e. carboxyl-protective group) represented by R.sup.2 or R.sup.2a may be also any group as conventionally used. Preferred examples are straight or branched C.sub.1 -C.sub.5 lower alkyl (e.g. methyl, ethyl, isopropyl, t-butyl), halo(C.sub.1 -C.sub.5)alkyl (e.g. 2-iodoethyl, 2,2,2-trichloroethyl), C.sub.1 -C.sub.5 alkoxymethyl (e.g. methoxyethyl, ethoxymethyl, isobutoxymethyl), C.sub.1 -C.sub.5 aliphatic acyloxymethyl (e.g. acetoxymethyl, propionyloxymethyl, butyryloxymethyl, pivaloyloxymethyl), 1-(C.sub.1 -C.sub.5)alkoxycarbonyloxyethyl (e.g. 1-ethoxycarbonyloxyethyl), ar-(C.sub.1 -C.sub.3)alkyl such as phenyl(C.sub.1 -C.sub.3)alkyl (e.g. benzyl) or substituted phenyl(C.sub.1 -C.sub.3)alkyl (e.g. p-methoxybenzyl, o-nitrogenzyl, p-nitrobenzyl), C.sub.3 -C.sub.7 alkenyl (e.g. allyl, 2-methylallyl, 3-methylallyl), benzhydryl, phthalidyl, etc.
Examples of the lower alkyl group represented by R.sup.1, R.sup.4, R.sup.5, R.sup.6, R.sup.7, R.sup.8 or R.sup.9 are C.sub.1 -C.sub.5 alkyl (e.g. methyl, ethyl, n-propyl, isopropyl, n-butyl, n-pentyl), etc. In case of the substituted lower alkyl group represented by R.sup.4, R.sup.8 or R.sup.9, the substituent on the lower alkyl group may be, for instance, carboxyl, lower alkanoyl (e.g. acetyl, propionyl), carbamoyl, lower alkylaminocarbonyl (e.g. methylaminocarbonyl), di(lower)alkylaminocarbonyl (e.g. dimethylaminocarbonyl), cyano, lower alkoxy (e.g. methoxy, ethoxy), hydroxyl, phenyl, etc. Thus, examples of the substituted lower alkyl group are C.sub.1 -C.sub.7 alkyl substituted with one or more substitutents as exemplified above, specifically carboxymethyl, acetylmethyl, propionylmethyl, carbamoylmethyl, N-methylaminocarbonylmethyl, N,N-dimethylaminocarbonylmethyl, 2-cyanoethyl, 2-methoxyethyl, 2-ethoxyethyl, 2-carboxyethyl, 2-hydroxyethyl, 2-carbamoylethyl, 2-N-methylaminocarbonylethyl, 2-N,N-dimethylaminocarbonylethyl, 3-carboxypropyl, 4-hydroxybutyl, 5-hydroxypentyl, benzyl, etc.
When R.sup.7 and R.sup.8 are combined together to make a lower alkylene group, they form a 3- to 7-membered ring together with the nitrogen atom to which they are attached, and examples of the 3- to 7-membered ring are aziridine, azetidine, pyrrolidine, piperidine, etc.
Examples of the acid residue represented by X or X.sup.a are an inorganic acid residue (e.g. chlorine, bromine, fluorine, iodine), an organic acid residue (e.g. benzenesulfonyloxy, p-toluenesulfonyloxy, methanesulfonyloxy, trifluoromethanesulfonyloxy), etc.
The .beta.-lactam compound (I) may be either in a free form or in a salt (preferably non-toxic salt) form. Examples of the salt are inorganic base salts (e.g. sodium, potassium, calcium, magnesium, ammonium), organic base salts (e.g. triethylammonium, pyridinium, diosopropylammonium), inorganic acid addition salts (e.g. hydrochloride, sulfate, phosphate), organic acid addition salts (e.g. formate, acetate, methanesulfonate, benzenesulfonate), etc.
Production of the .beta.-lactam compound (I) will be hereinafter explained in details.
The quaternarization of the .beta.-lactam compound (II) may be performed by a per se conventional procedure, for instance, by reacting the .beta.-lactam compound (II) with the compound (III) in an inert solvent chosen from water, ketones (e.g. acetone, methylethylketone), ethers (e.g. tetrahydrofuran, dioxane), acetonitrile and halogenated hydrocarbons (e.g. dichloromethane, dichloroethane, chloroform), or their mixtures. There is no limitation on the reaction temperature, but the reaction is normally effected at a temperature of -40.degree. to 60.degree. C. Upon termination of the reaction, the objective product is isolated from the reaction mixture by a per se conventional procedure.
The thus obtained product, i.e. the .beta.-lactam compound (IV), is optionally subjected to elimination of the hydroxyl-protecting group represented by R.sup.0, elimination of the carboxyl-protecting group represented by R.sup.2a and/or elimination of the amino-protecting group represented by R.sup.3a to give the .beta.-lactam compound (I) wherein at least one of R.sup.0 and R.sup.3 is a hydrogen atom and R.sup.2 is a negative charge.
The elimination may be effected independently or concurrently by a per se conventional procedure such as treatment with an acid, a base, a reducing agent or the like (T. W. Greene: Protective Groups in Organic Synthesis, J. Wiley & Sons Inc., 1981). As the acid, there are exemplified trifluoroacetic acid, formic acid, boron trifluoride, aluminium chloride, etc. As the base, there are exemplified alkali metal carbonate (e.g. sodium carbonate, potassium carbonate), alkali metal sulfate (e.g. sodium sulfate, potassium sulfate), tetrafluorobutylammonium, etc. When the elimination is conducted through reduction, there may be adopted any procedure using zinc and acetic acid, hydrogen and palladium-carbon or platinum or the like. The elimination with tetrakistriphenylphosphine palladium is also available. Any particular limitation is not present on the solvent to be used, and it may be chosen from water, alcohols (e.g. methanol, ethanol), ethers (e.g. tetrahydrofuran, dioxane), aliphatic acids (e.g. acetic acid), etc. The reaction temperature may be appropiately decided so as to control or accelerate the proceeding of the reaction, and a preferred temperature is normally from -30.degree. to 40.degree. C. The reaction product may be separated from the reaction mixture by a per se conventional procedure. For instance, the reaction mixture is neutralized and chromatographed on an adsorptive resin, followed by elution and lyophilization.
The .beta.-lactam compound (II) as the starting compound is obtainable by reacting a .beta.-lactam compound of the formula: ##STR11## wherein R.sup.0, R.sup.1 and R.sup.2a are each as defined above and Z is a reactive ester on hydroxyl with a mercaptan compound of the formula: ##STR12## wherein R.sup.3a , k and Q are each as defined above in an inert solvent in the presence of a base.
The .beta.-lactam compound (V) is known (cf. Heterocycles, Vol. 21, p. 29-40, 1984), and its reactive ester on hydroxyl represented by Z may be chosen, for instance, from arylsulfonates such as benzenesulfonates and substituted benzenesulfonates (e.g. p-toluenesulfonate, p-nitrobenzenesulfonate, p-bromobenzenesulfonate), C.sub.1 -C.sub.5 alkanesulfonates (e.g. methanesulfonate, ethanesulfonate), halo(C.sub.1 -C.sub.5)alkanesulfonates (e.g. trifluoromethanesulfonate), diarylphosphates (e.g. diphenylphosphate), halides (e.g. chloride, bromide, iodide), etc. Of these, p-toluenesulfuonate, methanesulfonate, diphenylphosphate, etc. are prefered.
The mercaptan compound (VI), which may be produced from trans-4-hydroxy-L-proline or cis-4-hydroxy-D-proline by a known method (cf. U.S. Pat. Nos. 4,943,569 and 4,962,103), is usually employed in an excessive amount, particularly in a 1 to 2 equivalent amount to the .beta.-lactam compound (V) so that the reaction with the .beta.-lactam compound (V) proceeds sufficiently.
Examples of the inert solvent are dioxane, tetrahydrofuran, dimethylsulfoxide, acetonitrile, hexamethylphosphoramide, etc. As the base, there may be used an inorganic base (e.g. sodium carbonate, potassium carbonate, sodium hydride, potassium hydride, potassium t-butoxide), an organic base (e.g. pyridine, dimethylaminopyridine, triethylamine, diisopropylethylamine, 1,8-diazabicyclo[5.4.0]-undec-7-ene (DBU), etc., among which preferred are diisopropylethylamine, DBU, etc. The base is used in such an amount as can assure the smooth proceeding of the reaction, normally in a 1 to 3 equimolar amount to the mercaptan compound (VI).
The reaction is normally carried out at a temperature of from -78.degree. to 60.degree. C., preferably from -40.degree. to 40.degree. C.
Upon termination of the reaction, the reaction mixture may be subjected to post-treatment in a per se conventional procedure so as to obtain the objective .beta.-lactam compound (II) if necessary, followed by purification.
The .beta.-lactam compound (I) of the invention includes asymmetric carbon atoms at the 4-, 5-, 6- and -positions in the carbapenem skeleton as shown in the following formula and has optical and steric isomers due to those asymmetric carbon atoms: ##STR13## wherein R.sup.0, R.sup.1, R.sup.2, R.sup.3, R.sup.4, k and Q.sup..sym. and X.sup..crclbar. are each as defined above. While all these optical and steric isomers and their mixtures fall within the scope of the invention, preferred are those having an S-configuration at the 5-position, i.e. (5S,6S) or (5S,6R), those having an R-configuration at the 8-position and those having an R configuration at the 4-position. More preferred are those having a (4R,5S,6S,8R) configuration as represented by the formula (I'-a) or a (4R,5S,6R,8R) configuration as represented by the formula (I'-b): ##STR14## wherein R.sup.0, R.sup.1, R.sup.2, R.sup.3, R.sup.4, k, and Q.sup..sym. and X.sup..crclbar. are each as defined most preferred are those of the formula (I'-c): ##STR15## wherein R.sup.0, R.sup.1, R.sup.2, R.sup.3, R.sup.4, k, Q.sup..sym. and X.sup..crclbar. are each as defined above.
Production of the specific isomers as above stated can be achieved by the use of the corresponding isomers of .beta.-lactam compound (V) and the mercaptan compound (VI).
Typical examples of the .beta.-lactam compound (I) wherein R.sup.0 and R.sup.3 are each a hydrogen atom, R.sup.1 is a methyl group and R.sup.2 is a negative charge are shown in Table 1, in which Me and Ph indicate respectively methyl and phenyl.
TABLE 1______________________________________ ##STR16##Com-poundNo. k Q.sup..sym. R.sup.4______________________________________1 0 ##STR17## Me2 0 ##STR18## Me3 0 ##STR19## Me4 0 ##STR20## Me5 0 ##STR21## Me6 0 ##STR22## Me7 0 ##STR23## Me8 0 ##STR24## Me9 0 ##STR25## Me10 0 ##STR26## Me11 0 ##STR27## Me12 0 ##STR28## Me13 0 ##STR29## Me14 0 ##STR30## Me15 0 ##STR31## Me16 0 ##STR32## Me17 0 ##STR33## Me18 0 ##STR34## Me19 0 ##STR35## Me20 0 ##STR36## Me21 0 ##STR37## Me22 0 ##STR38## Me23 0 ##STR39## Me24 0 ##STR40## Me25 0 ##STR41## Me26 0 ##STR42## Me27 0 ##STR43## Me28 0 ##STR44## Me29 0 ##STR45## Me30 0 ##STR46## Me31 0 ##STR47## CH.sub. 2 Ph32 0 ##STR48## CH.sub.2 COOH33 0 ##STR49## CH.sub.2 CH.sub.2 OH34 0 ##STR50## CH.sub.2 CONH.sub.235 0 ##STR51## ##STR52##36 0 ##STR53## ##STR54##37 0 ##STR55## ##STR56##38 0 ##STR57## CH.sub.2 Ph39 0 ##STR58## CH.sub.2 COOH40 0 ##STR59## CH.sub.2 CH.sub.2 OH41 0 ##STR60## CH.sub.2 CONH.sub.242 0 ##STR61## ##STR62##43 0 ##STR63## ##STR64##44 0 ##STR65## ##STR66##45 0 ##STR67## PhCH.sub.246 0 ##STR68## CH.sub.2 COOH47 0 ##STR69## CH.sub.2 CH.sub.2 OH48 0 ##STR70## CH.sub.2 CONH.sub.249 0 ##STR71## ##STR72##50 0 ##STR73## ##STR74##51 0 ##STR75## ##STR76##52 0 ##STR77## CH.sub. 2 Ph53 0 ##STR78## CH.sub.2 COOH54 0 ##STR79## CH.sub.2 CH.sub.2 OH55 0 ##STR80## CH.sub.2 CONH.sub.256 0 ##STR81## ##STR82##57 0 ##STR83## ##STR84##58 0 ##STR85## ##STR86##59 0 ##STR87## CH.sub.2 Ph60 0 ##STR88## CH.sub.2 COOH61 0 ##STR89## CH.sub.2 CH.sub.2 OH62 0 ##STR90## CH.sub.2 CONH.sub.263 0 ##STR91## ##STR92##64 0 ##STR93## ##STR94##65 0 ##STR95## ##STR96##66 1 ##STR97## Me67 1 ##STR98## Me68 1 ##STR99## Me69 1 ##STR100## Me70 2 ##STR101## Me71 2 ##STR102## Me72 2 ##STR103## Me73 2 ##STR104## Me74 0 ##STR105## Me75 0 ##STR106## Me76 0 ##STR107## Me77 0 ##STR108## Me78 0 ##STR109## Me79 0 ##STR110## Me80 0 ##STR111## Me81 0 ##STR112## Me82 0 ##STR113## Me83 0 ##STR114## CH.sub.2 Ph84 0 ##STR115## CH.sub.2 COOH85 0 ##STR116## CH.sub.2 CH.sub.2 OH86 0 ##STR117## CH.sub.2 CONH.sub.287 0 ##STR118## ##STR119##88 0 ##STR120## ##STR121##89 0 ##STR122## ##STR123##90 1 ##STR124## Me91 1 ##STR125## CH.sub.2 Ph92 1 ##STR126## CH.sub.2 COOH93 1 ##STR127## CH.sub.2 CH.sub.2 OH94 1 ##STR128## CH.sub.2 CONH.sub.295 1 ##STR129## ##STR130##96 1 ##STR131## ##STR132##97 1 ##STR133## ##STR134##98 0 ##STR135## Me99 0 ##STR136## Me100 0 ##STR137## Me101 1 ##STR138## Me102 1 ##STR139## Me103 1 ##STR140## Me104 0 ##STR141## Me105 0 ##STR142## Me106 0 ##STR143## CH.sub.2 CH.sub.2 CN107 0 ##STR144## CH.sub.2 CH.sub.2 OMe108 0 ##STR145## CH.sub.2 COMe109 0 ##STR146## CH.sub.2 CH.sub.2 CN110 0 ##STR147## CH.sub.2 CH.sub.2 OMe111 0 ##STR148## CH.sub.2 COMe112 0 ##STR149## Me113 0 ##STR150## Me114 0 ##STR151## Me115 0 ##STR152## CH.sub.2 COOH116 0 ##STR153## CH.sub.2 CH.sub.2 OH117 0 ##STR154## CH.sub.2 CONH.sub.2118 1 ##STR155## CH.sub.2 COMe______________________________________
The .beta.-lactam compounds as exemplified in Table 1 have their optical and steric isomers, and all of them are included within the scope of the present invention.
The .beta.-lactam compounds (I) according to the invention are characteristic in having a 2-substituted pyrrolidin-4-ylthio group introduced with a quaternary ammonium group at the 3-position and a lower alkyl group at the 4-position in the carbapenem skeleton. Due to such characteristic structure, the .beta.-lactam compounds (I) exert an excellent antimicrobial activity against Gram-positive and Gram-negative bacteria including Staphylococcus aureus, Streptococcus pyogenes, Escherichia coli, Serratia marcescens, Pseudomonas aeruginosa, etc. It is notable that while conventional carbapenem compounds such as imipenem are generally unstable in a living body, especially sensitive to renal DHP-I, the .beta.-lactam compounds (I), particularly those wherein R.sup.1 is a methyl group in the R-configuration, are in general significantly resistant to renal DHP-I. It is also notable that the half life time (T1/2) of the .beta.-lactam compounds (I) in a living body is generally longer than that of conventional carbapenem compounds such as imipenem. The .beta.-lactam compounds (I) are thus useful as antimicrobial drugs or intermediates in the synthesis of such antimicrobial drugs.
