Bevel angle detent system for a compound miter saw

Information

  • Patent Grant
  • 6758123
  • Patent Number
    6,758,123
  • Date Filed
    Wednesday, October 16, 2002
    22 years ago
  • Date Issued
    Tuesday, July 6, 2004
    20 years ago
Abstract
A miter saw is provided having a support arm that is pivotally mounted to a base for adjustment of a pivot angle, the saw including a detent mechanism to provide pivot stops at common bevel angles, such as at 45° L, 0° (vertical), and 45° R. The detent mechanism includes a step-shaped, arcuate detent block mounted to the support arm in an adjustable manner to permit the accurate setting of the block in a home position. In an embodiment, a pair of set screws acts against opposite ends of the detent block, permitting precise adjustment in either direction. An axially movable detent pin is mounted to the base to contact against stepped surfaces of the block. The arm is free to pivot within a bevel angle range defined by one of the surfaces. Steps between surfaces act as a pivot stops, abutting the pin at a corresponding predetermined angle of the arm.
Description




FIELD OF THE INVENTION




The invention generally relates to power tools and more particularly relates to a miter saw having a pivotable support arm with a detent mechanism to provide pivot stops at certain bevel angles.




BACKGROUND OF THE INVENTION




Power miter saws are generally known. Typically, a power miter saw includes a base having a fixed support platform having a rip fence and a turntable that is rotatably mounted to the base, a movable arm assembly extending from the turntable, and power saw unit mounted to the arm for cutting a workpiece on the turntable. To make standard miter cuts, the arm holds the saw unit so that its circular blade is generally vertical.




A compound miter saw additionally includes a bevel angle joint that permits the angular adjustment of the arm to hold the blade at a bevel angle, generally between 0-45 degrees from vertical. Detent mechanisms are generally known for locking the bevel angle joint at common angles, for example 0, 33.9 or 45 degrees, however, an improved detent mechanism is desired. Some known detent mechanisms include steps integrated into the structure of the support arm, wherein the bevel angle is limited by contact of one of the steps against detent pin. It is desirable to provide a miter saw having a step-like detent mechanism that permits easy adjustment of the position of one or more of the steps relative to the arm to facilitate fine adjustment of a corresponding pivot stop position.




BRIEF SUMMARY OF THE INVENTION




The invention provides an improved compound miter saw which permits precise adjustment of detent steps that correspond to bevel angle stops. For example, in an embodiment, a compound miter saw is provided which includes: a base; a movable support arm assembly for holding a tool unit, the support arm having a hub portion that is rotatably mounted to the base to permit rotation of the support arm relative to the base along an axis; a detent block having a plurality of generally parallel, planar surfaces adjacent surfaces are positioned at different axial depths relative to each other so that the adjacent surfaces are separated by a respective step; a detent pin carried by the base for movement in a direction generally parallel to the axis and generally perpendicular to the surfaces; and a biasing element urging the detent pin into contact against one of the surfaces; wherein each surface defines a range of possible bevel angle positions of the support arm, and the step can abut the pin to limit a pivoting of the support arm at a corresponding predetermined bevel angle and wherein the detent block is adjustably mounted to the support arm to permit adjustment of the position of the step relative to the support arm. Preferably, each of the steps is planar and radially oriented relative to the axis.




In an embodiment, the hub portion includes a recess shaped to receive the block and to provide space for adjustment of the block either clockwise or counterclockwise relative to a center of the hub. The hub further includes fasteners, such as set screws, to secure the detent block at a desired position.




In an embodiment, the compound miter saw further includes a linkage operable to move the detent pin. With the linkage, a user can retract the detent pin to clear one of the steps, permitting the support arm to move to a bevel angle beyond the pivot stop defined by the respective step. Preferably, the linkage includes a handle is positioned generally at a side of the base which is generally opposite of the hub.




In an embodiment, the detent block is generally arcuate, and wherein the detent block is mounted to the hub generally concentrically to the axis.




In an embodiment, at least one of the steps includes a threaded bevel angle adjustment bolt to adjust the bevel angle at which the step contacts the detent pin.




An advantage of the present invention is that it provides an improved compound miter saw.




Another advantage of the present invention is that it provides a compound miter saw in which a “home” bevel angle position, such as a vertical (0°) position, is precisely adjustable.




