The present invention relates to a beverage container cap, especially to a beverage container cap that includes a pivot valve and a waterproof gasket used in combination with each other to form a closed state and an open state. A liquid through hole and at least one vent are formed integrally on the waterproof gasket.
There is a portable beverage container available on the market. The beverage container is disposed with a cap easily operated to switch between a closed state and an open state, such as the cap revealed in U.S. Pat. No. D653,081, U.S. Pat. No. D688,093, U.S. Pat. No. 8,276,776, U.S. Pat. No. D547,607, U.S. Pat. No. 7,533,783, U.S. Pat. No. 8,191,727, U.S. Pat. No. 8,469,226, U.S. Pat. No. 8,622,237, U.S. Pat. No. 8,777,048, etc. The cap mentioned above mainly includes a cap body, a waterproof gasket, and a pivot valve. These parts are formed integrally by injection molding or extrusion molding. The waterproof gasket is made from flexible resin such as silicone while the cap or pivot valve is made from hard plastic material. The waterproof gasket and its mold are produced apart from the cap/or the pivot valve.
Take the cap revealed in U.S. Pat. No. D653,081 as an example. A liquid hole of the waterproof gasket is correspondingly fitted on a fluid hole of the cap while the pivot valve is tightly pressed against the liquid hole of the waterproof gasket and is able to be rotated pivotally and switched between a closed position and an open position. Thereby users can operate the pivot valve to switch from the closed state (not allowing users to drink) to the open state (allowing users to drink), or vice versa.
However, the above cap has the following disadvantages while in use. First the cap is arranged with a fluid hole and a vent hole. Thus pressure in the container is equal to the pressure of the atmosphere outside while fluid in the container flows out and users can drink fluid in the container smoothly. The fluid hole of the cap is directly corresponding to the liquid hole of the waterproof gasket and is opened/or closed by the pivot valve. Once the cap is further arranged with a vent hole, another special waterproof gasket for the vent hole is required. The special waterproof gasket for the vent hole is closed or opened along with the pivot valve. Thus not only production cost (such as the mold) is increased, the cost of installation is also raised. Moreover, the waterproof gasket for the vent hole has a smaller size. Thus it's not only difficult to install but also easy to fall off in use. There is a choking risk once the user swallows the small waterproof gasket. There is room for improvement and a need to provide a cap with new structure.
Therefore it is a primary object of the present invention to provide a beverage container cap that includes a pivot valve and a waterproof gasket used in combination with each other to form a close state or an open state. A liquid through hole and at least one vent are formed integrally on the waterproof gasket. Thus the cost for manufacturing a special waterproof gasket for a vent hole of a conventional cap with a pivot valve can be saved. The special waterproof gasket is not only difficult to be assembled on the vent hole of the cap but also easy to be detached and swallowed. Moreover, the efficiency of the cap is improved.
In order to achieve the above object, a beverage container cap of the present invention includes a cap body, a pivot valve and a waterproof gasket. The cap body is movably disposed on an opening on top of a beverage container. A valve seat with a chamber is arranged at a top surface of the cap body while a fluid through hole is set on bottom of the chamber, penetrating the cap body and communicating with an inner space of the beverage container. At least one vent hole is arranged around the fluid through hole.
The waterproof gasket is fixed on the fluid through hole on bottom of the chamber and including a liquid through hole corresponding to and communicating with the fluid through hole on bottom of the chamber of the cap body. At least one vent is disposed around the liquid through hole while the vent is corresponding to and communicating with the vent hole on bottom of the chamber of the cap body. The pivot valve is pivotally connected to and mounted in the chamber of the valve seat and including a hemispherical pivot part and a nozzle part. The hemispherical pivot part is located on bottom of the pivot valve and having a hemispherical surface while the nozzle part is formed by extension of the hemispherical pivot part. The hemispherical surface is tightly pressed against the liquid through hole of the waterproof gasket and is switched between a first pivot position and a second pivot position along with the movement of the pivot valve. A flow channel is disposed inside the nozzle part and two ends of the flow channel form a water inlet and a water outlet respectively. The water inlet is located at the hemispherical surface of the pivot part while the water outlet is located at one end of the nozzle part opposite to the end of the nozzle part with the pivot part. At least one lug is disposed around the hemispherical surface.
The water inlet on the hemispherical surface of the pivot valve is away from the liquid through hole of the waterproof gasket and the hemispherical surface is pressed against the liquid through hole of the waterproof gasket tightly when the pivot valve is pivotally rotated to the first pivot position. At the same time, the lug around the hemispherical surface of the pivot valve is closely pressed against the vent of the waterproof gasket. Thus the beverage container cap is in a closed state. The water inlet on the hemispherical surface of the pivot valve is aligned with and communicating with the liquid through hole of the waterproof gasket when the pivot valve is pivotally rotated to the second pivot position. At the same time, the lug around the hemispherical surface is away from the vent of the waterproof gasket and the vent hole of the cap body is communicating with the outside through the vent of the waterproof gasket. Thus the beverage container cap is in an open state.
Refer to
The cap body 10 is movably disposed on an opening on top of a beverage container 40. A valve seat 11 with a chamber 11a is arranged at and projecting upward from a top surface of the cap body 10, as shown from
The shape and space of the chamber 11a is designed to be fitted with the pivot valve 20. Take the beverage container cap 1 in
The waterproof gasket 30 is aligned with and fixed on the fluid through hole 13 or the fluid through-hole flange 14 on bottom of the chamber 11a correspondingly, as shown in
The pivot valve 20 is pivotally connected to and mounted in the chamber 11a of the valve seat 11, as shown in
As show in
As shown in
Refer to
When the pivot valve 20 is pivotally rotated to the second pivot position (as shown from
Refer to
Moreover, as shown in
Furthermore, in order to allow easy assembly and positioning of the waterproof gasket 30 on the valve seat 11 (chamber 11a) of the cap body 10, a circular groove 17 is arranged at the bottom of the chamber 11a of the valve seat 11. The circular groove 17 is used for mounting and fixing the waterproof gasket 30.
Additional advantages and modifications will readily occur to those skilled in the art. Therefore, the invention in its broader aspects is not limited to the specific details, and representative devices shown and described herein. Accordingly, various modifications may be made without departing from the spirit or scope of the general inventive concept as defined by the appended claims and their equivalents.
Number | Name | Date | Kind |
---|---|---|---|
3089626 | Kubiliunas | May 1963 | A |
3542256 | Waterman | Nov 1970 | A |
3718238 | Hazard | Feb 1973 | A |
4219138 | Hazard | Aug 1980 | A |
5065909 | Pino | Nov 1991 | A |
5477994 | Feer | Dec 1995 | A |
6390341 | Ohmi | May 2002 | B1 |
D547607 | Forsman | Jul 2007 | S |
7533783 | Choi et al. | May 2009 | B2 |
D653081 | George | Jan 2012 | S |
8191727 | Davies et al. | Jun 2012 | B2 |
8215511 | Lin | Jul 2012 | B1 |
8276776 | Roth et al. | Oct 2012 | B2 |
8469226 | Davies et al. | Jun 2013 | B2 |
D688093 | Roth et al. | Aug 2013 | S |
8622237 | Choi et al. | Jan 2014 | B2 |
8668106 | Joy | Mar 2014 | B1 |
8672174 | McMullin | Mar 2014 | B1 |
8777048 | Choi et al. | Jul 2014 | B2 |
20040217139 | Roth | Nov 2004 | A1 |
20120181277 | Wang-Wu | Jul 2012 | A1 |
20120181303 | Swanick | Jul 2012 | A1 |
20120234789 | Mason | Sep 2012 | A1 |