For the practical usage of the .beta.-lactam compounds (I) as antimicrobial drugs, they may be formulated into conventional preparation forms together with excipients or additives such as carriers, diluents, binders and stabilizers and administered in various modes, of which examples are oral administration in the form of tablets, capsules, dispersants and syrups, non-oral administration in the form of injection through vein, muscle or rectum, etc. When they are applied in injection forms, the preparations may additionally include buffering agents, solubilizing agents, isotonic agents, etc. The daily dosage may vary depending upon the state of disease, the age and body weight of patients, the administration mode and time, etc., and the normal daily dosage to a human adult is between about 100 to 3000 mg, optionally divided in one to several times per day. If necessary, the dosage may be increased or decreased appropriately.





Practical and presently preferred embodiments of the invention are illustratively shown in the following examples, which are not intended to limit the scope of the invention thereto. Further, the abbreviations used therein show the following meanings: PNZ, p-nitrobenzyloxycarbonyl; PNB, p-nitrobenzyl; Ph, phenyl; Ac, acetyl; TBDMS, t-butyldimethylsilyl; Me, methyl, etc.
EXAMPLE 1 ##STR156##
To a solution of (4R,5S,6S,8R,2'S,4'S)-p-nitrobenzyl -3-[1-p-nitrobenzyloxycarbonyl-2-(3-(4-pyridyl)-propyl) methylaminocarbonyl)pyrrolidin-4-ylthio]-4-methyl-6-(1-hydroxyethyl) -1-azabicyclo[3.2.0]hept-2-en-7-one-2-carboxylate (100 mg) in acetone (2.0 ml), methyl iodide (1.14 g) was added, and the resultant mixture was stirred at room temperature for 20 hours, followed by removal of the solvent under reduced pressure. The residue was dissolved in tetrahydrofuran (5.0 ml) and 0.1 M phosphate buffer (pH, 7.0; 5.0 ml), and 10 % palladium-carbon (150 mg) was added thereto. Catalytic reduction was performed at room temperature for 1.5 hours under atmospheric pressure of hydrogen. The catalyst was removed by filtration, and the filtrate was washed with dichloromethane three times. After removal of the solvent from the washed filtrate under reduced pressure, the residue was purified by polymer chromatography (CHP-20P) using 2 % aqueous tetrahydrofuran as an eluent. The eluted fractions were collected and freeze-dried to give (4R,5S,6S,8R,2'S,4'S)-3-[2-((3-(1-methylpyridinium-4-yl)propyl) methylaminocarbonyl)pyrrolidin-4-ylthio]-4-methyl-6-(1-hydroxyethyl) -1-azabicyclo[3.2.0]hept-2-en-7-one-2-carboxylate.
UV.sub.max nm (H.sub.2 O): 257, 263 (sh), 298;
IR.sub.max cm.sup.-1 (KBr): 3400, 1737, 1682, 1367;
NMR .delta. (D.sub.2 O): 1.18 (3H, d, J =7.3 Hz), 1.26 (3H, d, J =6.6 Hz), 3.04 (3H, s), 4.20 (3H, s), 7.87 (2H, d, J=6.6 Hz), 8.60 (2H, d, J=6.6 Hz).
EXAMPLE 2 ##STR157##
To a solution of (4R,5S,6S,8R,2'S,4'S)-p-nitrobenzyl -3-[1-p-nitrobenzyloxycarbonyl-2-((2-(3-pyridyl)ethyl) methylaminocarbonyl)pyrrolidin-4-ylthio]-4-methyl-6-(1-hydroxyethyl) -1-azabicyclo[3.2.0]hept-2-en-7-one-2-carboxylate (270 mg) in acetone (25 ml), methyl iodide (3.42 g) was added, and the resultant mixture was stirred at room temperature for 3 hours, followed by removal of the solvent under reduced pressure. The residue was dissolved in tetrahydrofuran (15 ml) and 0.1 M phosphate buffer (pH, 7.0; 15.0 ml), and 10 % palladium-carbon (500 mg) was added thereto. Catalytic reduction was performed at room temperature for 1 hour under atmospheric pressure of hydrogen. The reaction mixture was subjected to post-treatment int he same manner as in Example 1. the filtrate was purified by polymer chromatography (CHP-20P) using 2% aqueous tetrahydrofuran as an eluent to give (4R,5S,6S,8R,2'S, 4'S)-3-[2-((2-methylpyridinium -3-yl)ethyl)methylaminocarbonyl)pyrrolidin-4-ylthio]-4-methyl-6-(1-hydroxyethyl)-1-azabicyclo[3.2.0]-hept-2-en-7-one-2-carboxylate.
UV.sub.max nm (H.sub.2 O): 268, 273, 298;
IR.sub.max cm.sup.-1 (KBr): 3320, 1748, 1637, 1585, 1378;
NMR .delta. (D.sub.2 O): 1.20 (3H, d, J=7.3 Hz), 1.27 (3H, d, J=6.3 Hz), 2.81 (1H, m), 3.00-3.30 (5H, m), 3.09 (3H, s), 3.45 (3H, m), 3.79 (1H, m), 4.20 (4H, m), 4.38 (3H, s), 7.98 (1H, dd, J=6.3 and 8.3 Hz), 8.44 (1H, d, J=8.3 Hz), 8.69 (1H, d, J=6.3 Hz), 8.79 (1H, s).
EXAMPLE 3 ##STR158##
To a solution of (4R, 5S, 6S, 8R, 2'S, 4'S)-p-nitrobenzyl-3-[1-p-nitrobenzyloxycarbonyl-2-(4-methylpiperazin-1-ylcarbonyl) pyrrolidin-4-ylthiol]-04-methyl-6-(1-hydroxyethyl) -1-azabicyclo[3.2.0]hept-2-en-7-one-2-carboxylate (200 mg) in acetone (2.0 ml), methyl iodide (1.14 g) was added, and the resultant mixture was stirred at room temperature for 20 hours, followed by removal of the solvent under reduced pressure. The residue was dissolved in tetrahydrofuran (10.0 ml) and 0.1 M phosphate buffer (pH, 7.0; 10.0 ml), and 10% palladium-carbon (241 mg) was added thereto. Catalytic reduction was performed at room temperature for 1.5 hours under atmospheric pressure of hydrogen. The reaction mixture was subjected to post-treatment in the same manner as in Example 1. The filtrate was purified by polymer chromatography (CHP-20P) using 1 % aqueous tetrahydrofuran as an eluent to give (4R,5S,6S,8R,2'S,4'S)-3-[2-(4,4-dimethylpiperazinium-1-yl-carbonyl)pyrrolidin-4-ylthio]-4-methyl-6-(1-hydroxyethyl)-1-azabicyclo[3.2.0]-hept -2-en-7-one-2-carboxylate.
UV.sub.max nm (H.sub.2 O): 299;
IR.sub.max cm.sup.-1 (KBr): 3440, 1745, 1640, 1587, 1464, 1387, 1260;
NMR .delta. (D.sub.2 O): 1.21 (3H, d, J=7.3 Hz), 1.29 (3H, d, J=6.6 Hz), 1.72 (1H, m), 2.78 (1H, m), 3.11 (1H, dd, J=4.0 & 12.5 Hz), 3.27 (6H, s), 3.20-3.60 (9H, m), 3.80-4.20 (5H, m), 4.23 (3H, m).
EXAMPLES 4 TO 22
In the same manner as above, the compounds as shown in Table 2 were obtained. The physical properties of the compounds as obtained follow the Table.
TABLE 2______________________________________ ##STR159##Example No. k Q.sup..sym. R.sup.4______________________________________4 0 ##STR160## Me5 0 ##STR161## Me6 0 ##STR162## Me7 0 ##STR163## Me8 0 ##STR164## Me9 0 ##STR165## Me10 0 ##STR166## Me11 0 ##STR167## Me12 0 ##STR168## Me13 0 ##STR169## Me14 0 ##STR170## Me15 1 ##STR171## Me16 2 ##STR172## Me17 0 ##STR173## Me18 1 ##STR174## Me19 0 ##STR175## Me20 1 ##STR176## Me21 0 ##STR177## Me22 0 ##STR178## Me______________________________________
Physical Properties
EXAMPLE 4
UV.sub.max nm (H.sub.2 O): 252, 291;
IR.sub.max cm.sup.-1 (KBr): 3380, 1737, 1580, 1502, 1364;
NMR .delta. (D.sub.2 O): 1 19 (3H, d, J=7.3 Hz), 1.29 (3H, d, J=6.3 Hz), 1.95 (1H, m), 2.73 (1H, m), 3.00 (1H, dd, J=4.6 & 11.9 Hz), 3.40 (3H, m), 3.79 (1H, m), 4.09 (1H, dd, J=5.6 & 9.6 Hz), 4,25 (2H, m), 4.40 (3H, s), 7.99 (1H, dd, J=6.3 & 8.6 Hz), 8.47 (1H, d, J=8.6 Hz), 8.53 (1H, d, J=6.3 Hz), 9.27 (1H, s).
EXAMPLE 5
UV.sub.max nm (H.sub.2 O): 265, 273 (sh), 296;
IR.sub.max cm.sup.-1 (KBr): 3360, 1730, 1670, 1590, 1385;
NMR .delta. (D.sub.2 O): 1.19 (3H, d, J=7.3 Hz), 1.25 (1H, m), 1.27 (3H, d, J=6.3 Hz), 2.17 (1H, m), 3.02 (1H, m), 3.30-3.85 (4H, m), 4.08 (1H, m), 4.22 (2H, m), 4.37 (3H, s), 4.65 (3H, m), 8.02 (1H, t, J=7.9 Hz), 8.46 (1H, d, J=8.3 Hz), 8.71 (1H, d, J=6.0 Hz), 8.77 (1H, s).
EXAMPLE 6
UV.sub.max nm (H.sub.2 O): 266, 272, 299;
IR.sub.max cm.sup.-1 (KBr): 3300, 1750, 1652, 1588, 1380, 1366;
NMR .delta. (D.sub.2 O): 1.19 (3H, d, J=7.3 Hz), 1.29 (3H, d, J=6.3 Hz), 1.49 (1H, m), 2.69 (1H, m), 2.91 (1H, dd, J=4.5 & 11.9 Hz), 3.10 (2H, t, J=6.6 Hz), 3.30-3.50 (3H, m), 3.63 (2H, t, J =5.9 Hz), 3.75 (1H, m), 3.93 (1H, dd, J=6.3 & 9.6 Hz), 4.20-4.30 (2H, m), 4.37 (3H, s), 7.99 (1H, dd, J=6.2 & 8.0 Hz), 8.44 (1H, d, J=8.0 Hz), 8.67 (1H, d, J=6.2 Hz), 8.77 (1H, s).
EXAMPLE 7
UV.sub.max nm (H.sub.2 O): 266, 273 (sh), 299;
IR.sub.max cm.sup.-1 (KBr): 3410, 1749, 1640, 1588, 1380, 1278, 1255, 1178, 1140;
NMR .delta. (D.sub.2 O): 1.19 (3H, d, J=7.3 Hz), 1.29 (3H, d, J=6.3 Hz), 1.75 (1H, m), 1.96 (2H, m), 2.69 (1H, m), 2.89 (2H, m), 2.95 (1H, dd, J=4.3 & 11.9 Hz), 3.20-3.50 (5H, m), 3.75 (1H, m), 3.87 (1H, dd, J=6.3 & 9.5 Hz), 4.20 (2H, m), 4.35 (3H, s), 7.94 (1H, t, J=7.0 Hz), 8.38 (1H, . d, J=7.9 Hz), 8.61 (1H, d, J=6.0 Hz), 8.68 (1H, s).
EXAMPLE 8
UV.sub.max nm (H.sub.2 O): 266, 273, 299;
NMR .delta. (D.sub.2 O): 1.19 (3H, d, J=7.0 Hz), 1.30 (3H, d, J=6.6 Hz), 1.61 (2H, m), 1.73 (3H, m), 2.72 (1H, m), 2.89 (2H, m), 2.99 (1H, dd, J=4.6 & 11.9 Hz), 3.29 (2H, m), 3.43 (3H, m), 3.79 (1H, m), 3.92 (1H, dd, J=6.3 & 9.2 Hz), 4.23 (2H, m), 4.34 (3H, s), 7.93 (1H, dd, J=6.3 & 8.3 Hz), 8.39 (1H, d, J=8.3 Hz), 8.59 (1H, d, J=6.3 Hz), 8.68 (1H, s).
EXAMPLE 9
UV.sub.max nm (H.sub.2 O): 268, 273, 297;
IR.sub.max cm.sup.-1 (KBr): 3425, 1744, 1632, 1588, 1380, 1281;
NMR .delta. (D.sub.2 O): 1.21 (3H, d, J=7.3 Hz), 1.30 (3H, d, J=6.3 Hz), 1.82 (1H, m), 1.98 (2H, m), 2.86 (3H, m), 3.09 (3H, s), 3.20-3.70 (6H, m), 3.95 (1H, m), 4.24 (2H, m), 4.36 (3H, s), 4.48 (1H, dd, J=6.9 & 9.6 Hz), 7.97 (1H, t, J=7.0 Hz), 8.42 (1H, d, J=7.6 Hz), 8.62 (1H, d, J=6.3 Hz), 8.70 (1H, s).
EXAMPLE 10
UV.sub.max nm (H.sub.2 O): 268, 276, 296;
IR.sub.max cm.sup.-1 (KBr): 3425, 1746, 1636, 1592, 1378, 1282, 1246;
NMR .delta. (D.sub.2): 1.18 (3H, d, J=7.3 Hz), 1.28 (3H, d, J=6.3 Hz), 1.66 (4H, m), 1.86 (1H, m), 2.93 (3H, m), 3.03 (3H, s), 3.20-3.80 (7H, m), 4.01 (1H, m), 4.23 (2H, m), 4.32 (3H, s), 7.92 (1H, t, J=7.0 Hz), 8.39 (1H, d, J=7.5 Hz), 8.56 (1H, d, J=6.2 Hz), 8.65 (1H, s).
EXAMPLE 11
UV.sub.max nm (H.sub.2 O): 273, 300;
IR.sub.max cm.sup.-1 (KBr): 3400, 1777, 1730, 1618;
NMR .delta. (D.sub.2 O): 1.20 (3H, d, J=7.3 Hz), 1.28 (3H, d, J=6.6 Hz), 2.14 (1H, m), 2.68 (1H, m), 2.94 (1H, m), 3.25-3.50 (3H, m), 3.63 (1H, dd, J=6.3 & 11.9 Hz), 3.73 (1H, m), 4.02 (1H, m), 4.23 (3H, s), 4.47 (1H, m), 8.10 (2H, d, J=7.3 Hz), 8.57 (2H, d, J=7.3 Hz).
EXAMPLE 12
UV.sub.max nm (H.sub.2 O): 258, 263 (sh), 297;
IR.sub.max cm.sup.-1 (KBr): 3420, 1743, 1638, 1582, 1381;
NMR .delta. (D.sub.2 O): 1.19 (3H, d, J=7.3 Hz), 1.28 (3H, d, J=6.6 Hz), 1.91 (1H, m), 2.76 (1H, m), 3.06 (1H, dd, J=4.0 & 11.9 Hz), 3.43 (3H, m), 3.80 (1H, m), 4.10 (1H, dd, J=5.9 & 9.7 Hz), 4.21 (2H, m), 4.34 (3H, s), 4.68 (1H, d, J=18.2 Hz), 4.70 (1H, d, J=18.2 Hz), 7.90 (2H, d, J=6.3 Hz), 8.69 (2H, d, J=6.3 Hz).