A further advantage of the present invention is that it provides a compound miter saw that has few parts and which is simple to assemble in a precise manner.




Yet another advantage of the present invention is that it provides a compound miter saw having a tiltable support arm, wherein pivot stops can be released by a linkage actuatable from a front of a saw. A related advantage is that the miter saw of the invention provides enhanced safety, avoiding a need for a user to reach around or over the saw to move a detent pin located near a rear of the saw.











Additional features and advantages of the present invention are described in, and will be apparent from, the following description, figures and claims.




BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is a perspective view of a compound miter saw having features in accordance with teachings of the present invention.





FIG. 2

is a schematic front elevational view of the saw, showing exemplary saw blade bevel angles of 45° L, 33.9° L, 0°, 33.9° R and 45° R to which the support arm can be pivoted.





FIG. 3

is a perspective view of a support arm and a portion of the tool unit, showing a front of the hub and detent block mounted thereto.





FIG. 4

is a fragmentary, perspective view of the support arm, showing a front of the hub and detent block mounted thereto.





FIG. 5

is a schematic, perspective view of the detent block, detent pin, and auxiliary pin.





FIG. 6

is a fragmentary, perspective view of a rear side of the support arm.





FIG. 7

is an exploded, perspective view of a linkage for retracting the detent pin.





FIG. 8

is a fragmentary view of a rear side of the support arm from a different perspective than FIG.


6


.











DETAILED DESCRIPTION OF THE PRESENTLY PREFERRED EMBODIMENTS




Referring now to the drawings, wherein like numerals designate like components,

FIG. 1

illustrates an exemplary compound miter saw


10


incorporating features according to teachings of the present invention.




As illustrated in

FIG. 1

, the miter saw


10


generally includes a base


12


, a movable support arm


14


pivotably mounted to the base, and a tool unit


16


. As illustrated, the tool unit


16


is a power saw having a circular blade


18


. The base


12


is configured to support a workpiece and, in an embodiment, the base includes a rip fence


20


to hold the workpiece.




The miter saw is constructed so that the angle of the blade


18


can be varied for cutting the workpiece. For angular adjustment of the saw blade


18


on a “miter angle” about a vertical miter axis M, still referring to

FIG. 1

, the base


12


includes a stationary portion


22


that is supported on a stationary surface, such as a workbench (not shown) and, and a turntable


24


that is rotatably mounted to the stationary portion


22


. The position of the turntable


24


corresponds to the miter angle of the saw blade


18


relative to the rip fence


20


on the base


12


. A turntable handle


26


is provided for selection of the miter angle.




For angular adjustment of the tool unit on a “bevel angle” about a horizontal bevel axis B, the support arm


14


is pivotally mounted to the base


12


. More specifically, the support arm


14


has a hub portion


28


(

FIGS. 1 and 3

) that is rotatably mounted to a pivot housing portion


30


(

FIG. 1

) of the turntable


24


to permit rotation of the support arm


14


relative to the turntable


24


about the bevel axis B. In order to selectively hold the tool unit


16


at certain common bevel angles, the miter saw


10


includes a detent mechanism, described below in greater detail. For example,

FIG. 2

schematically illustrates saw blade bevel angles of 45° L, 33.9° L, 0°, 33.9° R and 45° R at which the detent mechanism provides pivot stops of the support arm


14


. The detent mechanism also permits the support arm to be tilted within certain angular ranges between the pivot stops.




The detent mechanism includes a stepped detent block that is adjustably mounted to the support arm and which is selectively engageable by a movable detent pin carried by the turntable. According to an aspect of the invention, the position of the detent block can be adjusted relative to the hub portion to result in a precise setting of a “home” position of the support arm, such as the 0° (vertical) position.




In an embodiment as illustrated in

FIGS. 4 and 5

, the detent block


70


has a stepped profile. More particularly, the detent block


70


has a series of forwardly facing surfaces


72


A,


72


B,


72


C,


72


D arranged next to each other at a common radius from the bevel axis B about which the support arm


14


pivots. The detent block


70


preferably has an arcuate shape. Acting with a detent pin


76


, the detent block


70


defines pivot stops to selectively restrict pivot arm from moving beyond certain bevel angles.




