This invention is related to containers with pockets or inserts which can hold a frozen medium in order to chill the contents, or keep the contents of the container at or below a desired temperature.
The maintaining of a chilled liquid in a cool state has been the object of various devices in the past. These devices have taken various design configurations. The first is an insulated cover which fits over a container which holds the liquid. The insulation retards heat transfer from the walls of the container surrounded by the insulation.
The second-type configuration includes an inner container for receiving a liquid holding container, such as a can or bottle, and an outer container spaced about and away from the inner container. The space between the inner and outer container walls receives and holds either a chilling agent or a heating agent.
A third-type configuration includes an outer container which may be made of insulation or of a rigid thermoplastic material, and an interior cooling container adhered to the inside face of the outer container. This cooling container can take several formats. A first cooling structure is defined by an insert with an inner and an outer wall with a cooling agent contained between. An insulation layer may exist between the outer wall of the insert and the ultimate outer wall of the outer container. The device is intended to receive a liquid holding container, such as a can or a bottle within the cooling insert.
A second cooling sleeve is defined by a flexible insert with plural cooling agent packets each holding a cooling agent. This flexible “blanket” is supported to line the inside wall of the outer container and to again receive a separate insertable liquid holding container, such as a can or a bottle.
A variation on this has been a cup surrounded by a flexible cooling “blanket”, which in turn is surrounded by an insulation “blanket”. With these variations, the insulation blanket is generally held in place by a fastener, which also permits its removal.
A fourth-type configuration includes a rigid double-walled mug with an insertable bottom. A space between the inner and outer wall receives a refrigerant or a chemical gel having chemically loaded freeze crystals. The refrigerant and/pr the chemical gel is charged into the space between the walls through a bottom plug hole. Because of the chemical nature of the freeze substance the inner and outer walls of the mug must be securely attached and permanently sealed at their ends where they meet, proximate the drinking lip of the mug. This requires that the walls of the mug be thick and inflexible (rigid). The bottom is sealed with a plug. These fourth-type configured mugs are usually not dishwasher nor microwave safe.
A drawback of all of the foregoing structures is that they are relatively large and bulky, and it is generally difficult to drink from the can, cup or bottle held in the cooling or heating structure. A further drawback of the foregoing double-walled structures, which are not intended to hold a can, cup or bottle, is that they are also bulky and relatively heavy and may be rendered unusable after being subjected to the heat of a dishwasher or microwave oven.
What is desired is an improvement to these structures which itself is in the shape of a cup, a mug, or a pitcher, and which uses a safe cooling material, such as frozen water.
An objective of the present invention is to provide a cooling beverage container with a chilling structure containing freezable water.
A second objective of this invention is to provide such a container with a chilling insert which insert has been pre-charged and sealed with the cooling material before it is positioned within the container.
Another objective of this invention is to provide the chilling insert with a permanent snap-in capability.
An additional objective of this invention is to provide easy access to the interior of the container for installing the chilling insert.
The objectives of this invention are realized in a thermoplastic beverage container which can be shaped as a glass, a mug, a cup or a pitcher. The container has a uniformly thick cylindrical wall which flares (tapers) outwardly from the top to the bottom, at an angle selected in the range of 3-5 degrees from the vertical. An internal chill sleeve, insert, is inserted through the open bottom of the cylinder wall. This chill sleeve insert is frustoconical-shaped, i.e., it is a truncated cone with the same taper angle as the container's cylindrical wall.
The sleeve insert is hollow walled with a closed, permanently sealed upper end (edge) and an open bottom. The sleeve bottom receives a snap-in toroidal-shaped closure. The sleeve hollow wall is filled (charged) with chilling fluid through its bottom opening and then the toroidal closure is snapped into place. The chilling fluid can be ordinary water, or distilled water, or water having a food-type additive. The volume of the fluid poured into the sleeve insert's hollow wall is metered so that it will fill the interior of the wall when the fluid is frozen, i.e., it goes through a change of phase where expansion occurs. The fluid can be charged into the wall at an elevated temperature of about 100-125 F to create a slight vacuum within the wall, at room temperature. This will reduce or eliminate gas pressure build-up when the fluid freezes and expands.
The toroidal closure for the sleeve insert includes sealing and retaining rings which snap into receiving grooves in the hollow wall. Once the toroidal closure is in position, the chill fluid held in the hollow wall of the insert remains encapsulated.
