The present invention generally relates to power tools and particularly to power hand tools.
The power hand tools such as miter saws, circular saws, as well as other hand tools are often provided with the capability of adjusting the depth of cut or the bevel angle. Where such adjustability is provided in a tool, there is generally a measurement display and indicator present on the tool that will enable the user to set the angle or depth of cut at the desired location after which a locking lever is generally tightened to hold the tool in its desired position. Professional users often adjust the bevel and depth setting on circular saws, miter saws and other tools, which takes time and care to get the desired setting accurately. Because there are common angles such as 22-½° and 45° for bevel angles, and particular thickness settings for depth of cut adjustments that correspond to common lumber thicknesses, e.g., ¼ inch, ½ inch, ¾ inch, 2 inches, it has been a practice for toolmakers to design the adjustable locking mechanisms to have detents at these common angles and depths.
While there has been much time and energy directed to the design of detent mechanisms that are convenient to use and accurate, there is a continuing goal of designers to develop detent systems that have superior operating capability.
A first preferred embodiment that is particularly useful in a depth of cut detent system utilizes a bracket having an arcuate slot therein with enlarged portions at the detent locations which enlarged portions generally encompass a circular shape that has a diameter that is slightly larger than the width of the slot at each detent location and wherein a locking member has a washer with a diameter larger than the width of the slot and the enlarged portions. The washer has a truncated conical extension adjacent an opening in the washer that defines an annular ramped portion that is sized to fit within the enlarged generally circular detent portions. A locking lever mechanism is spring biased toward the bracket so that the washer will engage the bracket at all times. However, the washer will not move to its fullest extent toward the bracket unless the conical extension fits within one of the enlarged circular portions, which are selectively positioned at specific predetermined locations that correlate to useful settings for users.
A second preferred embodiment of the present invention is directed to a detent system for a circular saw which has one or more detents at predetermined desired angular positions, where an elongated spring is positioned within a groove in which a portion of a locking lever is movable, wherein the spring engages the member that is moved in the slot and engages a recess at the desired detent location. The spring engages the locking member but is sufficiently flexible to allow the member to be moved along the slot.
There are two preferred embodiments that are shown in the drawings in connection with a circular saw. The first preferred embodiment is implemented in a depth of cut detent system that is used to quickly sense and adjust the amount by which the saw blade extends below the foot portion of the saw that effectively determines the depth of cut that can be made by the saw. The second preferred embodiment is implemented in a bevel detent system that is provided with the circular saw to vary the bevel angle of the saw to a predetermined angle.
While the preferred embodiments are shown in connection with a circular saw, it should be understood that the detent systems that are disclosed and described herein may be used with other hand tools or other types of mechanisms where detents are used to define desired commonly used positions for a mechanism and where a locking capability is desired to hold the mechanism in a desired position. It should also be understood that either of the embodiments can be implemented in bevel or depth of cut detent systems.
Turning now to the drawings, and particularly
Similarly, the angle of the saw blade can be adjusted by a bevel adjusting structure that comprises a bevel bracket 32 that is preferably integrally formed with the foot structure 20 with the motor housing 14, the saw blade housing 22 and saw blade being pivotable around an axis defined by a bolt 34. An arcuate slot 36 within the bevel bracket 32 is configured to have a constant radius from the bolt 34 and a locking lever mechanism 38 enables the bevel angle to be locked in place after it has been properly positioned, which can be done by a user with a pointer 39a in conjunction with a gauge 39b that is provided on the outer top surface of the quadrant 12.
Turning now to
Conversely, when the lever 42 is moved in a counterclockwise direction with reference to
More specifically, when the locking lever 42 is moved in the clockwise direction, it will clamp the saw relative to the bracket 30 as desired. As shown in
To this end, a compression spring 50 is preferably disposed at an end of the cylindrical extension 46, wherein the spring is configured at a first end to engage an internal rib 51 of the sleeve 46 in the preferred embodiment (
As shown in
While the depth of cut detent system may be locked at any predetermined depth, when the locking lever 42 is moved into a locking position, the position of the washer 52 relative to the surface will be different depending upon whether or not the common axis of the cylindrical extension 46 and bolt, as well as the washer itself, is located in an enlarged circular portion 40. If the common axis is not in an enlarged portion 40, because the diameter of the truncated conical portion 58 is larger than the width of the slot 28, the main portion 54 will not be in contact with the surface 62. In that position, the main portion 54 is spaced away from the surface 62 by an amount approximately equal to the height of the conical portion 58 and this spaced position is illustrated in
The angle of the conical portion 58 is approximately 40° relative to the axis of the washer 52, but may be varied to either a higher or lower angle if desired. A consideration for determining the angle of the conical portion 58 is that once the locking lever 42 is loosened, the angle of the conical portion 58 will affect how easily the saw can be moved within the slot 28, when it is understood that a movement along the slot will create a force tending to push the washer 52 away from the bracket 30 as it disengages the circular enlarged portion 40.