To define pivot stops, adjacent surfaces of the detent blocks are at different relative axial positions to define steps. For example, in the exemplary embodiment of

FIGS. 4 and 5

, the adjacent surfaces


72


A and


72


B are separated by a step


74


AB, the adjacent surfaces


72


B and


72


C are separated by a step


74


BC, and the adjacent surfaces


72


A and


72


D are separated by step


74


AD. Each of the steps


74


AB,


74


BC and


74


AD permits the detent block


70


to move along a particular arc of motion, limiting the angular freedom of the support arm


14


accordingly.





FIG. 5

schematically illustrates a detent pin


76


that acts against the detent block


70


to limit motion of the support arm


14


(FIGS.


1


and


3


). The detent pin


76


is movably mounted to the turntable


24


(

FIG. 1

) to axially extend or retract relative to the surfaces


72


A-D. The detent pin


76


is positioned at generally the same radius from the axis B as the surfaces


72


A-D so that a tip of the pin


76


can contact perpendicularly against any one of the surfaces. A point of engagement of the detent pin


76


against the detent block


70


corresponds to a bevel angle position of the support arm


14


.




The detent pin


76


is biased toward the detent block


70


, so that the tip of the pin


76


can slide in contact a respective one of the surfaces


72


A-D when the support arm is pivoted. Accordingly, the support arm


14


is free to pivot within a current bevel angle range as limited by contact of the detent pin


76


against the steps


74


AB,


74


BC, and an end of bolt


38


adjustably fixed to step


74


AD. When the detent pin


76


is in contact against any one of the surfaces


72


A-D, the support arm


14


is free to pivot within an angular range permitted sliding contact of the detent pin


76


against the respective surface. Additionally, the support arm


14


can freely pivot so that the detent pin


76


skips over one of the steps


74


AB,


74


BC, or


74


AD to be received against an adjacent surface that is “deeper.” For example, when the detent block


70


is positioned so that the surface


72


B is contacted by the detent pin


76


, the support arm


14


(

FIGS. 1

,


3


) can be pivoted so that the detent pin


76


skips over the step


74


AB moves to contact with the surface


72


A, which is deeper than surface


72


B. The detent pin


76


automatically extends to reside at the depth defined by the deeper surface


72


A. However, the support arm


14


is prevented from freely pivoting beyond a point where the pin


76


contacts a step to one of the surfaces that is “higher.” For example, with reference to

FIG. 5

, when the detent block


70


is positioned so that the surface


72


A is contacted by the detent pin


76


, the support arm


14


stops rotating when the detent pin


76


contacts the step


74


AB to the “higher” surface


72


B. The steps


74


BC and


74


AD similarly act to stop the support arm when brought into contact against the detent pin


76


.




Each of the steps


74


AB,


74


BC and


74


AD acts as a pivot stop at a predetermined bevel angle of the support arm


14


. In typical use, commonly needed bevel angles are 0° (vertical) and 45° from vertical. Therefore, the detent block


70


is designed and positioned so that the step


74


AB defines a pivot stop a at support arm angle of 0° (vertical), step


74


BC defines a pivot stop at a support arm angle of 45° to the left, and


74


AD defines a pivot stop at a support arm angle of 45° to the right. As a result, the surface


72


A permits a bevel angle range of 0° to 45° to the left, the surface


72


B permits a bevel angle between 0°+ to 45° to the right.




So that a user can pivot the support arm beyond a pivot stop angle, the detent pin


76


can be retracted as needed to clear one of the steps to a “higher” surface. For example, if the tip of the detent pin


76


resides on surface


72


A, at which the pivot arm is positioned at a 0° bevel angle, the pin


76


can be retraced to clear the step


74


AB, permitting the support arm to pivot into the bevel angle range permitted by surface


72


B (0° to 45° left) The support arm to be pivoted to a bevel angle such that the pin an adjacent surface of the detent block that is less deep.




The detent block is adjustably mounted to the support arm to permit adjustment of the position of the step relative to the support arm. Referring to

FIG. 3

, the hub portion


28


includes a recess


32


shaped to receive the detent block


70


. The recess


32


is preferably arcuate to generally correspond to the shape of the detent block


70


, although the recess


32


has a dimensions which are permit opposite ends of the detent block to move. In one embodiment, the recess can have one or more openings through which respective portions of the block can project.