EXAMPLE 13
UV.sub.max nm (H.sub.2 O): 256, 263, 299;
IR.sub.max cm.sup.-1 (KBr): 3410, 1743, 1639, 1584, 1376;
NMR .delta. (D.sub.2 O): 1.20 (3H, d, J=7.3 Hz), 1.31 (3H, d, J=6.3 Hz), 1.79 (1H, m), 2.01 (2H, m), 2.72 (1H, m), 2.99 (3H, m), 3.20-3.50 (5H, m), 3.79 (1H, m), 3.92 (1H, m), 4.30 (2H, m), 4.33 (3H, s), 7.89 (2H, d, J=6.6 Hz), 8.62 (2H, d, J=6.6 Hz).
EXAMPLE 14
UV.sub.max nm (H.sub.2 O): 257, 263 (sh), 300;
NMR .delta. (D.sub.2 O): 1.18 (3H, d, J=7.3 Hz), 1.26 (3H, d, J=6.3 Hz), 1.80 (1H, m), 2.77 (1H, m), 3.05 (3H, s), 4.28 (3H, s), 7.93 (2H, d, J=6.6 Hz), 8.64 (2H, d, J=6.6 Hz).
EXAMPLE 15
UV.sub.max nm (H.sub.2 O): 269, 273, 296;
IR.sub.max cm.sup.-1 (KBr): 3380, 1742, 1652, 1580, 1370, 1239, 1008;
NMR .delta. (D.sub.2 O): 1.18 (3H, d, J=6.9 Hz), 1.26 (3H, d, J=6.3 Hz), 1.92 (1H, m), 2.42 (1H, m), 2.56 (2H, m), 3.04 (3H, m), 3.25-3.70 (5H, m), 3.80 (1H, m), 3.96(1H, m), 4.26 (2H, m), 4.35 (3H, s), 7.95 (1H, t, J=7.6 Hz), 8.40 (1H, d, J=8.6 Hz), 8.65 (1H, d, J=6.0 Hz), 8.72 (1H, s).
EXAMPLE 16
UV.sub.max nm (H.sub.2 O): 249, 294;
NMR .delta. (D.sub.2 O): 1.21 (3H, d, J=6.9 Hz), 1.29 (3H, d, J=6.3 Hz), 1.70 (1H, m), 2.15 (2H, m), 2.73 (2H, m), 3.20-3.50 (3H, m), 3.50-3.85 (3H, m), 4.10 (1H, m), 4.18 (2H, m), 4.38 (3H, s), 7.92 (1H, m), 8.37 (1H, d, J=7.9 Hz), 8.51 (1H, d, J=5.9 Hz), 9.27 (1H, s).
EXAMPLE 17
UV.sub.max nm (H.sub.2 O): 267, 272, 300;
IR.sub.max cm.sup.-1 (KBr): 3410, 1746, 1638, 1586, 1383;
NMR .delta. (D.sub.2 O): 1.22 (3H, d, J=7.3 Hz), 1.30 (3H, d, J=6.3 Hz), 1.70 (1H, m), 2.85 (1H, m), 3.12 (1H, dd, J=3.6 & 12.2 Hz), 3.25 (1H, dd, J=5.3 & 12.2 Hz), 3.43 (2H, m), 3.70-3.90 (5H, m), 4.24 (2H, m), 4.39 (1H, m), 4.40 (3H, s), 4.80 (1H, d, J=16.5 Hz), 4.92 (1H, d, J=16.5 Hz), 8.03 (1H, dd, J=6.5 & 7.9 Hz), 8.43 (1H, d, J=7.9 Hz), 8.71 (2H, m).
EXAMPLE 18
UV.sub.max nm (H.sub.2 O): 297;
IR.sub.max cm.sup.-1 (KBr): 3400, 1748, 1639, 1586, 1453, 1372, 1257, 1088;
NMR .delta. (D.sub.2): 1.17 (3H, d, J=7.3 Hz), 1.24 (3H, d, J=6.3 Hz), 1.49 (1H, m), 2.61 (1H, m), 2.90 (2H, d, J=6.9 Hz), 3.08 (1H, dd, J=3.3 & 12.5 Hz), 3.21 (6H, s), 3.30-3.60 (7H, m), 3.73 (1H, t, J=7.3 Hz), 3.90 (5H, m), 4.20 (2H, m).
EXAMPLE 19
UV.sub.max nm (H.sub.2 O): 300;
IR.sub.max cm.sup.-1 (KBr): 3410, 1744, 1650, 1588, 1485, 1381, 1250, 1206, 1092;
NMR .delta. (D.sub.2 O): 1.22 (3H, d, J=7.0 Hz), 1.31 (3H, d, J=6.3 Hz), 1.70 (6H, m), 2.00 (2H, m), 2.74 (1H, m), 3.04 (1H, dd, J=5.0 & 12.2 Hz), 3.08 (3H, s), 3.15 (3H, s), 3.25-3.60 (9H, m), 3.81 (1H, m), 3.97 (1H, dd, J=6.4 & 9.5 Hz), 4.24 (2H, m).
EXAMPLE 20
UV.sub.max nm (H.sub.2 O): 297;
IR.sub.max cm.sup.-1 (KBr): , 1742, 1635, 1582, 1479, 1363, 1241, 1201, 1082;
NMR .delta. (D.sub.2 O): 1.28 (3H, d, J=7.3 Hz), 1.30 (3H, d, J=6.3 Hz), 1.70 (6H, m), 1.97 (2H, m), 2.72 (1H, m), 2.79 (1H, m), 3.08 (3H, s), 3.15 (3H, s), 3.23-3.70 (10H, m), 4.02 (2H, m), 4.31 (2H, m).
EXAMPLE 21
UV.sub.max nm (H.sub.2 O): 295;
IR.sub.max cm.sup.-1 (KBr): 3440, 1758, 1644, 1597, 1492, 1379,
NMR .delta. (D.sub.2 O): 1.21 (3H, d, J=7.0 Hz), 1.29 (3H, d, J=6.6 Hz), 1.80 (7H, m), 2.86 (1H, m), 3.02 (1H, m), 3.11 (9H, s), 3.18 (2H, m), 3.39 (5H, m), 3.60 (1H, m), 3.80 (1H, m), 3.99 (1H, m), 4.24 (2H, m), 4.34 (1H, m), 4.64 (1H, m).
EXAMPLE 22
UV.sub.max nm (H.sub.2 O): 297;
IR.sub.max cm.sup.-1 (KBr): 3400, 1743, 1637, 1588, 1380;
NMR .delta. (D.sub.2 O): 1.22 (3H, d, J=6.9 Hz), 1.30 (3H, d, J=6.3 Hz), 1.68 (1H, m), 3.10 (1H, dd, J=4.0 & 12.5 Hz), 2.76 (1H, m), 3.24 (1H, dd, J=5.4 & 12.5 Hz), 3.31 (3H, s), 3.43 (2H, m), 3.68 (8H, m) 3.86 (1H, m), 3.97 (2H, m), 4.12 (2H, m ), 4.25 (3H, m).
EXAMPLE 23 ##STR179##
A solution of (4R,5S,6S,8R,2'S,4'S)-p-nitrobenzyl-3-[1-(p-nitrobenzyloxycarbonyl -2-((2-(2-pyridyl)-ethyl) methylaminocarbonyl)pyrrolidin-4-ylthio]-4-methyl-6-(1-hydroxyethyl)-1-azabicyclo [3.2.0]hept-2-en-7-one-2-carboxylate (208 mg) in dry dichloromethane (3.0 ml) was stirred under ice-cooling, and methyl trifluoromethanesulfonate (64 mg) was dropwise added thereto, followed by stirring at the same temperature for 1 hour. The reaction mixture was combined with tetrahydrofuran (10.0 ml), 0.1 M phosphate buffer (pH, 7.0; 10.0 ml) and 10 % palladium-carbon (350 mg), and catalytic reduction was performed at room temperature for 1 hour under atmospheric pressure of hydrogen. The reaction mixture was subjected to post-treatment in the same manner as in Example 1. The filtrate was purified by polymer chromatography (CHP-20P) using 2% aqueous tetrahydrofuran as an eluent to give (4R,5S,6S,8R,2'S,4'S)-3-[2-((2-(1-methylpyridinium-2-yl)-ethyl) methylaminocarbonyl)pyrrolidin-4-ylthio]-4-methyl-6-(1-hydroxyethyl) -1-azabicyclo[3.2.0]hept-2-en-7-one-2-carboxylate.
UV.sub.max nm (H.sub.2 O): 269, 274, 298;
IR.sub.max cm (KBr): 3450, 1737, 1625, 1580, 1372, 1251, 1153;
NMR .delta. (D.sub.2 O): 1.20 (3H, d, J=7.2 Hz , 1.28 (3H, d, J=6.3 Hz), 1.60 (1H, m), 3.00 (1H, m), 3.16 (3H, s), 3.26 (1H, dd, J 3.3 & 12.2 Hz), 3.30-3.60 (5H, m), 3.65 (1H, m), 3.94 (1H, m), 4.13 (1H, m), 4.23 (2H, m), 4.40 (3H, s), 4.52 (1H, dd, J =7.2 & 9.9 Hz), 7.90 (1H, d, J=7.9 Hz), 7.92 (1H, t, J=6.0 Hz), 8.45 (1H, t, J=7.9 Hz), 8.76 (1H, d, J=6.0 Hz).
EXAMPLES 24 TO 31
In the same manner as in Example 23, the compounds as shown in Table 3 were obtained. The physical properties of the compounds as obtained follow the Table.
TABLE 3______________________________________ ##STR180##Example No. k Q.sup..sym. R.sup.4______________________________________24 0 ##STR181## Me25 0 ##STR182## Me26 0 ##STR183## Me27 0 ##STR184## Me28 0 ##STR185## Me29 0 ##STR186## Me30 0 ##STR187## Me31 0 ##STR188## Me______________________________________
Physical Properties
EXAMPLE 24
UV.sub.max nm (H.sub.2 O): 267, 274 (sh), 298;
IR.sub.max cm.sup.-1 (KBr): 3430, 1743, 1679, 1577, 1380, 1260, 1158;
NMR .delta. (D.sub.2 O): 1.21 (3H, d, J=7.3 Hz), 1.28 (3H, d, J=6.3 Hz), 2.20 (1H, m), 3.03 (1H, m), 3.03-3.60 (3H, m), 3.76 (1H, dd, J=6.3 & 12.2 Hz), 4.07 (1H, m), 4.23 (2H, m), 4.34 (3H, s), 4.64 (1H, dd, J=6.6 & 8.9 Hz), 4.89 (1H, d, J=18.2 Hz), 4.90 (1H, d, J=18.2 Hz), 7.95 (1H, t, J=7.0 Hz) 7.96 (1H, d, J=8.0 Hz), 8.52 (1H, t, J=8.0 Hz), 8.79 (1H, d, J=6.3 Hz).
EXAMPLE 25
UV.sub.max nm (H.sub.2 O): 268, 273 (sh), 297;
IR.sub.max cm.sup.-1 (KBr): 3440, 1750, 1672, 1630, 1580, 1379, 1270;
NMR .delta. (D.sub.2): 1.19 (3H, d, J=7.3 Hz , 1.28 (3H, d, J=6.3 Hz), 1.88 (1H, m), 2.89 (1H, m), 3.30-3.50 (5H, m), 3.70 (2H, m), 3.85 (1H, dd, J=6.9 & 14.2 Hz), 4.00 (1H, m), 4.24 (2H, m), 4.36 (3H, s), 4.41 (1H, dd, J=6.6 & 9.6 Hz), 7.90 (2H, m), 8.46 (1H, t, J=6.6 Hz), 8.76 (1H, d, J =6.1 Hz).
EXAMPLE 26
UV.sub.max nm (H.sub.2 O): 267, 273 (sh), 296;
IR.sub.max cm.sup.-1 (KBr): 3450, 1745, 1640, 1584, 1380, 1255, 1159;
NMR .delta. (D.sub.2 O): 1.21 (3H, d, J=6.9 Hz , 1.30 (3H, d, J=6.3 Hz), 2.03 (1H, m), 2.14 (2H, m), 3.20-3.30 (3H, m), 3.19 (3H, s), 3.30-3.70 (4H, m), 3.80 (2H, m), 4.10 (1H, m), 4.28 (2H, m), 4.30 (3H, s), 7.86 (1H, t, J=6.6 Hz), 7.98 (1H, d, J=8.3 Hz), 8.45 (1H, t, J=7.6 Hz), 8.72 (1H, d, J=5.6 Hz).
EXAMPLE 27
UV.sub.max nm (H.sub.2 O): 296, 270 (sh), 265;
IR.sub.max cm.sup.-1 (KBr): 1578, 1441, 1378, 1267, 1246, 1157;
NMR .delta. (D.sub.2 O): 1.21 (3H, d, J=7.2 Hz), 1.30 (3H, d, J=6.6 Hz), 1.78 (1H, m), 2.75 (3H, s), 2.90 (1H, m), 3.09 (2H, m), 3.30-3.60 (5H, m), 3.68 (1H, dd, J=6.0 & 12.2 Hz), 3.79 (1H, m), 4.01 (1H, m), 4.21 (3H, s), 4.23 (2H, m), 4.42 (1H, dd, J=6.0 & 9.6 Hz), 7.87 (1H, d, J=7.9 Hz), 8.30 (1H, dd, J=1.3 & 7.9 Hz), 8.68 (1H, d, J=1.3 Hz).
EXAMPLE 28
UV.sub.max nm (H.sub.2 O): 278, 296;
IR.sub.max cm.sup.-1 (KBr): 3430, 1753, 1677, 1592, 1450, 1382, 1278, 1254, 1224, 1156;
NMR .delta. (D.sub.2 O): 1.22 (3H, d, J=7.3 Hz), 1.30 (3H, d, J=6.6 Hz), 1.81 (1H, m), 2.83 (3H, s), 2.89 (1H, m), 3.17 (2H, m), 3.38 (2H, m), 3.50 (2H, m), 3.72 (2H, m), 4.00 (1H, m), 4.24 (2H, m), 4.28 (3H, s), 4.39 (1H, dd, J=6.6 & 9.3 Hz), 7.80 (1H, t, J=7.2 Hz), 8.29 (1H, d, J=7.6 Hz), 8.63 (1H, d, J=5.3 Hz).
EXAMPLE 29
UV.sub.max nm (H.sub.2 O): 300, 264, 257, 228;
IR.sub.max cm.sup.-1 (KBr): 3400 (br), 1746, 1640, 1582, 1381, 1266;
NMR .delta. (D.sub.2): 1.21 (3H, d, J=7.3 Hz), 1.30 (3H, d, J=6.3 Hz), 1.56 (1H, m), 2.73 (1H, m), 2.97 (1H, dd, J=4.6 & 12.2 Hz), 3.20 (2H, m), 3.40 (3H, m), 3.75 (1H, m), 4.00 (1H, dd, J=6.0 & 9.6 Hz) 4.24 (3H, m), 4.34 (3H, s), 7.95 (2H, d, J=6.6 Hz), 8.69 (2H, d, J=6.6 Hz).
EXAMPLE 30
UV.sub.max nm (H.sub.2 O): 294;
IR.sub.max cm.sup.-1 (KBr): 3400, 1749, 1640, 1588, 1382, 1252;
NMR .delta. (D.sub.2): 1.22 (3H, d, J=7.3 Hz), 1.31 (3H, d, J=6.6 Hz), 1.76 (1H, m), 2.10 (2H, m), 2.81 (1H, m), 3.20 (2H, m), 3.24 (3H, s), 3.43 (1H, m), 3.61 (7H, m), 3.73 (2H, m), 3.92 (3H, m), 4.27 (5H, m).
EXAMPLE 31
UV.sub.max nm (H.sub.2 O): 292;
IR.sub.max cm.sup.-1 (KBr): 3430, 1752, 1640, 1592, 1390, 1260;
NMR .delta. (D.sub.2 O): 1.24 (3H, d, J=7.3 Hz), 1.32 (3H, d, J=6.3 Hz), 1.69 (1H, m), 2.80 (1H, m), 3.12 (1H, dd, J=3.3 & 12.9 Hz), 3.24 (1H, dd, J=5.0 & 12.9 Hz), 3.31 (3H, s), 3.43 (3H, s), 3.44 (2H, m), 3.52-4.10 (13H, m), 4.29 (3H, m).