The chill sleeve is inserted through the open bottom of the cylinder (cylindrical wall) until it stops because of “press-fit” conditions wherein the sleeve insert is frictionally wedged into the inner face of the cylindrical wall. Friction between the inside face of the cylinder and the outside face of the sleeve insert will hold the sleeve insert permanently in place. To assure that the sleeve insert does not thereafter move, even with repeated heating and cooling, sealing and retaining rings in the outside face of the sleeve insert are used to engage receiving grooves in the inside face of the cylinder wall.
The cylinder wall (cylindrical wall) is closed-off at its bottom after the sleeve insert is in place. This bottom closure is a hollow disk having a permanent top wall (top face) attached to a tapered side wall and a separate snap-in bottom wall (bottom face). The bottom closure, being a hollow disk, is also charged with chill fluid at an elevated temperature, wherein the procedure is like charging the sleeve insert. Again, the volume of fluid charged into the bottom closure is metered to take into consideration expansion upon freezing. Once charged, the bottom wall (bottom face) of the bottom closure is snapped into place to encapsulate the chill fluid. Retaining and sealing rings are utilized between the inside face of the tapered side wall and the snap-in bottom wall (bottom face).
The charged and assembled bottom closure is then snapped into the bottom lip of the cylinder (cylindrical wall). Retaining and sealing rings are utilized between the outside face of the tapered sidewall and the inside face of the tapered cylinder (cylindrical wall).
As an alternative to retaining and sealing rings, sonic welding can be used to permanently join and/or bond mating surfaces.
With a chill fluid of ordinary water, a 9-10 percent expansion upon freezing is calculated. Depending upon the purity of distilled water, and/or the characteristics of any food additives, a 10-11.5 percent expansion upon freezing is calculated.
The freezing point of ordinary water is about 32 F. The freezing point of distilled water can be as low as 28 F. With either of these two chill fluids, a visual indication of chill fluid temperature will be evident only at about the change of phase transition, i.e., changing from a solid to a liquid. Adding a food coloring to ordinary water can provide a stronger visual indication of frozen and liquid states. However, any addition of any substances to distilled water will change its chemistry and its freezing point. The addition of a few drops of olive oil to ordinary water and the use of an FDA approved emulsifier will produce a chill fluid with visual indicators of temperature as it goes from the oil congealing to freezing, in a temperature range of about 33-43 F. In the alternative, a color temperature strip can be glued to the outside face of the cylinder to indicate temperature.
A spiral tower can be positioned in the middle of the beverage container, i.e., the cylindrical wall member, and attached to the inside (top) face of the bottom closure. This spiral tower is ribbon-shaped, or tubular shaped, and charged with chill fluid. The position of this spiral tower in the middle of the cylindrical member promotes mixing when a beverage is poured into the container.
A mouthpiece can be inserted onto the top lip of the container. This mouthpiece covers the entire top of the container and can inhibit beverage being spilled. A cover cap can be positioned over the mouthpiece.
The features, advantages and operation of the present invention will become readily apparent and further understood from a reading of the following detailed description with the accompanying drawings, in which like numerals refer to like elements, and in which:
The present invention is thermoplastic beverage container in the shape of a glass, a mug, a cup, or a pitcher, which has hollow members containing a chilling fluid, usually frozen water, i.e., ice. Ordinary water normally freezes, i.e., turns into ice, at 32 F. Beverages for American taste are often considered best when served “ice cold”. Ice cold, however, means a different temperature for different and various types of beverages. Beers, wine, soft drinks, juices, milk, and water may all be served at different ideal ice-cold temperatures. Typically, the temperature range for serving beverages extends from about 40 F to about 60 F. In this temperature range, ice chilling or ice-melt chilling is quite satisfactory.
A chilled beverage begins to warm once it is poured into a beverage container. Chilling the beverage container prior to serving the drink only keeps the beverage chilled for a short period of time. To keep the beverage cool longer ice cubes could be added to the beverage. This, however, results in a “watered-down” drink. The present invention encapsulates the ice within cavities in the drinking container itself, thereby eliminating any watering-down.