At least one fastener is provided to secure the detent block within the recess. For example, in an embodiment as illustrated in

FIG. 6

, detent block is secured with a pair of threaded set screws


36


. Each of the set screws


36


extends through a corresponding elongate hole


37


the hub portion


28


and is threaded into a bore in a rear side of the detent block


70


.




The detent block


70


can be adjusted by loosening the set screws


36


, adjusting fine adjustment screws


90


and


92


to appropriately position the detent block


76


within the recess, and then tightening the set screws


36


. The saw is most commonly operated in the 0° position, the home position. Therefore, it is desirable that the fine adjustment screws


90


,


92


(

FIG. 6

) are adjusted to position the detent block


70


relative to the hub portion


28


so that the step


74


AB shown in

FIGS. 4 and 5

corresponds to the 0° (vertical) position of the support arm


14


. When the set screws


36


are loosened, the block


70


can shift from side to side as permitted by the fine adjustment screws


90


,


92


which adjustably secure against opposite ends of the block


70


. Once the fine adjustment screws


90


,


92


are appropriately set, the set screws


36


at the back of the block can be secured.




In an embodiment, one or more of the steps is adjustable independently relative to the adjustment of the entire block. For example, as illustrated in

FIG. 5

, the step


74


AD of the detent block


70


includes an adjustment bolt


38


. The adjustment bolt


38


can be extended or retracted as necessary to set a pivot stop for a bevel angle of 45° to the left. The adjustment bolt


38


permits the 45° (L) position to be adjusted without affecting the overall position of the block


70


or the corresponding 0° setting.




Occasionally, it is desirable to make a bevel cut that is greater than 45°, for example, to cut a molding for a corner that is not square. With reference to

FIG. 5

, to permit the support arm to be moved beyond 45°, the detent pin


76


can be retracted to clear either step


74


AD (with adjustment bolt


38


) or step


74


BC so that the detent pin resides against surface


72


D or


72


C, respectively. When the detent pin


76


clears bolt


38


and step


74


AD to the surface


72


D, the support arm


14


is permitted to move to a bevel angle beyond 45° to the left, for example to about 47°, as limited by adjacent structure to prevent further movement. When the detent pin


76


clears step


74


BC, the support arm


14


is permitted to move to a bevel angle beyond 45° to the right, for example to about 47°.




An embodiment of the invention includes a linkage for moving the detent pin. An exemplary linkage


40


is illustrated in

FIG. 7

, including a knob


42


that is mounted in a conveniently accessible manner at a front of the saw (see FIG.


1


). The knob


42


is held rotatably by a bracket


44


that is secured against an underside of the turntable


24


. A crank


46


having an eccentric peg


48


is fixed to the knob


42


. A rod


50


is slidably mounted along an underside of the turntable


24


. The rod


50


has a proximal end with a vertical slot


52


that receives the eccentric peg


48


. The rod


42


has a distal end


48


that is mounted to the detent pin


76


. When the knob


42


is rotated, the crank


46


rotates to vary the position of the eccentric peg


48


along a circular path. The peg


48


applies a force against the edges of the slot


52


so that a horizontal component of motion is translated to the rod


50


. As a result, rotation of the knob


42


is operable to extend or retract the detent pin


76


. The detent pin


76


is actuatable by the knob


42


positioned generally at the front of the miter saw


10


, thereby advantageously improving safety by avoiding a need for user to reach over the saw in order to adjust the bevel angle.




A coil spring


54


is provided in compression against the detent pin


76


to urge the detent pin


76


toward the detent block (FIG.


5


). More particularly, one end of the spring


54


is positioned against a proximal end of the detent pin


76


and an opposite end of the spring


54


is positioned against the base


12


.




The knob


42


is configured to operate in three positions. In a first position, the linkage


40


permits the detent pin


76


to move to the deepest surface


72


A. Because the detent pin


76


is urged toward the detent block


70


, the detent pin


76


will tend to find the deepest detent surface


72


A, which defines a most often needed bevel angle range of 0° to 45° to the left. For example, if the pivot arm is positioned so that the detent pin


76


contacts any of the higher surfaces


72


B,


72


C, or


72


D, the pin automatically steps downward as a user pivots the support arm toward the position defined by


72


A. When a user turns the knob


42


to a second position, the detent pin is retracted a sufficient distance to clear the step


74


AB, but not enough to clear the steps


74


AD (with bolt


38


) or


74


BC, permitting the pivot arm to move to the right as much as 45°. When a user turns the knob


42


to a third position, the detent pin


76


is retracted a sufficient distance to clear the steps


74


AD (with bolt


38


) or


74


BD, permitting a user to move the support arm to a bevel angle greater than 45° to the left or right, respectively.