EXAMPLE 32 ##STR189##
To a solution of (4R,5S,6S,8R,2'S,4'S)-p-nitrobenzyl-3-[1-p-nitrobenzyloxycarbonyl -2-(4-methylpiperazin-1-ylcarbonyl)pyrrolidin-4-ylthio]-4-methyl-6-(1-hydroxyethyl)-1-azabicyclo [3.2.0]hept-2-en-7-one-2-carboxylate (200 mg) in acetone (3.0 ml), iodoacetamide (200 mg) was added at room temperature, and the resultant mixture was stirred at the same temperature for 20 hours and concentrated under reduced pressure. The residue was combined with ethyl acetate (20 ml), stirred and allowed to stand. After removal of the supernatant by decantation, the insoluble material was dissolved in tetrahydrofuran (10 ml) and 0.1 M -phosphate buffer (pH, 7.0; 10 ml), followed by addition of palladium-carbon (430 mg). Catalytic reduction was performed at room temperature for 2 hours under ordinary or autogenic pressure. The reaction mixture was subjected to post-treatment in the same manner as in Example 1. The filtrate was purified by polymer chromatography (CHP-20P) using 1 % aqueous tetrahydrofuran as an eluent to give (4R,5S,6S,8R,2'S,4'S)-3-[2-(4-aminocarbonylmethyl-4-methylpiperazinium -1-ylcarbonyl)pyrrolidin-4-ylthio]-4-ylthio]-4-methyl-6 -(1-hydroxyethyl)-1-azabicyclo [3.2.0]hept-2-en-7-one-2-carboxylate.
UV.sub.max nm (H.sub.2 O): 297;
IR.sub.max cm.sup.-1 (KBr): 3400, 1740, 1692, 1652, 1441, 1400, 1253, 1177, 1136;
NMR .delta. (D.sub.2 O): 1.23 (3H, d, J=7.3 Hz), 1.29 (3H, d, J=6.3 Hz), 2.05 (1H, m), 3.10 (1H, m), 3.45 (3H, s , 3.48 (3H, m), 3.70-4.40 (13H, m).
EXAMPLES 33 TO 37
In the same manner as in Example 32, the compounds as shown in Table 4 were obtained. The physical properties of the compounds obtained follow the Table.
TABLE 4______________________________________ ##STR190##Example No. k Q.sup..sym. R.sup.4______________________________________33 0 ##STR191## CH.sub.2 CONH.sub.234 0 ##STR192## CH.sub.2 CONH.sub.235 0 ##STR193## CH.sub.2 CONH.sub.236 1 ##STR194## CH.sub.2 CONH.sub.237 0 ##STR195## CH.sub.2 CONH.sub.2______________________________________
Physical Properties
EXAMPLE 33
UV.sub.max nm (H.sub.2 O): 273, 294;
IR.sub.max cm.sup.-1 (KBr): 3380, 1742, 1677, 1580, 1434, 1380, 1275, 1242;
NMR .delta. (D.sub.2 O): 1.20 (3H, d, J=7.3 Hz), 1.29 (3H, d, J=6.3 Hz), 1.77 (1H, m), 2.80 (1H, m), 3.14 (2H, m), 3.33 (2H, m), 3.45 (1H, dd, J=2.6 & 6.3 Hz), 3.50-3.75 (2H, m), 3.78 (1H, dd, J=6.3 & 13.5 Hz), 4.20-4.40 (3H, m), 5.50 (2H, s), 8.09 (1H, dd, J=6.3 & 8.3 Hz), 8.58 (1H, d, J=8.3 Hz), 8.70 (1H, d, J=6.3 Hz), 8.78 (1H, s).
EXAMPLE 34
UV.sub.max nm (H.sub.2 O): 271, 294;
IR.sub.max cm.sup.-1 (KBr): 3390, 1751, 1693, 1638, 1592, 1378;
NMR .delta. (D.sub.2 O): 1.20 (3H, d, J=7.3 Hz), 1.28 (3H, J=6.3 Hz), 1.54 (1H, m), 3.02 (1H, m), 3.03 (3H, s), 3.22 (2H, m), 3.36 (2H, m), 3.46 (1H, dd, J=2.6 & 5.9 Hz), 3.61 (2H, m), 3.97 (1H, m), 4.12 (1H, m), 4.24 (2H, m), 4.74 (1H, m), 5.50 (2H, s), 8.08 (1H, dd, J=6.3 & 8.2 Hz),8.60 (1H, d, J=8.2 Hz), 8.71 (1H, d, J=6.3 Hz), 8.79 (1H, s).
EXAMPLE 35
UV.sub.max nm (H.sub.2 O): 259, 265 (sh), 297;
IR.sub.max cm.sup.-1 (KBr): 3400, 1748, 1682, 1639, 1545, 1388, 1279;
NMR .delta. (D.sub.2 O): 1.23 (3H, d, J=7.3 Hz), 1.29 (3H, d, J=6.3 Hz), 2.28 (1H, m), 3.05 (1H, m), 3.35-3.60 (3H, m), 3.84 (1H, dd, J=7.3 & 12.2 Hz), 4.10-4.45 (3H, m), 5.51 (2H, s), 8.02 (2H, d, J=7.0 Hz) 8.75 (2H, d, J =7.0 Hz).
EXAMPLE 36
UV.sub.max nm (H.sub.2 O): 297;
IR.sub.max cm.sup.-1 (KBr): 3380, 1747, 1687, 1636, 1586, 1444, 1378, 1244, 1089;
NMR .delta. (D.sub.2 O): 1.17 (3H, d, J=7.3 Hz), 1.24 (3H, d, J=6.3 Hz), 1.54 (1H, m), 2.63 (1H, m), 2.93 (2H, br.d, J=6.6 Hz), 3.12 (1H, br.d, J=12.5 Hz), 3.37 (3H, s), 4.23 (4H, m).
EXAMPLE 37
UV.sub.max nm (H.sub.2 O): 299, 263 (sh), 256, 226 (sh);
IR.sub.max cm.sup.-1 (KBr): 3400, 1746, 1691, 1637, 1584, 1387;
NMR .delta. (D.sub.2 O): 1.22 (3H, d, J=7.3 Hz), 1.31 (3H, d, J=6.3 Hz), 1.62 (1H, m), 2.13 (2H, m), 2.86 (1H, m), 3.03 (2H, m), 3.08 (3H, s), 3.22 (2H, m), 3.45 (3H, m), 3.66 (1H, m), 3.87 (1H, m), 4.28 (3H, m), 5.52 (2H, s), 8.00 (2H, d, J=6.9 Hz), 8.68 (2H, d, J=6.9 Hz).
EXAMPLES 38 TO 47
In the same manner as in Example 32 but using different alkylating agents (Y) in place of iodoacetamide, the compounds as shown in Table 5 were obtained. The physical properties of the compounds obtained follow the Table.
TABLE 5__________________________________________________________________________ ##STR196##Example No. Y k Q.sup..sym. R.sup.4__________________________________________________________________________38 BrCH.sub.2 CONHMe 0 ##STR197## CH.sub.2 CONHMe39 ##STR198## 0 ##STR199## ##STR200##40 ##STR201## 0 ##STR202## ##STR203##41 BrCH.sub.2 COOPNB 0 ##STR204## CH.sub.2 COOH42 ICH.sub.2 COOH 0 ##STR205## CH.sub.2 COOH43 PhCH.sub.2 Br 0 ##STR206## CH.sub.2 Ph44 BrCH.sub.2 COMe 0 ##STR207## CH.sub.2 COMe45 ICH.sub.2 CH.sub.2 OH 0 ##STR208## CH.sub.2 CH.sub.2 OH46 BrCH.sub.2 COMe 0 ##STR209## CH.sub.2 COMe47 BrCH.sub.2 COOPNB 0 ##STR210## CH.sub.2 COOH__________________________________________________________________________
Physical Property
EXAMPLE 38
UV.sub.max nm (H.sub.2 O): 299;
IR.sub.max cm.sup.-1 (KBr): 3410, 1736, 1638, 1362;
NMR .delta. (D.sub.2 O): 1.19 3H, d, J=7.3 Hz), 1.26 (3H, d, J=6.3 Hz), 2.77 (3H, s), 3.15 (1H, dd, J=3.3 & 12.2 Hz), 3.28 (1H, dd, J=4.4 & 12.2 Hz), 3.38 (3H, s).
EXAMPLE 39
UV.sub.max nm (H.sub.2 O): 296;
IR.sub.max cm.sup.-1 (KBr): 3400, 1746, 1644, 1589, 1378, 1253;
NMR .delta. (D.sub.2 O): 1.22 (3H, d, J=7.3 Hz), 1.30 (3H, d, J=6.3 Hz), 1.71 (1H, m), 2.78 (1H, m), 2.98 (3H, s), 3.05 (3H, s), 3.13 (1H, dd, J=3.6 & 12.2 Hz), 3.25 (1H, dd, J=4.0 & 12.2 Hz), 3.46 (3H, s), 4.53 (2H, br. s).
EXAMPLE 40
UV.sub.max nm (H.sub.2 O): 297;
IR.sub.max cm.sup.-1 (KBr): 3430, 1745, 1633, 1583, 1480, 1369, 1242, 1087;
NMR .delta. (D.sub.2 O): 1.22 (3H, d, J=7.3 Hz), 1.31 (3H, d, J=6.6 Hz), 1.93 (1H, m), 2.96 (3H, s), 3.11 (3H, s), 3.26 (3H, s).
EXAMPLE 41
UV.sub.max nm (H.sub.2 O): 298;
IR.sub.max cm.sup.-1 (KBr): 3420, 1745, 1627, 1592, 1448, 1382, 1254;
NMR .delta. (D.sub.2 O): 1.23 (3H, d, J=7.3 Hz), 1.30 (3H, d, J=6.3 Hz), 1.82 (1H, m), 2.92 (1H, m), 3.42 (3H, s).
EXAMPLE 42
UV.sub.max nm (H.sub.2 O): 258, 266 (sh), 292;
NMR .delta. (D.sub.2 O): 1.22 (3H, d, J=7.3 Hz), 1.29 (3H, d, J=6.3 Hz), 2.21 (1H, m), 3.01 (1H, m), 3.38 (1H, m), 3.49 (3H, m) 3.79 (1H, dd, J=6.6 & 12.2 Hz), 4.10 (1H, m), 4.26 (2H, m), 4.66 (2H, m), 5.21 (2H, s), 7.97 (2H, d, J=6.9 Hz), 8.71 (2H, d, J=6.9 Hz).
EXAMPLE 43
UV.sub.max nm (H.sub.2 O): 261, 266, 298;
IR.sub.max cm.sup.-1 (KBr): 3400, 1753, 1672, 1596, 1367;
NMR .delta. (D.sub.2 O): 1.15 (3H, d, J=7.3 Hz), 1.30 (3H, d, J=6.6 Hz), 1.85 (1H, m), 2.72 (1H, m), 3.10-4.00 (5H, m), 4.25 (3H, m), 4.59 (1H, d, J=15.9 Hz), 4.68 (1H, d, J 15.9 Hz), 5.84 (2H, s), 7.60 (5H, m), 8.07 (1H, t, J=7.9 Hz), 8.51 (1H, d, J=8.5 Hz), 8.81 (1H, s), 8.87 (1H, d, J=5.9 Hz).
EXAMPLE 44
UV.sub.max nm (H.sub.2 O): 299, 264 (sh), 257, 230;
IR.sub.max cm.sup.-1 (KBr): 3410 (br), 1745, 1638, 1593, 1378;
NMR .delta. (D.sub.2 O): 1.22 (3H, d, J=7.6 Hz), 1.31 (3H, d, J=6.3 Hz), 1.66 (1H, m), 2.16 (2H, m), 2.44 (3H, s), 2.90 (1H, m), 3.07 (3H, s), 3.68 (1H, m), 3.87 (1H, m), 4.27 (4H, m), 8.00 (2H, d, J=6.9 Hz), 8.53 (2H, d, J =6.9 Hz).
EXAMPLE 45
UV.sub.max nm (D.sub.2 O): 296, 261, 255, 223;
IR.sub.max cm.sup.-1 (KBr): 3425, 1751, 1639, 1592, 1304;
NMR .delta. (D.sub.2 O): 1.23 (3H, d, J=7.3 Hz), 1.32 (3H, d, J=6.3 Hz), 1.62 (1H, m), 2.12 (2H, m), 2.86 (1H, m), 2.97 (2H, m), 3.09 (3H, s), 3.20 (2H, m), 3.44 (4H, m), 3.62 (1H, m), 3.90 (1H, m), 4.08 (2H, m), 4.26 (4H, m), 7.97 (2H, d, J=6.6 Hz), 8.72 (2H, d, J=6.6 Hz).
EXAMPLE 46
UV.sub.max nm (H.sub.2 O): 296;
IR.sub.max cm.sup.1 (KBr): 3400(br), 1743, 1724, 1630, 1593,
NMR .delta. (D.sub.2 O): 1.20 (3H, d, J=7.3 Hz), 1.28 (3H, d, J=6.3 Hz), 1.70 (1H, m), 2.26 (3H, s), 2.77 (1H, m), 3.07 (1H, dd, J=12.5 & 3.6 Hz), 3.19 (1H, dd, J=12.5 & 6.6 Hz), 3.39 (3H, s), 3.40 (1H, m), 3.60-4.10 (11H, m), 4.23 (4H, m).
EXAMPLE 47
UV.sub.max nm (H.sub.2 O): 297;
IR.sub.max cm.sup.1 (KBr): 3400 (br), 1742, 1624, 1590, 1382;
NMR .delta. (D.sub.2 O): 1.24 (3H, d, J=7.3 Hz), 1.31 (3H, d, J=6.3 Hz), 1.85 (1H, m), 2.92 (1H, m), 3.28 (1H, m), 3.47 (5H, m), 3.80-4.37 (15H, m), 4.52 (1H, m).
REFERENCE EXAMPLE 1 ##STR211##
To a solution of cis-1-(p-nitrobenzyloxycarbonyl)-4-acetylthio-L-proline (552 mg; 1.5 mmol) and triethylamine (303 mg; 3.0 mmol) in dry tetrahydrofuran (6 ml), a solution of ethyl chloroformate (184 mg; 1.7 mmol) in dry tetrahydrofuran (1.5 ml) was dropwise added under ice-cooling, followed by stirring for 0.5 hour. To the reaction mixture, 4-(3-aminopropyl)pyridine (306 mg; 2.25 mmol) was added, and the resultant mixture was stirred for 1 hour. The reaction mixture was diluted with ethyl acetate, washed with aqueous sodium hydrogen carbonate solution and aqueous sodium chloride solution in order and dried over anhydrous magensium sulfate-anhydrous sodium carbonate. After removal of the solvent, the residue was purified by silica gel chromatography to give (2S,4S)-1-(p-nitrobenzyloxycarbonyl)-2-[3-(4-pyridylpropyl) aminocarbonyl]-4-acetylthiopyrrolidine.
IR.sub.max cm.sup.-1 (neat): 3300 (br), 1693, 1602, 1520, 1400, 1340, 1107;
NMR .delta. (CDCl.sub.3): 2.32 (3H, s), 2.4-2.8 (4H, m), 3.2-3.5 (3H, m), 3.9-4.1 (1H, m), 4.1-4.2 (1H, m), 4.3 4.4 (1H, m), 5.25 (2H, s), 6.66 (1H, br.s), 7.10 (2H, d, J=5.0 Hz), 7.49 (2H, d, J=7.6 Hz), 8.20 (2H, d, J =8.3 Hz), 8.49 (2H, m).
REFERENCE EXAMPLES 2 TO 16
In the same manner as in Reference Example 1, the thioacetates as shown in Table 6 were obtained from the corresponding amines. The physical properties of the compounds obtained follow the Table.
TABLE 6______________________________________ ##STR212##ReferenceExample No. (CH.sub.2).sub.kCOQ______________________________________ ##STR213##3 ##STR214##4 ##STR215##5 ##STR216##6 ##STR217##7 ##STR218##8 ##STR219##9 ##STR220##10 ##STR221##11 ##STR222##12 ##STR223##13 ##STR224##14 ##STR225##15 ##STR226##16 ##STR227##______________________________________
Physical Properties
REFERENCE EXAMPLE 2
IR.sub.max cm.sup.-1 (neat): 3310, 1700, 1592, 1523, 1402, 1340, 1290, 1211, 1182, 1162, 1118;
NMR .delta. (CDCl.sub.3): 2.34 (3H, s), 2.54 (2H, m), 3.45 (1H, m), 4.03 (1H, m), 4.16 (1H, dd, J=10.9 & 7.0 Hz), 4.54 (1H, m), 5.31 (2H, m), 7.39 (2H, d, J =6.0 Hz), 7.52 (2H, m), 8.22 (2H, m), 8.41 (2H, m), 9.58 (1H, br. s).
