The present invention relates to containers for storing, serving or drinking cooled liquids, and particularly to sport bottle containers.
Containers have long been used storing, serving or drinking liquids. Liquids can be cooled by freezing the liquid or adding ice, but some containers have included cold packs, freeze packs or phase change material packs to keep liquid in the container cooled. Examples include U.S. Pat. Nos. 3,840,153, 5,009,083, 5,129,238, 5,456,090, 5,507,156, 6,494,056, 6,584,800, 6,761,041, 6,938,436 and 7,051,550, all incorporated by reference. However, none of these various designs provide an optimal solution for keeping the liquid in the container cold.
Some of these containers include the phase change material in the peripheral walls of the container. While this is a solution that rapidly cools the liquid added inside the container, it also tends to take up more space in the freezer, and leaves an exposed outer surface of the container which is quite cold for handling the container and may “sweat” or have significant condensation problems on the outside of the container during use.
Some of these containers include a straw or drinking opening which is unbalanced relative to the freeze pack, having either or both the drinking opening and the freeze pack offset relative to a central axis of the container. See for instance U.S. Pat. Nos. 3,840,153 and 5,129,238. The big advantage to such an offset arrangement is that the attachment mechanism for the freeze pack can be designed entirely separate and without concern for the drinking opening. It is generally preferred however, to provide a uniform balanced feel to the container, both during drinking (which requires the drinking opening to be centered in the container) and during handling such as when the container is only partially full (which requires the freeze pack to be centered in the container).
The containers disclosed in U.S. Pat. Nos. 5,009,083 and 5,507,156 center both the freeze pack and the straw/drinking opening in the center of the container by having the straw centered in an annular freeze pack, but the annular shape of the freeze pack is overly complicated and expensive to manufacture. The containers disclosed in U.S. Pat. Nos. 5,456,090, 6,494,056 and 6,584,800 center both the freeze pack and the drinking opening but have a relatively flimsy (and unnecessarily complicated) attachment arrangement for the freeze pack. The container can be treated roughly (such as when thrown from one consumer to another), and the freeze pack should have a simple, robust attachment mechanism to keep it in the center of the beverage container. Better designs for containers having freeze packs therein are needed.
The present invention is container having a thermal element therein. The thermal element is preferably aligned on a central axis of the container. The thermal element includes a material such as a phase change material for cooling the liquid in the container. The thermal element attaches to the container such as by a threaded connection, making full peripheral contact between the thermal element and the container to support the thermal element. The container then has a drinking or pouring opening aligned relative to the thermal element, but completely separated from the thermal element.
While the above-identified drawing figures set forth preferred embodiments, other embodiments of the present invention are also contemplated, some of which are noted in the discussion. In all cases, this disclosure presents the illustrated embodiments of the present invention by way of representation and not limitation. Numerous other minor modifications and embodiments can be devised by those skilled in the art which fall within the scope and spirit of the principles of this invention.
The present invention includes a container 10 for holding a liquid, and particularly for heating or cooling the liquid placed inside the container 10. The container 10 has a bottom body portion 12, which includes a base 14 and upwardly extending side walls 16. The base 14 allows the container 10 to be placed on a flat surface, such as a table or counter. The side walls 16 extend around a periphery to define a container interior 18 for receiving liquid. The top of the side walls 16 define a relatively wide mouth 20 of the body 12. The mouth 20 of the body 12 is preferably (but not necessarily) used for filling the container 10. The container body 12 can be formed in any desired shape, with a preferred shape being cylindrical with a relatively constant wall thickness for simplicity and low cost in manufacture. If desired, the body could alternatively be rectangular or molded, including molded in any ornamental container shape.
A lid 22 attaches at the top of the body portion 12, covering the body mouth 20. The lid 22 includes a drinking opening 24. The lid 22 is preferably readily detachable and reattachable to the body 12, so the lid 22 can be quickly removed for refilling the container 10 and then replaced. In the preferred embodiment, the lid 22 includes threads 26 which mate with corresponding threads 28 on the container body 12. In this way, the lid 22 can be readily screwed onto or off of the container body 12. The threaded attachment defines a central axis 30 for the container 10. Alternatively, due to the design of the lid 22, refilling the container 10 could be accomplished solely through the drinking opening 24, and the lid 22 could be permanently attached to the body 12. In any event, the lid 22 is preferably molded from plastic such as by injection molding, separately from the body 12. Being formed separately from the lid 22, the body 12 can be formed through a different low cost method such as by blow molding. Depending upon the desired use of the container 10, the body 12 could be formed of other non-plastic materials or in other methods as known or invented in the container art.