For certain types of crown molding or other specialty applications, it is desirable to make a cut at a specific bevel angle, for example 33.9°, to achieve a correct corner fit. To provide a pivot stop at an auxiliary angle such as 33.9°, the detent block


70


has an auxiliary surface


78


having a pair of auxiliary detent holes


78


L and


78


R, as shown in FIG.


5


. An auxiliary pin


80


is carried on the base movement to extend or retract perpendicularly to the auxiliary surface


78


. Normally, the auxiliary pin


80


is locked in a retracted position clear from the auxiliary surface


78


of the detent block


70


. However, when a user desires to lock the support arm


14


at the auxiliary angle, the auxiliary pin


80


is released so that is biased against the auxiliary surface


78


. As the arm


14


is pivoted in the vicinity of the desired auxiliary bevel angle, the auxiliary pin


80


will find the auxiliary detent hole


78


L or


78


R. locking the support arm at the corresponding auxiliary bevel angle. In the embodiment illustrated in

FIG. 5

, the detent holes


78


L and


78


R correspond to auxiliary bevel angles of 33.9° to the left and 33.9° to the right of vertical, respectively.




All references, including publications, patent applications, and patents, cited herein are hereby incorporated by reference to the same extent as if each reference were individually and specifically indicated to be incorporated by reference and were set forth in its entirety herein.




The use of the terms “a” and “an” and “the” and similar referents in the context of describing the invention (especially in the context of the following claims) are to be construed to cover both the singular and the plural, unless otherwise indicated herein or clearly contradicted by context. Recitation of ranges of values herein are merely intended to serve as a shorthand method of referring individually to each separate value falling within the range, unless otherwise indicated herein, and each separate value is incorporated into the specification as if it were individually recited herein. All methods described herein can be performed in any suitable order unless otherwise indicated herein or otherwise clearly contradicted by context. The use of any and all examples, or exemplary language (e.g., “such as”) provided herein, is intended merely to better illuminate the invention and does not pose a limitation on the scope of the invention unless otherwise claimed. No language in the specification should be construed as indicating any non-claimed element as essential to the practice of the invention.




Preferred embodiments of this invention are described herein, including the best mode known to the inventors for carrying out the invention. Of course, variations of those preferred embodiments will become apparent to those of ordinary skill in the art upon reading the foregoing description. Although the invention is described in the context of a compound miter saw, one skilled in the art will understand from the figures, claims, and description herein that the principles of the present invention may be equally applicable to various other powered or unpowered devices in which a detent mechanism is useful to provide angular adjustment of a tool unit relative to a workpiece. The inventors expect skilled artisans to employ such variations as appropriate, and the inventors intend for the invention to be practiced otherwise than as specifically described herein. Accordingly, this invention includes all modifications and equivalents of the subject matter recited in the claims appended hereto as permitted by applicable law. Moreover, any combination of the above-described elements in all possible variations thereof is encompassed by the invention unless otherwise indicated herein or otherwise clearly contradicted by context.