REFERENCE EXAMPLE 3
IR.sub.max cm.sup.-1 (KBr): 1706, 1695, 1663, 1598, 1513, 1432, 1415, 1403, 1343, 1177, 1122;
NMR .delta. (CDCl.sub.3): 2.32 (3H, s), 2.55 (2H, m), 3.42 (1H, dd, J=11.6 & 6.0 Hz), 4.01 (1H, quint., J=6.9 Hz), 4.12 (1H, dd, J=11.2 & 6.6 Hz), 4.46 (3H, m), 5.23 (2H, s), 7.19 (2H, m), 7.49 (2H, m), 8.21 (2H, d, J=8.6 Hz), 8.52 (2H, m).
REFERENCE EXAMPLE 4
NMR .delta. (CDCl.sub.3): 2.17 (3H, s), 2.5-2.9 (2H, m), 3.45 (1H, m), 4.03 (1H, m), 4.16 (1H, dd, J=11.2 & 6.9 Hz), 4.56 (1H, m), 5.31 (2H, m), 7.22 (1H, m), 7.52 (2H, m), 8.05 (1H, m), 8.22 (2H, m), 8.32 (1H, m), 8.56 (1H, br. s).
REFERENCE EXAMPLE 5
NMR .delta. (CDCl.sub.3): 2.32 (3H, s), 2.4-2.7 (2H, m), 3.40 (1H, dd, J=11.2 & 5.9 Hz), 3.99 (1H, m), 4.11 (1H, dd, J=11.2 & 6.9 Hz), 4.40 (3H, m), 5.21 (2H, br. s), 7.25 (1H, m), 7.48 (2H, m), 7.61 (1H, m), 8.19 (2H, m), 8.51 (2H, m).
REFERENCE EXAMPLE 6
IR.sub.max cm.sup.-1 (neat): 3270, 1700 (sh), 1660, 1508, 1395, 1333, 1100;
NMR .delta. (CDCl.sub.3): 2.33 (3H, s), 2.70-3.00 (2H, m), 3.20-3.70 (3H, m), 3.70-4.40 (3H, m), 5.21 (2H, m), 6.83 (1H, br. s), 7.10-7.40 (1H, m), 7.4-7.7 (3H, m), 8.22 (2H, d, J=8.3 Hz), 8.46 (2H, m).
REFERENCE EXAMPLE 7
IR.sub.max cm.sup.-1 (neat): 3280, 2920, 1700 (sh), 1660 (br), 1510, 1390, 1330, 1100;
NMR .delta. (CDCl.sub.3): 1.75-2.0 (2H, m), 2.32 (3H, s), 2.4-2.8 (3H, m), 3.15-3.6 (3H, m), 3.99 (1H, t, J=6.6 Hz), 4.05 -4.25 (1H, m), 4.3-4.5 (1H, m), 5.25 (1H, s), 6.66 (1H, br. s), 7.4 -7.7 (3H, m), 8.20 (2H, d, J=7.9 Hz), 8.45 (2H, d, J=4.6 Hz).
REFERENCE EXAMPLE 8
IR.sub.max cm.sup.-1 (neat): 3300 (br), 1718, 1707 (sh), 1690, 1520, 1422, 1400, 1342, 1112;
NMR .delta. (CDCl.sub.3): 1.35-1.8 (4H, m), 2.31 (3H, s), 2.4-2.8 (4H, m), 3.2-3.5 (3H, m), 3.90-4.05 (1H, m), 4.05-4.2 (1H, m), 4.34 (1H, dd, J=5.6 & 8.3 Hz), 5.23 (2H, s), 6.57 (1H, br. s), 7.1-7.3 (1H, m), 7.3-7.7 (3H, m), 8.22 (2H, d, J=8.3 Hz), 8.44 (2H, m).
REFERENCE EXAMPLE 9
IR.sub.max cm.sup.-1 (CHCl.sub.3): 3400 (br), 1690, 1685 (sh), 1655, 1521, 1422, 1345, 1200, 1120;
NMR .delta. (CDCl.sub.3): 2.35 (3H, s), 3.2-3.6 (3H, m), 3.6-4.8 (8H, m), 4.8-5.2 (2H, m), 5.24 (2H, s), 7.2-7.5 (1H, m), 7.51 (2H, d, J=8.9 Hz), 7.6-7.8 (1H, m), 8.23 (2H, d, J=8.9 Hz), 8.4-8.7 (2H, m).
REFERENCE EXAMPLE 10
IR.sub.max cm.sup.-1 (KBr): 3310, 1767, 1700, 1653, 1518, 1435, 1344, 1260, 1240, 1172, 1098;
NMR .delta. (CDCl.sub.3): 2.28 (1H, m), 2.30 (3H, s), 2.75 (1H, m), 3.44 (1H, m), 3.99 (1H, m), 4.21 (1H, m), 4.53 (3H, m), 5.12 (1H, m), 5.24 (2H, br. s), 7.2 -7.7 (5H, m), 8.0 (1H, m), 8.23 (1H, m), 8.51 (1H, m).
REFERENCE EXAMPLE 11
NMR .delta. (CDCl.sub.3): 2.20 (1H, m), 2.28 (3H, s), 2.98 (2H, m), 3.37 (1H, m), 3.64 (2H, m), 4.03 (1H, m), 5.23 (2H, m), 7.3 -7.7 (4H, m), 8.03 (2H, m), 8.19 (1H, m), 8.42 (1H, m).
REFERENCE EXAMPLE 12
IR.sub.max cm.sup.-1 (neat): 3400, 1684, 1653, 1421, 1396, 1337, 1104;
NMR .delta. (CDCl.sub.3): 1.82 (1H, m), 2.3-2.4 (3H, m), 2.5-3.25 (3H, m), 2.9-3.0 (3H, m), 3.45 (2H, m), 3.5-4.1 (5H, m), 4.13 (2H, m), 4.73 (1H, m), 5.23 (2H, m), 7.1-7.7 (4H, m), 8.20 (2H, m), 8.52 (1H, m).
REFERENCE EXAMPLE 13
IR.sub.max cm.sup.-1 (neat): 3300, 1675, 1595, 1510, 1415, 1392, 1333, 1284, 1247, 1198, 1160, 1103;
NMR .delta. (CDCl.sub.3): 2.33 (3H, s), 2.35 (1H, m), 2.51 (3H, s), 2,78 (2H, m), 3.34 (1H, dd, J=11.2 & 6.3 Hz), 3.50 (2H, m), 3.95 (1H, m), 4.10 (1H, dd, J=8.6 & 6.9Hz), 4.31 (1H, dd, J=8.6 & 5.6 Hz), 5.17 (1H, d, J=13.5 Hz), 5.24 (1H, d, J=13.5 Hz), 6.72 (1H, br. s), 7.09 (1H, d, J=7.9 Hz), 7.3-7.7 (3H, m), 8,22 (2H, d, J=8.2 Hz), 8.31 (1H, s).
REFERENCE EXAMPLE 14
IR.sub.max cm.sup.-1 (KBr): 3320, 1705, 1656, 1518, 1399, 1340, 1160, 1115;
NMR .delta. (CDCl.sub.3): 1.65 (1H, m), 2.33 (3H, s),2.50 (1H, s), 2.57 (3H, s), 2.83 (2H, m), 3.34 (1H, dd, J=10.8 & 5.9 Hz), 3.50 (2H, m), 3.97 (1H, m), 4.10 (1H, dd, J=11.2 & 6.9 Hz), 4.34 (1H, dd, J=7.9 & 6.3 Hz), 5.20 (2H, m), 7.06 (1H, dd, J=3.9 & 7.6 Hz), 7.42 (1H, m), 7.50 (2H, m), 8.22 (2H, d, J=8.6 Hz), 8.37 (1H, d, J=3.9 Hz).
REFERENCE EXAMPLE 15
IR.sub.max cm.sup.-1 (KBr): 3320, 1700, 1665, 1605, 1550, 1518, 1428, 1402, 1342, 1178, 1118;
NMR .delta. (CDCl.sub.3): 1.15-1.95 (7H, m), 2.24 (3H,s), 2.33 (3H, s), 2.4-2.7 (1H, m), 2.7 -3.0 (2H, m), 3.0-3.3 (2H, m), 3.3-3.5 (1H, m), 3.9-4.5 (4H, m), 5.24 (2H, s), 6.65 (1H, br. s), 7.51 (2H, d, J=8.4 Hz), 8.23 (2H, d, J=8.4 Hz).
REFERENCE EXAMPLE 16
IR.sub.max cm.sup.-1 (KBr): 3290, 1707, 1687, 1645, 1522, 1421, 1340;
NMR .delta. (CDCl.sub.3): 1.1-1.6 (5H, m), 1.6-2.0 (5H, m), 2.24 (3H, s), 2.33 (3H, s), 2.4 -2.6 (1H, m), 2.82 (2H, d, J=11.0 Hz), 3.2-3.6 (3H, m), 3.9-4.25 (2H, m), 4.3-4.5 (1H, m), 5.26 (2H, s), 6.51 (1H, br. s), 7.51 (2H, d, J=8.3 Hz), 8.24 (2H, d, J=8.3 Hz).
REFERENCE EXAMPLE 17 ##STR228##
To a solution of cis-1-(p-nitrobenzyloxycarbonyl)-4-acetylthio-L-proline (736 mg; 2.0 mmol) in dry methylene chloride (6 ml), a catalytic amount of dimethylformamide was added, and a solution of oxalic chloride (305 mg; 2.4 mmol) in dry methylene chloride (2 ml) was added thereto. The resultant mixture was stirred at room temperature for 1 hour. Under ice-cooling, methyl [3-(4-pyridyl)propyl]amine (300 mg; 2.0 mmol) and a solution of triethylamine (485 mg; 4.8 mmol) in dry methylene chloride (2. ml) were added thereto, followed by stirring for 15 minutes. The reaction mixture was combined with aqueous sodium hydrogen carbonate solution, and the organic phase was separated from the aqueous phase, washed with aqueous sodium chloride solution and dried over anhydrous magnesium sulfate. After removal of the solvent, the residue was purified by silica gel column chromatography to give (2S,4S)-1-(p-nitrobenzyloxycarbonyl) -2-[3-(4-pyridyl)propyl]methylaminocarbonyl-4-acetylthiopyrrolidine.
IR.sub.max cm.sup.-1 (neat): 1715 (sh), 1700, 1654, 1600, 1518, 1340, 1160, 1107;
NMR .delta. (CDCl.sub.3): 1.7-2.2 (3H, m), 2.33 (3H, s), 2.4-2.9 (3H, m), 2.9-3.1 (3H, m), 3.3-3.7 (3H, m), 3.9-4.2 (2H, m), 4.5-4.8 (1H, m), 5.21 (2H, s), 6.9 -7.2 (2H, m), 7.3-7.6 (2H, m), 8.1-8.3 (2H, m), 8.4-8.6 (2H, m).
REFERENCE EXAMPLES 18 TO 26
In the same manner as in Reference Example 17, the thioacetates as shown in Table 7 were obtained from the corresponding amines. The physical properties of the compounds obtained follow the Table.
TABLE 7______________________________________ ##STR229##ReferenceExample No. (CH.sub.2).sub.kCOQ______________________________________18 ##STR230##19 ##STR231##20 ##STR232##21 ##STR233##22 ##STR234##23 ##STR235##24 ##STR236##25 ##STR237##26 ##STR238##______________________________________
Physical Properties
REFERENCE EXAMPLE 18
IR.sub.max cm.sup.-1 (neat): 1715 (sh), 1700, 1687 (sh), 1602, 1520, 1340, 1162, 1107;
NMR .delta. (CDCl.sub.3): 1.7-2.0 (1H, m), 2.34 (3H, s), 2.5-3.1 (6H, m), 3.3-3.85 (3H, m), 3.85-4.2 (2H, m), 4.5-4.8 (1H, m), 5.22 (2H, s), 7.0-7.25 (2H, m), 7.4-7.6 (2H, m), 8.1-8.3 (2H, m), 8.45-8.65 (2H, m).
REFERENCE EXAMPLE 19
IR.sub.max cm.sup.-1 (neat): 1730 (sh), 1692 (sh), 1660, 1507, 1390, 1335, 1150, 1110;
NMR .delta. (CDCl.sub.3): 1.6-1.9 (1H, m), 2.34 (3H, s), 2.5-3.1 (6H, m), 3.3-4.3 (5H, m), 4.5-4.8 (1H, m), 5.22 (2H, s), 7.2-7.4 (1H, m), 7.4-7.7 (3H, m), 8.22 (2H, d, J=8.9 Hz), 8.47 (2H, br. s).
REFERENCE EXAMPLE 20
IR.sub.max cm.sup.-1 (neat): 2930, 1715 (sh), 1704, 1696 (sh), 1650, 1518, 1420, 1400, 1340, 1105;
NMR .delta. (CDCl.sub.3): 1.7-2.2 (3H, m), 2.33 (3H, s), 2.4-2.85 (3H, m), 2.85-3.15 (3H, m), 3.3-3.6 (2H, m), 3.85-4.2 (2H, m), 4.45-4.8 (1H, m), 5.22 (2H, s), 7.1-7.3 (1H, m), 7.3-7.6 (3H, m), 8.05-8.3 (2H, m), 8.3-8.6 (2H, m).
REFERENCE EXAMPLE 21
IR.sub.max cm.sup.-1 (neat): 2925, 1714 (sh) 1682, 1654, 1518, 1420, 1400, 1340, 1160, 1115;
NMR .delta. (CDCl.sub.3): 1.8-2.15 (2H, m), 2.33 (3H, s), 2.4-2.8 (3H, m), 2.8-3.1 (3H, m), 3.2-3.6 (3H, m), 3.9-4.2 (3H, m), 4.69 (1H, m), 5.20 (2H, m), 7.1-7.6 (4H, m), 8.1-8.3 (2H, m), 8.3-8.6 (2H, m).
REFERENCE EXAMPLE 22
IR.sub.max cm.sup.-1 (neat): 1720 (sh), 1705, 1650, 1515, 1430, 1400, 1340, 1110;
(CDCl.sub.3): 1.7-2.3 (2H, m), 2.33 (3H, s), 2.5-3.2 (7H, m), 3.2-3.7 (3H, m), 3.8-4.3 (2H, m), 5.6-5.8 (1H, m), 5.21 (2H, s), 7.0-7.3 (2H, m), 7.4-7.7 (3H, m), 8.0-8.3 (2H, m), 8.5-8.7 (1H, m).
REFERENCE EXAMPLE 23
IR.sub.max cm.sup.1 (neat) 2920, 1700 (sh), 1688, 1642, 1507, 1400, 1336, 1100;
NMR .delta. (CDCl.sub.3): 0.8-2.0 (10H, m), 2.21 (6H, s), 2.33 (3H, s), 2.5 3.2 (3H, m), 3.3-5.0 (5H, m), 5.22 (2H, s), 7.51 (2H, d, J=8.5 Hz), 8.22 (2H, d, J=8.5 Hz).
REFERENCE EXAMPLE 24
IR.sub.max cm.sup.-1 (neat): 1700, 1660, 1523, 1438, 1402, 1342, 1253, 1103;
NMR .delta. (CDCl.sub.3): 0.05 (6H, s), 0.89 (9H, s , 1.88 (1H, m), 2.33 (3H, s), 2.50 (6H, m), 3.40 (2H, m), 3.55 (2H, m), 3.72 (1H, m), 3.75 (2H, m), 4.00 (1H, m), 4.13 (2H, m), 4.72 (1H, m), 5.05-5.40 (2H, m), 7.50 (2H, m), 8.23 (2H, m).