Thus, in summary, the arcuate bracket 30 extends from the foot 20, and is configured such that the locking lever mechanism 26 may engage and reciprocate within the slot 28 disposed within the bracket. Specifically, as the handle 16 and motor housing 14 are rotated with respect to the bolt 24, the conical portion 58 of the washer 52 reciprocates along a trajectory defined by the arcuate slot 28 and enlarged portion 40. At portions of the slot 28 that are not enlarged, the conical portion 58 does not matingly engage the slot, but abuts the surface 62 and may be locked into place via the threaded engagement of the threaded insert and the threaded stud, carriage bolt or the like extending from the side of the blade housing 22. Threaded engagement and disengagement of the threaded insert and the threaded receiving member is promoted by rotation of the locking lever mechanism 26, which as illustrated, is by rotation in the clockwise and counterclockwise directions respectively. At the enlarged portions 40 of the slot 28, a user may perceive and utilize by feel a detent as the conical portion 58 is urged into the enlarged portion by the biasing member 50. Since these enlarged portions 40 preferably correspond to predetermined depth of cut measurements, the user may perceive the detent and subsequently rotate the lever mechanism 26 to either engage or disengage the threaded insert and the threaded receiving member to lock the saw into that predetermined position.
Turning now to the bevel detent system and referring to
More specifically, the threaded fastener 69 slides within the slot 36 to any position that is desired along a length of the slot. While the respective directions in which the locking lever 38 is rotated into locking and unlocking positions, as illustrated, the locking lever 38 is rotated in a clockwise direction into locking engagement. As illustrated in
The bevel bracket 32 additionally provides a detent system at predetermined increments along the length of the slot 36 to allow the user to perceive by feel a number of predetermined angular measurements. To this end, the bevel bracket 32 additionally includes a pair of curved protrusions 72 that have recess portions 74 between the protrusions 72 and a top wall 76 in which a leaf spring, indicated generally at 80, is positioned. The leaf spring 80 has a pair of bowed flat portions 82 that extend into the slot 36 with the bowed portions having a cupped recess 84 positioned in the center of each bowed flat portion 82 to form a pair of detents that are preferably at the 22-½° and 45° positions as is commonly provided with bevel detent systems. As a guide to the user, the bevel bracket 32 may optionally include measurement indicia.
The threaded fastener 69 is configured and positioned to be moved along the slot 36 and when it reaches one of the recesses 84, it will provide a detent and hold the angular position at the desired detent position whereupon the lever 38 can be rotated into locking engagement. As a guide, measurement indicia 86 may be provided along a top surface of the bevel bracket 32. Since the leaf spring 80 is flexible, it may be locked in a position that is close to but not precisely centered into the detent 84 which enables the user to provide a bevel angle that can be locked in place at an angle very near the detent angles if desired. As is shown, the leaf spring 80 is preferably fabricated from a single piece of spring steel and it has bridging support portions 88, 90 and 92 that contact the inner surface of the top wall 76. The leaf spring also has angled tabs 94 at each support portion which engage the opposite wall defined by the recess 74 to firmly hold the leaf spring in place. The angled tabs may assume a variety of configurations, such as rectangular or pointed, and for purposes of illustration only are shown as triangular.
While various embodiments of the present invention have been shown and described, it should be understood that other modifications, substitutions and alternatives are apparent to one of ordinary skill in the art. Such modifications, substitutions and alternatives can be made without departing from the spirit and scope of the invention, which should be determined from the appended claims.
Various features of the invention are set forth in the following claims.
This application claims the benefit under 35 U.S.C. §119 of U.S. Provisional Application No. 60/537,436, filed on Jan. 16, 2004.
Number | Name | Date | Kind |
---|---|---|---|
1830580 | Wappat | Nov 1931 | A |
4856394 | Clowers | Aug 1989 | A |
5042348 | Brundage et al. | Aug 1991 | A |
5452515 | Schilling | Sep 1995 | A |
5620272 | Sheng | Apr 1997 | A |
5927389 | Gonsalves et al. | Jul 1999 | A |
6202311 | Nickels, Jr. | Mar 2001 | B1 |
6390483 | Hsu et al. | May 2002 | B1 |
6601305 | Fukuoka | Aug 2003 | B1 |
6951057 | Yoshida et al. | Oct 2005 | B2 |
20030131484 | Yoshida et al. | Jul 2003 | A1 |
20050000338 | Wascow | Jan 2005 | A1 |
20050155232 | Bocka et al. | Jul 2005 | A1 |
Number | Date | Country |
---|---|---|
200027847 | Nov 2000 | AU |
Number | Date | Country | |
---|---|---|---|
20050155231 A1 | Jul 2005 | US |
Number | Date | Country | |
---|---|---|---|
60537436 | Jan 2004 | US |