Claims
  • 1. A power tool comprising:a base; a movable support arm assembly for holding a tool unit, the support arm having a hub portion rotatably mounted to the base to permit rotation of the support arm relative to the base along an axis; a detent block having a plurality of generally parallel, planar surfaces, and at least one step, each of the steps separating respectively adjacent surfaces at different axial depths relative to each other; a detent pin carried on the base for movement in a direction generally parallel to the axis and generally perpendicular to the surfaces; and a biasing element urging the detent pin against the detent block; wherein each surface defines a range of possible bevel angle positions of the support arm, and each at least one step can abut the pin to limit motion of the support arm at a corresponding predetermined bevel angle; and wherein the detent block is adjustably mounted to the support arm to permit adjustment of the position of the step relative to the support arm.
  • 2. The power tool of claim 1, wherein the detent block is a unitary structure.
  • 3. The power tool of claim 1, wherein the hub portion includes a recess shaped to generally receive the detent block, the power tool further comprising at least one fastener operable to secure the detent block relative to the hub portion.
  • 4. The power tool of claim 3, wherein the hub portion includes at least one elongate hole through the hub portion in a generally concentric orientation relative to the axis, and wherein the fastener is a set screw extending through the elongate hole and threaded into the detent block.
  • 5. The power tool of claim 1, further comprising a linkage operable to move the detent pin.
  • 6. The power tool of claim 5, wherein the linkage includes a knob positioned generally at a side of the base that is opposite of the hub, wherein movement of the knob is operable to move the detent pin.
  • 7. The power tool of claim 1, wherein the detent block is generally arcuate, and wherein the detent block is mounted to the hub generally concentrically to the axis.
  • 8. The power tool of claim 1, further comprising a threaded bolt extending through at least one of the steps to adjust the bevel angle of the support arm at which the step contacts the pin.
  • 9. The power tool of claim 1, wherein the step is radially oriented relative to the axis and generally perpendicular to the surfaces.
  • 10. The power tool of claim 1, wherein the tool unit is a saw having a circular blade.
  • 11. The power tool of claim 1, wherein the block is mounted for adjustable movement relative to the arm, the power tool further comprising a pair of fine adjustment screws, each of the screws threaded through the arm to contact against the block, the screws respectively contacting the block generally in opposite directions, wherein the screws permit adjustment of the predetermined bevel angle.
  • 12. The power tool of claim 1, further comprising a threaded adjustment bolt extending through the step at a position contact the detent pin, rotation of the bold varying the predetermined bevel angle.
  • 13. A compound miter saw comprising:a base; a support arm pivotably mounted to the base for pivotable motion about an axis, the support arm supporting a saw having a circular blade; a detent block mounted to the support arm, the detent block having a series of stepped surfaces arranged concentrically relative to the axis, adjacent surfaces being separated from each other by a respective step; and a detent pin movably mounted to the base and aligned to contact perpendicularly against one of the surfaces, the support arm being free to pivot in a bevel angle range permitted by the pin along a respective one of the surface, at least one of the steps defining a respective pivot stop corresponding to a bevel angle of the support arm at which the detent pin abuts the step; wherein the block is mounted to the support arm in a manner such that the detent block is adjustably movable to a selected fixed position to vary the bevel angle of the support arm at which the detent pin abuts the step.
  • 14. The compound miter saw of claim 13, wherein the support arm includes a recess shaped to generally receive the block, and further including at least one fastener operable to secure the detent block relative to the support arm.
  • 15. The compound miter saw of claim 14, wherein the support arm includes at least one elongate hole extending to the recess, and wherein the fastener is a set screw extending through the elongate hole and threaded into the detent block.
  • 16. The compound miter saw of claim 13, further comprising a linkage operable to move the detent pin.
  • 17. The compound miter saw of claim 1, wherein the linkage includes a knob positioned generally at a side of the base that is opposite of the hub, wherein movement of the knob is operable to move the detent pin.
  • 18. The compound miter saw of claim 15, wherein the detent block is generally arcuate, and wherein the detent block is mounted to the support arm generally concentrically to the axis.
  • 19. The compound miter saw of claim 15, further comprising a threaded bolt extending through the step to adjust the bevel angle of the support arm at which the pin abuts the step.
  • 20. The compound miter saw of claim 13, wherein further comprising a biasing element to urge the detent pin toward the detent member.
  • 21. The compound miter saw of claim 13, wherein each of the steps is oriented generally radially relative to the axis.
US Referenced Citations (15)
Number Name Date Kind
5235889 Brickner et al. Aug 1993 A
5582089 Sasaki et al. Dec 1996 A
5623860 Schoene et al. Apr 1997 A
5819624 Brault et al. Oct 1998 A
5862734 Brunson et al. Jan 1999 A
5865079 Itzov Feb 1999 A
5870938 Brunson et al. Feb 1999 A
5907987 Stumpf et al. Jun 1999 A
5931073 Hoyer-Ellefsen Aug 1999 A
5988031 Wixey Nov 1999 A
6016732 Brault et al. Jan 2000 A
6101914 Brunson et al. Aug 2000 A
6397716 Garuglieri Jun 2002 B1
RE38122 Kondo et al. May 2003 E
20010042429 Brunson et al. Nov 2001 A1