REFERENCE EXAMPLE 25
IR.sub.max cm.sup.-1 (neat): 3450 (br), 1700, 1653, 1521, 1435, 1342, 1120;
NMR .delta. (CDCl.sub.3): 1.80-2.00 (1H, m), 2.2-2.9 (8H, m), 2.34 (3H, s), 3.3-3.9 (8H, m), 3.9-4.2 (2H, m), 4.6-4.8 (1H, m), 5.0-5.4 (2H, m), 7.51 (2H, d, J=8.9 Hz), 8.22 (2H, d, J =8.9 Hz).
REFERENCE EXAMPLE 26
NMR .delta. (CDCl.sub.3): 1.90 (1H, m), 2.34 (3H, s), 2.30-2.85 (7H, m), 3.34 (3H x 0.3, s), 3.35 (3H x 0.7, s), 3.40-3.78 (7H, m), 4.01 (1H, m), 4.14 (1H, m), 4.75 (1H, m), 5.07 (0.3H, d, J 13.9 Hz), 5.23 (2H x 0.7, s), 5.31 (0.3H, d, J=13.9 Hz), 7.50 (2H,m) 8.23 (2H, m).
REFERENCE EXAMPLE 27 ##STR239##
In the same manner as in Reference Example 1, there was obtained (2R,4S)-1-(p-nitrobenzyloxycarbonyl)-2-[2-(3-pyridylethyl) aminocarbonyl]methyl-4-acetylthiopyrrolidine from (*2R,4S)-1-(p-nitrobenzyloxycarbonyl)-2-carboxymethyl-4-acetylthiopyrrolidine (382 mg; 1.0 mmol).
IR.sub.max cm.sup.-1 (neat): 3295 (br), 1690 (sh), 1680, 1650 (sh), 1513, 1418, 1395, 1338, 1100;
NMR .delta. (CDCl.sub.3): 2.2-2.7 (2H, m) 2.34 (3H, s), 2.7-3.0 (3H, m), 3.25 (1H, dd, J=7.3 & 11.2 Hz), 3.4-3.7 (2H, m), 3.8-4.3 (3H, m), 5.19 (2H, s), 5.98 (1H, br.s), 7.15-7.35 (1H, m), 7.35-7.65 (3H, m), 8.22 (2H, d, J=8.6 Hz), 8.4-8.6 (2H, m).
REFERENCE EXAMPLES 28 AND 29
In the same manner as in Reference Example 27, the thioacetates as shown in Table 8 were obtained from the corresponding amines. The physical properties of the compounds obtained follow the Table.
TABLE 8______________________________________ ##STR240##ReferenceExample No. (CH.sub.2).sub.kCOQ______________________________________28 ##STR241##29 ##STR242##______________________________________
Physical Properties
REFERENCE EXAMPLE 28
IR.sub.max cm.sup.-1 (KBr): 3310, 1700, 1645, 1527, 1445, 1430, 1405, 1347, 1320, 1200, 1147, 1110;
NMR .delta. (CDCl.sub.3): 1.15-1.55 (4H, m), 1.55-2.0 (5H, m), 2.25 (3H, s), 2.34 (3H, s), 2.4-2.7 (1H, m), 2.7-3.0 (3H, m), 3.0-3.6 (3H, m), 3.8-4.5 (3H, m), 5.21 (2H, s), 5.86 (1H, br. s), 7.52 (2H, d, J=8.8 Hz), 8.23 (2H, d, J=8.8 Hz).
REFERENCE EXAMPLE 29
IR.sub.max cm.sup.-1 (KBr): 3290, 1690 (sh), 1687, 1630, 1520, 1424, 1342;
NMR .delta. (CDCl.sub.3): 1.1-1 (5H, m), 1.5-1.8 (3H, m), 1.87 (2H, t, J=10.7 Hz), 2.25 (3H, s), 2.34 (3H, s), 2.4-2.7 (2H, m), 2.7-3.0 (3H, m), 3.1-3.4 (3H, m), 3.8-4.3 (3H, m), 5.21 (2H, s), 5.71 (1H, br. s), 7.51 (2H, d, J=8.6 Hz), 8.23 (2H, d, J=8.6 Hz).
REFERENCE EXAMPLE 30 ##STR243##
In the same manner as in Reference Example 2, there was obtained (2R,4S)-1-(p-nitrobenzyloxycarbonyl)-2-[(4-methyl) piperazin-1-yl]carbonylmethyl-4-acetylthiopyrrolidine from (2R,4S)-1-(p-nitrobenzyloxycarbonyl)-2-carboxymethyl-4-acetylthiopyrrolidine (382 mg; 1.0 mmol).
IR.sub.max cm.sup.-1 (neat): 1687, 1634, 1515, 1420, 1398, 1340, 1285, 1100;
NMR .delta. (CDCl.sub.3): 1.8-2.0 (1H, m), 2.2-2.6 (6H, m), 2.29 3H, s), 2.34 (3H, s), 2.6 2.9 (1H, m), 3.2-3.8 (5H, m), 3.8-4.0 (1H, m), 4.0 4.5 (2H, m), 5.21 (2H, s), 7.51 (2H, d, J=8.6 Hz), 8.23 (2H, d, J=8,6 Hz).
REFERENCE EXAMPLE 31 ##STR244##
In the same manner as in Reference Example 2, there was obtained (2R,4S)-1-(p-nitrobenzyloxycarbonyl)-2-(3-pyridylamino)carbonylethyl -4-acetylthiopyrrolidine from (2R,4S)-1-(p-nitrobenzyloxycarbonyl)-2-(2-carboxy)ethyl-4-acetylthiopyrrolidine (198 mg; 0.50 mmol).
IR.sub.max cm.sup.-1 (neat): 3280 (br), 1700 (sh), 1680, 1516, 1400, 1338;
NMR .delta. (CDCl.sub.3): 1.6-2.8 (6H, m), 2.35 (3H, s), 3.28 (1H, dd, J=6.8 & 11.7 Hz), 3.92 (1H, m), 4.0-4.3 (2H, m), 5.26 (2H, s), 7.2 -7.4 (2H, m), 7.53 (2H, d, J =8.7 Hz), 8.25 (2H, d, J=8.7 Hz), 8.3-8.45 (1H, m), 8.67 (1H, d, J=2.3 Hz), 9.23 (1H, br. s).
REFERENCE EXAMPLE 32 ##STR245##
To a solution of (2S,4S)-1-(p-nitrobenzyloxycarbonyl) -2-(3-(4-pyridyl)propyl)methylaminocarbonyl)-4-acetylthiopyrrolidine (332 mg) in methanol (30 ml), 1N aqueous sodium hydroxide solution (0.70 ml) was added at room temperature, and the resultant mixture was stirred for 10 minutes. 1N Hydrochloric acid (0.70 ml) was added to the reaction mixture, and methanol was removed by distillation under reduced pressure. The residue was combined with dichloromethane, washed with water and dried over anhydrous magnesium sulfate, followed by removal of the solvent to give (2S,4S)-1-p-nitrobenzyloxycarbonyl-2-(3-(4-pyridyl)propyl) methylaminocarbonyl-4-mercaptopyrrolidine, which was subjected to the subsequent reaction without purification.
In the same manner as in Reference Example 32, the mercaptan compounds as shown in Table 9 were obtained from the corresponding thioacetates.
TABLE 9______________________________________ ##STR246##No. k Q______________________________________1 0 ##STR247##2 0 ##STR248##3 0 ##STR249##4 0 ##STR250##5 0 ##STR251##6 0 ##STR252##7 0 ##STR253##8 0 ##STR254##9 0 ##STR255##10 0 ##STR256##11 0 ##STR257##12 0 ##STR258##13 0 ##STR259##14 0 ##STR260##15 0 ##STR261##16 0 ##STR262##17 0 ##STR263##18 0 ##STR264##19 0 ##STR265##20 1 ##STR266##21 2 ##STR267##22 0 ##STR268##23 1 ##STR269##24 0 ##STR270##25 1 ##STR271##26 0 ##STR272##27 0 ##STR273##28 0 ##STR274##29 1 ##STR275##30 0 ##STR276##31 0 ##STR277##______________________________________
REFERENCE EXAMPLE 33 ##STR278##
To a solution of (4R,5R,6S,8R)-p-nitrobenzyl-4-methyl-6-(1-hydroxyethyl) -1-azabicyclo[3.2.0]hept-3,7-dione-2-carboxylate (218 mg) in dry acetonitrile (2.0 ml), diisopropylethylamine (94 mg) and diphenyl chlorophosphate (178 mg) were added under ice-cooling, and the resultant mixture was stirred at the same temperature for 2 hours. A solution of (2S,4S)-p-nitrobenzyloxycarbonyl-2-(3-(4-pyridyl) propyl)methylaminocarbonyl-4-mercaptopyrrolidine (311 mg) and diisopropylethylamine (94 mg) in dry acetonitrile (3.0 ml) was added to the reaction mixture, followed by stirring for 2 hours. The reaction mixture was diluted with ethyl acetate, washed with aqueous potassium phosphate solution and a saturated aqueous sodium chloride solution in order and dried over anhydrous magnesium sulfate. After removal of the solvent, the residue was purified by silica gel column chromatography to give (4R,5S,6S,8R,2'S,4'S)-p-nitrobenzyl -3-[1-p-nitrobenzyloxycarbonyl-2-((3-(4-pyridyl)propyl) methylaminocarbonyl)pyrrolidin-4-ylthio]-4-methyl-6-(1-hydroxyethyl)-1-azabicyclo[3.2.0]hept-2-en-7-one-2-carboxylate.
IR.sub.max cm.sup.-1 (neat): 3380, 1763, 1700, 1644, 1601, 1517, 1403, 1339;
NMR .delta. (CDCl.sub.3): 1.28 (3H, d, J=6.9 Hz), 1.37 (3H, d, J 6.3 Hz), 3.08, 2.96 (3H as a whole, each s), 5.21 (2H, br.s), 5.24 (1H, d, J=13.8 Hz), 5.51 (1H, d, J=13.8 Hz), 6.97-7.20 (2H, m), 7.35-7.63 (2H, m), 7.65 (2H, d, J 8.9 Hz), 8.10 8.30 (4H, m), 8.52 (2H, m).
REFERENCE EXAMPLE 34 ##STR279##
To a solution of (4R,5R,6S,8R)-p-nitrobenzyl-4-methyl -6-(1-hydroxyethyl)-1-azabicyclo[3.2.0]hept-3,7-dione-2-carboxylate (54 mg) in dry acetonitrile (1.0 ml), diisopropylethylamine (22 mg) and diphenyl chlorophosphate (45 mg) were added under ice-cooling, and the resultant mixture was stirred at the same temperature for 1 hour. A solution of (2S,4S)-1-p-nitrobenzyloxycarbonyl-2-(2-(3-pyridyl)ethyl) methylaminocarbonyl-4-mercaptopyrrolidine (95 mg) and diisopropylethylamine (22 mg) in dry acetonitrile (1.0 ml) was added to the reaction mixture, followed by stirring for 1.5 hours. The reaction mixture was diluted with dichloromethane, washed with water and dried over anhydrous magnesium sulfate. After removal of the solvent, the residue was purified by silica gel column chromatography to give (4R,5S,6S,8R,2'S,4'S)-p-nitrobenzyl-3-[1-p-nitrobenzyloxycarbonyl -2-((2-(3-pyridyl)ethyl)methylaminocarbonyl)pyrrolidin-4-ylthio]-4-methyl-6-(1-hydroxyethyl)-1-azabicyclo [3.2.0]hept-2 -en-7-one-2-carboxylate.
IR.sub.max cm.sup.-1 (neat): 3400, 1755, 1690, 1512, 1332;
NMR .delta. (CDCl.sub.3): 1.27 (3H, d, J=7.0 Hz), 1.37 (3H, d, J=6.3 Hz), 2.88, 2.96, 3.00 (3H as a whole, each s), 3.27 (1H, m), 5.30 (3H, m), 5.50 (1H, d, J=13.5 Hz), 7.26 (1H, m), 7.4-7.6 (3H, m), 7.65 (2H, d, J=8.6 Hz), 8.22 (4H, d, J=8.6 Hz), 8.4-8.6 (2H, m).
REFERENCE EXAMPLE 35 ##STR280##
To a solution of (4R,5R,6S,8R)-p-nitrobenzyl-4-methyl -6-(1-hydroxyethyl)-1-azabicyclo[3.2.0]hept-3,7-dione-2-carboxylate (181 mg) in dry acetonitrile (2.0 ml), diisopropylethylamine (81 mg) and diphenyl chlorophosphate (175 mg) were added under ice-cooling, and the resultant mixture was stirred at the same temperature for 1 hour. A solution of (2S,4S)-p-nitrobenzyloxycarbonyl-2-(2-(2-pyridyl)ethyl)methylaminocarbonyl -4-mercaptopyrrolidine (303 mg) in dry acetonitrile (3.0 ml) and then diisopropylethylamine (81 mg) were added to the reaction mixture, followed by stirring for 2 hours. The reaction mixture was diluted with ethyl acetate, washed with aqueous potassium phosphate solution and a saturated aqueous sodium chloride solution in order and dried over magnesium sulfate. After removal of the solvent, the residue was purified by silica gel column chromatography to give (4R,5S,6S,8R,2'S,4'S)-p-nitrobenzyl-3 -3-[1-p-nitrobenzyloxycarbonyl-2-((2-(2-pyridyl)ethyl)methylaminocarbonyl) pyrrolidin-4-ylthio]-4-methyl-6-(1-hydroxyethyl) -1-azabicyclo[3.2.0]hept-2-en-7-one-2-carboxylate.
NMR .delta. (CDCl.sub.3): 1.28 (3H, d, J=7.3 Hz), 1.34 (3H, d, J=6.3 Hz), 1.87 (1H, m), 2.73 (1H, m), 2.92, 2.93, 2.95, 3.01 (3H as a whole, each s), 4.80 (1H, m), 5.26 (3H, m), 5.49 (1H, d, J=13.9 Hz), 7.00-7.75 (7H, m), 8.22 (4H, m), 8.50 (1H, m).
REFERENCE EXAMPLE 36 ##STR281##
To a solution of (4R,5R,6S,8R)-1-p-nitrobenzyl-4-methyl -6-(1-hydroxyethyl)-1-azabicyclo[3.2.0]hept-3,7-dione-2-carboxylate (2.55 g) in dry acetonitrile (10.0 ml), diisopropylethylamine (1.09 g) and diphenyl chlorophosphate (2.06 g) were added under ice-cooling, and the resultant mixture was stirred at the same temperature for 2 hours. A solution of (2S,4S)-p-nitrobenzyloxycarbonyl-2-(4-methylpiperazin-1-ylcarbonyl) -4-mercaptopyrrolidine (3.08 g) and diisopropylethylamine (1.09 g) in dry acetonitrile (10.0 ml) was added to the reaction mixture, followed by stirring for 4 hours. The reaction mixture was diluted with ethyl acetate, washed with aqueous potassium phosphate solution and a saturated aqueous sodium chloride solution in order and dried over anhydrous magnesium sulfate. After removal of the solvent, the residue was purified by silica gel column chromatography to give (4R,5S,6S,8R,2'S,4'S)-p-nitrobenzyl-3-[1-p-nitrobenzyloxycarbonyl -2-(4-methylpiperazin-1-ylcarbonyl)pyrrolidin -4-ylthio]-4-methyl-6-(1-hydroxyethyl)-1-azabicyclo [3.2.0]hept-2-en-7-one-2-carboxylate.
IR.sub.max cm.sup.-1 (neat): 3400, 1750, 1695, 1630, 1593, 1500, 1423, 1390, 1324, 1271, 1193, 1120;
NMR .delta. (CDCl.sub.3): 1.26 (3H, d, J=7.3 Hz), 1.34 (3H, d, J=6.3 Hz), 1.91 (1H, m), 2.32 (3H, s), 2.73 (1H, s), 4.72 (1H, m), 5.22 (3H, m), 5.43 (1H, d, J=13.9 Hz), 7.40-7.60 (2H, m), 7.64 (2H, d, J=.8.9 Hz), 8.20 (4H, d, J =8.9 Hz).
REFERENCE EXAMPLES 37 to 50
In the same manner as in Reference Example 36, the compounds as shown in Table 10 were obtained. The physical properties of the compounds obtained follow the Table.