The thermoplastic beverage container,
The body 21, has is cylindrically shaped having a cylindrical wall 29 which is tapered, outward, at an angle selected in the range of about 3-5 degrees from vertical. The cylindrical wall has a linear surface from top to bottom. Thus the bottom has a larger diameter than the top (lip). A handle loop is attached to the cylindrical wall when the container is constructed for use as a mug, cup or pitcher. The container body 21 has a hollow bottom (bottom closure) 33 and includes a hollow chill sleeve insert 35. Both the hollow insert 35 and the hollow bottom 33 enclosure are charged with, i.e., they encapsulate, a quantity of chill fluid, such as water. Each are shown in outline in
The cylindrical wall 29 of the container's body 21 is a solid wall of uniform thickness,
The hollow sleeve insert 35 is also frustoconical-shaped with a top opening and a bottom opening and a wall taper identical to the taper of the cylindrical wall 29,
The handle 31 is hollow to reduce temperature transfer between the container and the hand of a person grasping the handle. Insulation pads 41 positioned at the mounting point of the handle to the outside face of the cylindrical wall 29 further reduce the temperature transfer between the handle 31 and the cylindrical wall 29 of the container.
The sleeve insert 35 position in the container body 21 on the inside face of the cylindrical wall 29 is above and away from the bottom 33 a distance of about ⅛ to ⅜ inches. The top of the sleeve insert 35 is about 1 inch below the top lip of the cylindrical wall 29, with the insert 35 extending along the entire body between those two measurements.
Ordinary water expands about 9-10% upon freezing. Thus, when water is encapsulated in any of the hollow members of the present invention, a “head-space” for about 9-10% expansion is provided. That “head-space” would typically be filled with air. Without a partial vacuum, as the water begins to freeze, it will begin to expand. With this expansion, the air in the “head-space” will be compressed. A gas pressure build-up will occur. With such an increase in pressure, the freezing point (freezing temperature) of the water 39 will change. The freezing point will be lowered. This is an undesirable event.
However, if a partial vacuum is created in an encapsulation chamber, the pressure above the water will not increase significantly as the water expands to freeze. Under a partial vacuum, a certain number of water molecules will evaporate into the “head space” above the water when the water is at room temperature. As the encapsulation cavity is cooled, the water molecules in the “head-space” will go back into solution. water is cooled and is being frozen and begins to expand, the water molecules in the head space will go back into solution. As the water begins to freeze and expand, there will be little gas pressure increase in the “head-space”. Thus the water freeze at about 32 F.
Thus, the water is metered into each hollow member of the invention which encapsulates the fluid. The water is charged at an elevated temperature of about 100-125 F. This expands the “head-space” air prior to sealing the encapsulation space. After the encapsulation space is sealed and the water cools a slight negative pressure is created within each sealed encapsulation, i.e., a slight vacuum is created. This is enough to keep the freezing temperature of the water at about 32 F.
The chill sleeve insert 35, being a hollow-walled cylinder is shown in
A pair of retaining and sealing rings 47 extend annularly about the outside face 45 of the sleeve insert 35, with one being located proximate the top of the insert 35 and the other being proximate the bottom of the insert 35. These retaining and sealing rings 47 are each made of an electrometric plastic material, such as TPE, TPV, and Styroflex® (BASF Corporation).
The hollow container's bottom closure 33,
The slot 57 in the top face 51 of the bottom closure is shown in cross-sectional detail in
The connection of the bottom closure 33 to the cylindrical wall 29 is shown in
The hollow wall of the sleeve insert 35 has a toroidal-shaped bottom wall 75 closure,
The top and bottom annular sealing and retaining rings 47 on the outside face 49 of the sleeve insert 35 are shown engaging respective top and bottom receiving grooves 85 in
The hollow spiral tower 43 can either have a ribbon shape with a rectangular cross-section,
Many changes can be made in the above-described invention without departing from the intent and scope thereof.
For example, alternatively, the bottom 33 and the chill sleeve insert 35 can each be molded as complete hollow enclosures with a fill port. This port can be plugged once the fluid is charged in the enclosures. Further, the slight vacuum can be created in alternative methods. Such as, filling a hollow enclosure and then extracting a portion of the fluid to create the vacuum. Alternatively, a hollow enclosure can first be heated with a very warm gas or steam, the fluid charged, and the hollow enclosure sealed. As it cools the vacuum will be created.
It is therefore intended that the above description be read in the illustrative sense and not in the limiting sense. Substitutions and changes can be made while still being within the scope and intent of the invention and of the appended claims.