The drinking opening 24 preferably includes structure facilitating drinking, and also preferably includes structure facilitating sealing. In the preferred embodiment, the drinking opening is a relatively wide drinking mouth 24 extending upwardly from the lid 22, with threads 32 on the periphery of the drinking mouth 24 for receiving a cap 34. In the preferred embodiment, the drinking mouth 24 and its threads 32 are aligned with the central axis 30. Alternatively the drinking opening could be a straw, straw opening, spout, pouring opening or similar structure as known or invented in the container art. The sealing structure could be a sport spout or a flip cap, or any other sealing structure as known or invented in the container art. If desired, the drinking opening could be offset from the central axis 30 of the container 10.
A thermal pack 36 is received in the container 10 for thermal exchange with the liquid in the container 10. The preferred thermal pack 36 is a phase change material or freeze pack formed as a plastic enclosure with a high latent heat of fusion material sealed therein. When the container 10 is intended for beverages, the phase change material should be non-toxic, so any leakage of phase change material will not have harmful effects. A preferred phase change material is water, which can be placed into a home freezer and frozen, and then melts inside the thermal pack 36 to keep the liquid in the container 10 cold. For ease of description, the thermal pack will be referred to as a freeze pack 10. However, the invention is equally applicable if the thermal pack 10 has a different construction, such as to keep the liquid in the container 10 warm.
The freeze pack 36 is supported by the lid 22, preferably aligned with the central axis 30. By aligning the freeze pack 36 with the central axis 30, the container 10 feels balanced to the user, and is less likely to tip when partially or largely empty. Aligning the freeze pack 36 with the central axis 30 also makes the container 10 fly truer if one consumer tosses the container 10 to another user, because the center of gravity of the freeze pack 36 matches the central axis 30 of the container 10. Further, aligning the freeze pack 36 with the central axis 30 also makes the lid 22 easier to screw onto or off of the body 12, because the freeze pack 36 will keep the same general location in the body 12 when the lid 22 is screwed relative to the body 12. For instance, if the liquid in the container 10 freezes around the freeze pack 36, the lid 22 and the freeze pack 36 (once released from the ice) may still be removable because the freeze pack 36 travels in a line upward when the lid 22 is unscrewed. The preferred freeze pack 36 is shaped as a cylinder, making manufacture of the freeze pack 36 easy and low cost. If desired, the freeze pack can be provided with an alternative shape, such as rectangular or with an ornamental molded shape.
Though detachable for separate freezing, the freeze pack 36 can be firmly attached relative to the container 10. The preferred method of firm attachment is through a threaded connection having in excess of 360° rotation to securely thread the freeze pack 36 to a receiving tube 38 on the container 10. In the preferred embodiment, the freeze pack 36 has male threads 40 on one of its ends which mate with female threads 42 on the lid 22. The receiving tube 38 makes full and continuous peripheral contact with the threaded end 40 of the freeze pack 36 to equally hold the freeze pack 36 in place in all directions. The receiving tube 38 includes a horizontally disposed back stop wall 44 (called out in
Extensions 46 (called out in
The receiver tube 38 can have a larger, smaller or the same diameter as the drinking or pouring opening 24. In the preferred embodiment, the receiver tube 38 has an outer diameter which is slightly smaller than the inner diameter of the drinking opening 24. This permits a vertical line of sight into the interior 18 of the container 10, so the consumer can readily understand the function of the container 10 and lid 22 and so the consumer can readily consider filling the container 10 through the slots 48 of the lid 22.
Other embodiments of the invention such as shown in
With the design of the present invention, the freeze pack 36, 56 can be removed from the lid 22 and from the container 10 for cooling such as in a home freezer. Then, the freeze pack 36 can be screwed into the lid 22 (or the container body 12 in the embodiments of
Although the present invention has been described with reference to preferred embodiments, workers skilled in the art will recognize that changes may be made in form and detail without departing from the spirit and scope of the invention.
This application claims priority from provisional application No. 60/818,090, filed Jul. 3, 2006.
Number | Name | Date | Kind |
---|---|---|---|
3840153 | Devlin | Oct 1974 | A |
5009083 | Spinos et al. | Apr 1991 | A |
5129238 | Schwartz et al. | Jul 1992 | A |
5456090 | McCoy | Oct 1995 | A |
5507156 | Redmon | Apr 1996 | A |
6123065 | Teglbjarg | Sep 2000 | A |
6494056 | Roth et al. | Dec 2002 | B1 |
6584800 | Roth et al. | Jul 2003 | B1 |
6761041 | Roth et al. | Jul 2004 | B2 |
6938436 | Roth et al. | Sep 2005 | B2 |
7051550 | Roth et al. | May 2006 | B2 |
7069739 | Porter | Jul 2006 | B2 |
Number | Date | Country | |
---|---|---|---|
20080000259 A1 | Jan 2008 | US |
Number | Date | Country | |
---|---|---|---|
60818090 | Jul 2006 | US |