TABLE 10______________________________________ ##STR282##ReferenceExample No. k Q______________________________________37 0 ##STR283##38 0 ##STR284##39 0 ##STR285##40 0 ##STR286##41 0 ##STR287##42 0 ##STR288##43 0 ##STR289##44 0 ##STR290##45 0 ##STR291##46 1 ##STR292##47 2 ##STR293##48 1 ##STR294##49 0 ##STR295##50 0 ##STR296##______________________________________
Physical Properties
REFERENCE EXAMPLE 37
IR.sub.max cm.sup.-1 (neat): 3370, 1763, 1700, 1602, 1517, 1430, 1398, 1341, 1203, 1130, 1106;
NMR .delta. (CDCl.sub.3): 1.27 (3H, d, J=7.3 Hz), 1.36 (3H, d, J=6.3 Hz), 2.80 (1H, m), 3.28 (1H, dd, J=3.0 & 6.9 Hz), 3.36 (1H, m), 3.50 (1H, dd, J=8.0 & 10.9 Hz), 3.71 (1H, m), 4.30 (2H, m), 5.10 5.50 (4H, m), 7.10-7.70 (6H, m), 7.98 (1H, m), 8.21 (4H, d, J=8.9 Hz), 8.39 (1H, m).
REFERENCE EXAMPLE 38
IR.sub.max cm.sup.-1 (neat): 3400, 1761, 1697, 1637, 1515, 1426, 1400, 1340, 1202, 1175, 1132, 1104;
NMR .delta. (CDCl.sub.3): 1.28 (3H, d, J=6.9 Hz), 1.34 (3H, d, J=5.6 Hz), 1.88 (3H, m), 2.50 -2.90 (4H, m), 2.92, 2.97, 3.00, 3.11 (3H as a whole, each s), 3.28 (1H, m), 3.48 (4H, m), 3.69 (1H, m), 3.87 (1H, m), 4.27 (3H, m), 4.75 (1H, m), 5.23 (3H, m), 5.48 (1H, d, J=13.9 Hz), 7.39 (1H, dd, J=4.9 & 8.9 Hz), 7.50 (1H, d, J=8.9 Hz), 8.06 (1H, t, J=8.9 Hz), 8.18 (4H, d, J=8.9 Hz), 8.48 (1H, m).
REFERENCE EXAMPLE 39
IR.sub.max cm.sup.-1 (neat): 3330, 1761, 1710, 1603, 1519, 1420, 1340, 1205;
NMR .delta. (CDCl.sub.3): 1.26 (3H, d, J=7.3 Hz , 1.35 (3H, d, J=6.3 Hz), 3.35 (2H, m), 3.84 (1H, m), 4.03 (1H, m), 4.28 (2H, m), 4.56 (1H, m), 5.17 (1H, d, J=13.6 Hz), 5.30 (2H, s), 5.33 (1H, d, J=13.6 Hz), 7.60 (2H, d, J=8.9 Hz), 8.16 (4H, d, J=8.9 Hz), 8.35 (1H, m), 8.58 (1H, s).
REFERENCE EXAMPLE 40
IR.sub.max cm.sup.-1 (neat): 3290, 1760, 1702, 1586, 1508, 1397, 1337, 1203,1183;
NMR .delta. (CDCl.sub.3): 1.27 (3H, d, J=7.2 Hz), 1.35 (3H, d, J=6.3 Hz), 2.30 (1H, m), 2.64 (1H, m), 3.32 (2H, m), 3.53 (1H, m), 3.83 (1H, m), 4.00 (1H, m), 4.28 (2H, m), 4.55 (1H, m), 5.18 (1H, d, J=13.8 Hz), 5.25 (2H, m), 5.38 (1H, d, J 13.8 Hz), 7.47 (2H, m), 7.60 (2H, d, J=8.6 Hz), 8.17 (2H, d, J=8.6 Hz), 8.45 (2H, m).
REFERENCE EXAMPLE 41
IR.sub.max cm.sup.-1 (neat): 3400, 1762, 1698, 1643, 1600, 1517, 1339;
NMR .delta. (CDCl.sub.3): 1.27 (3H, d, J=6.9 Hz), 1.37 (3H, d, J 6.3 Hz), 2.89, 2.96, 2.98 (3H as a whole, each s), 5.22 (2H, br. s), 5.25 (1H, d, J=13.9 Hz), 5.49 (1H d, J=13.9 Hz), 7.00-7.23 (2H, m), 7.40-7.58 (2H, m), 7.65 (2H, d, J=8.6 Hz), 8.21 (4H, m), 8.53 (2H, m).
REFERENCE EXAMPLE 42
IR.sub.max cm.sup.-1 (neat): 3380, 1755, 1693, 1643, 1508, 1337;
NMR .delta. (CDCl.sub.3): 1.27 (3H, d, J=7.3 Hz), 1.36 (3H, d, J=6.3 Hz), 2.03 (1H, m), 2.67 (1H, m), 3.20-3.95 (9H, m), 4.05 (1H, m), 4.26 (2H, m), 4.96 (1H, d, J 13.5 Hz), 5.23 (4H, m), 5.48 (1H, d, J=13.5 Hz), 7.26 (1H, m), 7.51 (2H, d, J=8.9 Hz), 7.65 (3H, d, J=8.6 Hz), 8.22 (4H, m), 8.53 (2H, m).
REFERENCE EXAMPLE 43
IR.sub.max cm.sup.-1 (KBr): 3350, 1774, 1704, 1656, 1600, 1508, 1423, 1395, 1337, 1315;
NMR .delta. (CDCl.sub.3): 1.24 (3H, m), 1.33 (3H, d, J=6.3 Hz), 2.47 (1H, m), 2.91 (1H, m), 3.31 (2H, m), 3.54 (1H, dd, J=5.3 & 11.2 Hz), 3.79 (1H, m), 4.02 (1H, dd, J=6.0 & 11.2 Hz), 4.20-4.60 (5H, m), 5.12 (1H, d, J=14.2 Hz), 5.20 (2H, br. s), 5.40 (1H, d, J=14.2 Hz), 7.22 (1H, m), 7.50 (2H, m), 7.60 (2H, d, J 8.9 Hz), 7.62(1H, m), 8.13 (4H, d, J=8.9 Hz), 8.45 (1H, m), 8.50(1H, s).
REFERENCE EXAMPLE 44
IR.sub.max cm.sup.-1 (KBr): 3410, 1768, 1704, 1653, 1603, 1522, 1422, 1403, 1342, 1262;
NMR .delta. (CDCl.sub.3): 1.28 (3H, m), 1.37 (3H d, J=6.3 Hz), 1.87 (2H, m), 2.70 (3H, m), 2.97, 2.98, 3.09 (3H as a whole, each s), 3.30-3.80 (7H, m), 4.78 (2H, m), 5.24 (1H, d, J=13.8 Hz), 5.30 (2H, br. s), 5.46 (2H, d, J=13.8 Hz), 7.22 (1H, m), 7.40 (1H, m), 7.50 (2H, d, J=8.6 Hz), 7.65 (2H, d, J=8.9 Hz), 8.2 (4H, m), 8.45 (2H, m).
REFERENCE EXAMPLE 45
IR.sub.max cm.sup.-1 (KBr): 3300, 1773, 1707, 1663, 1604, 1518, 1438, 1402, 1340, 1280, 1265, 1206, 1168, 1147, 1109;
NMR .delta. (CDCl.sub.3): 1.27 (3H, m), 1.37 (3H, d, J=6.3 Hz), 1.80-2.10 (4H, m), 2.67 (2H, m), 2.88, 2.93, 2.95, 3.04 (3H as a whole, each s), 5.20 (2H, br.s), 5.25 (1H, d, J=13.5 Hz), 5.48 (1H, d, J=13.5 Hz), 7.23 (1H, m), 7.40 (1H, m), 7.51 (2H, d, J=8.9 Hz), 7.65 (2H, d, J=8.3 Hz), 8.12 (4H, d, J=8.9 Hz), 8.42 (2H, m).
REFERENCE EXAMPLE 46
IR.sub.max cm.sup.-1 (neat): 3350, 1760, 1696, 1652, 1517, 1419, 1400, 1338, 1196, 1130, 1102;
NMR .delta. (CDCl.sub.3): 1.28 (3H, d, J=7.3 Hz , 1.37 (3H, d, J=6.0 Hz), 2,82 (2H, m), 5.20 (2H, br. s), 5.23 (1H, d, J=14.0 Hz), 5.50 (1H, d, J 14.0 Hz), 7.25 (1H, m), 7.55 (3H, m), 7.66 (2H, d, J=8.9 Hz), 8.23 (4H, d, J =8.9 Hz), 8.44 (1H, br.s), 8.48 (1H, d, J=5.0 Hz).
REFERENCE EXAMPLE 47
IR.sub.max cm.sup.-1 (neat): 3350, 1760, 1700, 1684, 1598, 1518, 1400, 1336;
NMR .delta. (CDCl.sub.3): 1.27 (3H, d, J=6.9 Hz), 1.37 (3H, d, J 6.3 Hz), 2.20-2.80 (5H, m), 3.20-3.50 (2H, m), 3.28 (1H, dd, J=2.6 & 6.9 Hz), 3.50-3.80 (1H, m), 4.00-4.35 (5H, m), 5.37 (2H, ABq, J=76.9 & 13.9 Hz), 7.53 (2H, d, J=8.9 Hz), 7.65 (2H, d, J =8.9 Hz), 8.10-8.50 (7H, m), 8.64 (1H, s), 9.09 (1H, br.s).
REFERENCE EXAMPLE 48
IR.sub.max cm.sup.-1 (neat): 3370, 1760, 1695, 1627, 1517, 1433, 1420, 1398, 1337, 1194, 1132, 1101;
NMR .delta. (CDCl.sub.3): 1.28 (3H, d, J=7.3 Hz), 1.37 (3H, d, J=6.3 Hz), 2.30 (3H, s), 5.25 (3H,m), 5.50 (1H, d, J=13.9 Hz), 7.51 (2H, d, J=8.9 Hz), 7.65 (2H, d, J=8.9Hz), 8.22 (4H, m).
REFERENCE EXAMPLE 49
IR.sub.max cm.sup.-1 (neat) 3200 (br), 1760, 1700, 1652, 1512, 1336;
NMR .delta. (CDCl.sub.3) 1.28 (3H, m), 1.36 (3H, d, J=6.3 Hz), 2.02 (3H, m), 2.73 (1H, m), 3.10 (2H, m), 3.24-4.80 (18H, m), 5.05-5.56 (4H, m), 7.43 (2H x 0.3, d, J=7.9 Hz), 7.51 (2H x 0.7, d, J=8.9 Hz). 7.64 (2H, d, J =8.6 Hz), 8.20 (4H, m).
REFERENCE EXAMPLE 50
IR.sub.max cm.sup.-1 (neat): 3420 (br), 1763, 1700, 1648, 1602, 1520, 1438, 1243;
NMR .delta. (CDCl.sub.3): 1.26 (3H, m), 1.35 (3H, d, J=6.3 Hz), 2.92 (1H, m), 2.30-2.85 (7H, m), 3.34 (3H x 0.5, s), 3.56 (3H x 0.5, s), 3.20-3.83 (9H, m), 4.20 (2H, m), 4.76 (1H, m), 5.08-5.55 (4H, m), 7.44 (2H x 0.5, d, J=8.9 Hz), 7.52 (2H x 0.5, d, J 8.6 Hz), 7.65 (2H, d, J=8.9 Hz), 8.20 (4H, m).
REFERENCE EXAMPLE 51 ##STR297##
To a solution of (4R, 5R,6S,8R)-p-nitrobenzyl-4-methyl-6-(1-hydroxyethyl) -1-azabicyclo[3.2.0]hept-3,7-dione-2-carboxylate (217 mg) in dry acetonitrile (2.0 ml), diisopropylethylamine (93 mg) and diphenyl chlorophosphate (178 mg) were added under ice-cooling, and the resultant mixture was stirred for 3 hours. A solution of (2S,4S)-p-nitrobenzyloxycarbonyl -2-(2-(1-methylpiperizin-4-yl)ethyl)aminocarbonyl-4-mercaptopyrrolidine (293 mg) and 1,8-diazabicyclo [5.4.0]-7-undecene (218 mg) in a mixture of dry acetonitrile (2.0 ml) and dry tetrahydrofuran (4.0 ml) was added to the reaction mixture, followed by stirring for 1 hour. The reaction mixture was combined with a phosphate buffer (pH, 7.0) and extracted with dichloromethane 3 times. The organic layer was dried over anhydrous magnesium sulfate. After removal of the solvent, the residue was purified by silica gel column chromatography to give (4R,5S,6S,8R,2'S,4' S)-p-nitrobenzyl-3-[1-p-naitrobenzyloxycarbonyl -2-((2-(1-methylpiperizin-4-yl)ethyl)aminocarbonyl)-pyrrolidin-4-ylthio] -4-methyl-6-(1-hydroxyethyl)-1-azabicyclo [3.2.0]hept-2-en-7-one-2-carboxylate.
IR.sub.max cm.sup.-1 (neat): 3300, 1762, 1703, 1519, 1487, 1342, 1204;
NMR .delta. (CDCl.sub.3): 1.24 (3H, d, J=7.3 Hz), 1.36 (3H, d, J=6.3 Hz), 2.35 (3H, br.s).
REFERENCE EXAMPLE 52 ##STR298##
In the same manner as in Reference Example 51, there was obtained (4R,5S,6S,8R,2'S,4'S)-p-nitrobenzyl-[1-p-nitrobenzyloxycarbonyl -2-((2-(1-methylpiperidin-4-yl) ethyl)aminocarbonylmethyl)pyrrolidin-4-ylthio]-4-methyl-6-(1-hydroxyethyl) -1-azabicyclo[3.2.0]hept-2-en-7-one-2-carboxylate.
IR.sub.max cm.sup.-1 (neat): 3350, 1758, 1693, 1518, 1339;
NMR .delta. (CDCl.sub.3): 1.25 (3H, d, J=7.0 Hz), 1.36 (3H, d, J=6.3 Hz), 2.35 (3H, br.s).
REFERENCE EXAMPLE 53 ##STR299##
To a solution of (4R,5R,6S,8R)-p-nitrobenzyl-4-methyl -6-(1-hydroxyethyl)-1-azabicyclo[3.2.0]hept-3,7-dione-2-carboxylate (256 mg) in dry acetonitrile (1.5 ml), diisopropylethylamine (108 mg) and diphenyl chlorophosphate (206 mg) were added under ice-cooling, and the resultant mixture was stirred at the same temperature for 4 hours. To a suspension of (2S,4S)-1-p-nitrobenzyloxycarbonyl-2-(3-(4-pyridyl) propyl)aminocarbonyl-4-mercaptopyrrolidine (450 mg) in dry acetonitrile (3.0 ml), bis(trimethylsilyl)acetamide (165 mg) was added, and the mixture was heated to 60.degree. C., followed by allowing to stand. The thus obtained solution was added to the above phosphate solution under cooling with ice, and diisopropylethylamine (108 mg) was added thereto. After 15 minutes, 1,8-diazabicyclo[5.4.0]-7-undecene (203 mg) was added, followed by stirring for 1 hour. The reaction mixture was diluted with ethyl acetate, washed with aqueous potassium phosphate solution and a saturated aqueous sodium chloride solution in order and dried over anhydrous magnesium sulfate. After removal of the solvent, the residue was dissolved in ethyl acetate (50 ml), 0.1 N hydrochloric acid (5.0 ml) was added while cooling with ice, and the resultant mixture was stirred vigorously. A phosphate buffer (pH, 7.0) was added to the reaction mixture, which was extracted with dichloromethane three times. The extracts were combined together, dried over anhydrous magnesium sultate, concentrated and purified by silica gel column chromatography to give (4R,5S,6S,8R,2'S,4'S)-p-nitrobenzyl -3-[1-p-nitrobenzyloxycarbonyl-2-((3-(4-pyridyl)-propyl) aminocarbonyl)pyrrolidin-4-ylthio]-4-methyl-6-(1-hydroxyethyl) -1-azabicyclo[3.2.0]hept-2-en-7-one-2-carboxylate.
IR.sub.max cm.sup.-1 (neat): 3350, 1760, 1697, 1518, 1340;
NMR .delta. (CDCl.sub.3): 1.26 (3H, d, J=7.0 Hz), 1.36 (3H, d, J=6.3 Hz), 1.84 (2H, m), 2.60 (2H, m), 7.09 (2H, m), 7.49 (2H, m), 7.62 (2H, m), 8.20 (4H, m), 8.48 (2H, d, J=5.9 Hz).
REFERENCE EXAMPLES 54 TO 60
In the same manner as in Reference Example 53, the compounds as shown in Table 11 were obtained. The physical properties of the compounds obtained follow the Table.
TABLE 11______________________________________ ##STR300##ReferenceExample No. k Q______________________________________54 0 ##STR301##55 0 ##STR302##56 0 ##STR303##57 0 ##STR304##58 0 ##STR305##59 0 ##STR306##60 0 ##STR307##______________________________________
Physical Properties
REFERENCE EXAMPLE 54
NMR .delta. (CDCl.sub.3): 1.26 (3H, d, J=7.3 Hz), 1.36 (3H, d, J=6.3 Hz), 5.11 (1H, d, J=13.5 Hz), 5.18 (2H, m ), 5.42 (1H, d, J=13.5 Hz), 7.00-7.80 (6H, m), 8.05 (1H, m), 8.19 (4H, d, J=8.9 Hz), 8.39 (1H, m).
REFERENCE EXAMPLE 55
IR.sub.max cm.sup.-1 (neat): 3400, 1742, 1680, 1500, 1309, 1251;
NMR .delta. (CDCl.sub.3): 1.27 (3H, d, J=6.9 Hz), 1.36 (3H, d, J=6.3 Hz), 1.95 (1H, m), 2.51 (1H, m), 2.84 (2H, m), 3.32 (2H, m), 3.49 (3H, m), 3.73 (1H, m), 3.97 (1H, m), 5.20 (3H, m), 5.42 (1H, d, J=13.5 Hz), 7.23 (1H, m), 7.51 (3H, m), 7.62 (2H, d, J=8.6 Hz), 8.18 (4H, d, J=8.6 Hz), 8.43 (2H, m).
REFERENCE EXAMPLE 56
IR.sub.max cm.sup.-1 (neat): 3225, 1770, 1703, 1655, 1518, 1422, 1399, 1342, 1318, 1273, 1203, 1166, 1137, 1105;
NMR .delta. (CDCl.sub.3): 1.24 (3H, d, J=7.3 Hz), 1.35 (3H, d, J=6.3 Hz), 1.82 (3H, m), 2.61 (2H, m), 3.36 (4H, m), 3.50 (1H, m), 3,76 (1H, m), 4.08 (1H, m), 4.28 (2H, m), 4.38 (1H, m), 5.14 (1H, d, J=13.9 Hz), 5.24 (2H, br. s), 5.40 (1H, d, J=13.9 Hz), 7.20 (1H, t, J 6.0 Hz), 7.48 (3H, br.s), 7.62 (2H, d, J 8.6 Hz), 8.18 (4H, d, J=8.3 Hz), 8.42 (2H, br. s).
REFERENCE EXAMPLE 57
IR.sub.max cm.sup.-1 (neat): 3400, 1767, 1703, 1647, 1520, 1422, 1403, 1343, 1262;
NMR .delta. (CDCl.sub.3): 1.26 (3H, d, J=7.3 Hz), 1.37 (3H, d, J=6.0 Hz), 2.16 (1H, m), 2.60 (3H, m), 3.27 (5H, m), 3.47 (1H, m), 3.73 (1H, m), 4.02 (1H, m), 4.32 (3H, m), 5.23 (3H, m), 5.46 (1H, d, J=13.9 Hz), 7.22 (1H, m), 7.46 (3H, m), 7.64 (2H, d, J=8.9 Hz), 8.21 (4H, d, J=8.9 Hz), 8.42 (2H, m).
REFERENCE EXAMPLE 58
NMR .delta.0 (CDCl.sub.3): 1.27 (3H, d, J=7.3 Hz), 1.36 (3H, d, J=6.3 Hz), 3.29 (1H, dd, J=3.0 & 5.9Hz), 5.17 (1H, d, J=12.9 Hz), 5.23 (2H, br.s), 5.42 (1H, d, J=12.9 Hz), 7.18 (2H, m), 7.48 (2H, m), 7.63 (2H, d, J=8.9 Hz), 8.22 (4H, m), 8.51 (2H, m).
REFERENCE EXAMPLE 59
IR.sub.max cm.sup.-1 (neat): 3370, 1756, 1682, 1597, 1510, 1420, 1392, 1335, 1196, 1103;
NMR .delta. (CDCl.sub.3): d, J=7.3 Hz), 1.34 (3H, d, J=6.3 Hz), 2.49 (3H, s), 2.78 (2H, m), 3.29 (1H, dd, J=2.3 & 6.6 Hz), 3.34 (1H, m), 3.49 (2H, m), 3.74 (1H, m), 4.00 (1H, m), 4.27 (2H, m), 4.36 (1H, m), 5.17 (1H, d, J=13.9 Hz), 5.19 (2H, s), 5.42 (1H, d, J 13.9 Hz), 7.07 (1H, d, J=7.9 Hz), 7.44 (3H, m), 7.60 (2H, d, J=8.9 Hz), 8.16 (4H, d, J=8.9 Hz), 8.28 (1H, s).
REFERENCE EXAMPLE 60
IR.sub.max cm.sup.-1 (neat): 3400, 1767, 1703, 1521, 1441, 1399, 1343, 1262, 1203;
NMR .delta. (CDCl.sub.3): 1.24 (3H, d, J=7.3 Hz), 1.37 (3H, d, J=6.3 Hz), 2.56 (3H, s), 2.84 (2H, m), 3.20-3.65 (6H, m), 3.73 (1H, m), 4.08 (1H, m), 4.20-4.45 (4H, m), 5.20 (1H, d, J=13.5 Hz), 5.19 (2H, br. s), 5.45 (1H, d, J=13.5 Hz), 7.04 (1H, dd, J=4.9 & 7.6 Hz). 7,43 (1H, d, J=7.6 Hz), 7.50 (2H, m), 7.63 (2H, d, J=8.6 Hz), 8.21 (4H, d, J=8.6 Hz), 8.35 (1H, d, J=4.9 Hz).
REFERENCE EXAMPLE 61 ##STR308##
a) To a solution of (4R,5R,6S,8R)-p-nitrobenzyl-4-methyl-6-(1-hydroxyethyl) -1-azabicyclo[3.2.0]hept-3,7-dione-2-carboxylate (256 mg) in dry acetonitrile (2.0 ml), diisopropylethylamine (108 mg) and diphenyl chlorophosphate (200 mg) were added under ice-cooling, and the resultant mixture was stirred at the same temperature for 2 hours. A solution of 1-p-nitrobenzyloxycarbonyl-2-(4-(2-(t-butyldimethylsilyloxy) ethyl)piperazin-2-ylcarbonyl)-4-mercaptopyrrolidine (491 mg) and diisopropylethylamine (108 mg) in dry acetonitrile (2.0 ml) was added thereto, followed by stirring for 2 hours. The reaction mixture was diluted with ethyl acetate, washed with aqueous potassium phosphate solution and a saturated aqueous sodium chloride solution in order and dried over anhydrous magnesium sulfate. After removal of the solvent, the residue was purified by silica gel column chromatography to give (4R,5S,6S,8R,2'S,4'S)-p-nitrobenzyl -3-[1-p-nitrobenzyloxycarbonyl-2-(4-(2-(t-butyldimethylsilyloxy) ethyl)piperazin-1-ylcarbonyl)pyrrolidin-4-ylthio]-4-methyl-6 -(1-hydroxyethyl)-1-azabicyclo[3.2.0]-hept -2-en-7-one-2-carboxylate.
IR.sub.max cm.sup.-1 (neat): 3250, 1763, 1703, 1664, 1657, 1521, 1342;
NMR .delta. (CDCl.sub.3): 0.06 (6H, s), 0.89 (9H, s), 1.29 (3H, d, J=7.3 Hz), 1.37 (3H, d, J=6.3 Hz), 2.50 (6H, m), 3.38 (2H, m), 3.56 (2H, m), 3.76 (2H, m), 5.10-5.55 (4H, m), 7.40-7.60 (2H, m), 7.65 (2H, d, J=8.3 Hz), 8.24 (4H, m).
b) The thus obtained (4R,5S,6S,8R,2'S,4'S)-p-nitrobenzyl -3-[1-p-nitrobenzyloxycarbonyl-2-(4-(2-(t-butyldimethylsilyloxy) ethyl)piperazin-1-ylcarbonyl)pyrrolidin-4-ylthio]-4-methyl-6-(1-hydroxyethyl)-1-azabicyclo[3.2.0]hept-2-en-7-one-2-carboxylate (476 mg) was dissolved in dry tetrahydrofuran (4.0 ml) and stirred at room temperature. Acetic acid (657 mg) and a 1 N tetrahydrofuran solution of tetrabutylammonium fluoride (2.16 ml) were added, and the resultant mixture was stirred at the same temperature for 9 hour. A phosphate buffer (pH, 7.0) was added to the reaction mixture, which was extracted with dichloromethane three times. The organic layer was dried over anhydrous magnesium sulfate, followed by removal of the solvent. The residue was purified by silica gel column chromatography to give (4R,5S,6S,8R,2'S,4'S)-p-nitrobenzyl-3-[1-p-nitrobenzyloxycarbonyl -2-(4-(2-hydroxyethyl)piperazin-1-ylcarbonyl)pyrrolidin -4-ylthio]-4-methyl-6-(1-hydroxyethyl)-1-azabicyclo [ 3.2.0]hept-2-en-7-one-2-carboxylate.
IR.sub.max cm.sup.-1 (neat): 3250, 1762, 1703, 1658, 1521, 1342;
NMR .delta. (CDCl.sub.3): 1.28 (3H, d, J=7.3 Hz), 1.36 (3H, d, J=6.0 Hz), 1.92 (1H, m), 2.80 (6H, m), 2.93 (1H, m), 3.20-3.80 (9H, m), 4.08 (1H, m), 4.26 (3H, m), 4.73 (1H, m), 5.25 (3H, m), 5.49 (1H, d, J=13.8 Hz), 7.35-7.60 (2H, m), 7.64 (2H, d, J=8.9 Hz), 8.22 (4H, m).
REFERENCE EXAMPLE 62 ##STR309##
To a solution of (4R,5R,6S,8R)-p-nitrobenzyl-3-(diphenylphosphoryloxy) -4-methyl-6-(1-(p-nitrobenzyloxycarbonyloxy) ethyl)-1-azabicyclo[3.2.0]hept-2-en-7-one-2-carboxylate (714 mg) in dry acetonitrile (3.0 ml), a solution of (2S,4S)-1-p-nitrobenzyloxycarbonyl-2-(4-(2-dimethylaminoethyl) piperidin-1-ylcarbonyl)-4-mercaptopyrrolidine (505 mg) in dry acetonitrile (3.0 ml) was added under ice-cooling, and 1,8-diazabicyclo[5.4.0]-7-undecene (182 mg) was added thereto, followed by stirring at the same temperature for 2 hours. The reaction mixture was diluted with dichloromethane, washed with a saturated aqueous sodium chloride solution and dried over anhydrous magnesium sulfate. After removal of the solvent, the residue was purified by silica gel column chromatography to give (4R,5S,6S,8R,2'S,4'S)-p-niatrobenzyloxycarbonyl-3-[1-p-nitrobenzyl -2-(4-(2-dimethylaminoethyl)piperidin-1-ylcarbonyl)pyrrolidin-4-ylthio]-4-methyl-6-(1-(p-nitrobenzyloxycarbonyloxy)ethyl) -1-azabicyclo[3.2.0]hept-2-en-7-one-2-carboxylate.
NMR .delta. (CDCl.sub.3): 1.22 (3H, d, J=7.3 Hz), 1.29 (3H, d, J=6.3 Hz), 2.38 (6H, s), 5.00-5.50 (6H, m), 7.00-7.70 (6H, m), 8.18 (6H, m).
Claims
  • 1. A compound of the formula: ##STR310## wherein R.sup.0 is a hydrogen atom or a protective group for hydroxyl, R.sup.1 is a lower alkyl group, R.sup.2 is a protective group for carboxyl or a negative charge, R.sup.3 is a hydrogen atom or a protective group for amino, R.sup.4 is a lower alkyl group or a substituted lower alkyl group, k is an integer of 0 to 4, and Q.sup..sym. is a quaternary nitrogen atom-containing group represented by either one of the formulas (1) to (4): ##STR311## wherein R.sup.5 is a hydrogen atom, a lower alkyl group or a 2-hydroxyethyl group, R.sup.6 is a hydrogen atom or a lower alkyl group and n is an integer of 0 to 4; ##STR312## wherein R.sup.7 and R.sup.8 are each a lower alkyl group or may be combined together to form a lower alkylene group, or R.sup.8 represents a substituted lower alkyl group and n is as defined above; ##STR313## wherein R.sup.9 is a lower alkyl group or a substituted lower alkyl group; or ##STR314## wherein R.sup.5, R.sup.6, R.sup.9 and n are each as defined above, and when R.sup.2 is said protective group, said compound contains an acid residue or its salt.
  • 2. The compound according to claim 1, wherein R.sup.0 and R.sup.3 are each a hydrogen atom, R.sup.2 is a negative charge or its salt.
  • 3. The compound according to claim 2, wherein Q.sup..sym. is a quaternary nitrogen atom-containing group represented by either one of the formulas (1 ) or (3).
  • 4. The compound according to claim 3, wherein Q.sup..sym. is a quaternary nitrogen atom-containing group represented by the formula (1) wherein R.sup.5 is a hydrogen atom or a methyl group, R.sup.6 is a hydrogen atom and n is an integer of 0 to 4.
  • 5. The compound according to claim 3, wherein Q.sup..sym. is a quaternary nitrogen atom-containing group represented by the formula (3) wherein R.sup.9 is a methyl group.
  • 6. The compound according to claim 1, wherein R.sup.4 is a C.sub.1 -C.sub.5 alkyl group, a C.sub.2 -C.sub.5 alkanoyl(C.sub.1 -C.sub.5)alkyl group, a carbamoyl(C.sub.1 -C.sub.5)alkyl group, a C.sub.1 -C.sub.5 alkylaminocarbonyl-(C.sub.1 -C.sub.5) alkyl group, a di(C.sub.1 -C.sub.5)alkylaminocarbonyl(C.sub.1 -C.sub.5)-alkyl group or a hydroxy(C.sub.2 -C.sub.5)alkyl group.
  • 7. The compound according to claim 1, wherein R.sup.1 is a methyl group.
  • 8. The compound according to claim 1, wherein k is zero.
  • 9. The compound according to claim 1, which has a (5S)-configuration.
  • 10. The compound according to claim 1, which has a (4R,5S,6S,8R)-configuration.
  • 11. A pharmaceutical composition which comprises as an active ingredient a pharmaceutically effective amount of at least one of the compounds as claimed in any of claims 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10, and at least one pharmaceutically acceptable inert carrier or diluent.
Priority Claims (1)
Number Date Country Kind
2-34952 Feb 1990 JPX
Parent Case Info

This application is a continuation of application Ser. No. 07/653,954 filed on Feb. 12, 1991, now abandoned.

Foreign Referenced Citations (12)
Number Date Country
0126587 Nov 1984 EPX
0168707 Jan 1986 EPX
0170073 Feb 1986 EPX
0182213 May 1986 EPX
0235823 Sep 1987 EPX
0242134 Oct 1987 EPX
0243686 Nov 1987 EPX
0289801 Nov 1988 EPX
0333175 Sep 1989 EPX
0337637 Oct 1989 EPX
0343499 Nov 1989 EPX
0358085 Mar 1990 EPX
Non-Patent Literature Citations (3)
Entry
Chemical Abstracts 110:75160a.
Kim et al., J. Med. Chem. 32, 602-604 (1989).
Deziel, Tetrahedron Letters, vol. 28, No. 38, 4371-4372 (1987).
Continuations (1)
Number Date Country
Parent 653954 Feb 1991