The present invention relates to beverage containers, and particularly relates to containers for supplying beverages to consumers. The invention has particular utility for the storage and supply of carbonated and other sparkling drinks, but is also suitable for use with other types of drinks. The invention also relates to the component parts of the beverage container.
Various forms of container that have a separate ring or collar carrying a screw thread for securing a cap to the container are known. The present invention seeks to provide a beverage container comprising a container body, collar and cap that provides improvements over the prior art, for example in the securement and sealing of the cap to the container body, disengagement of the cap and/or collar from the container body and ease of use of the closure and/or the container body.
A first aspect of the present invention provides a beverage container comprising a container body including an opening, the container body including a plurality of recesses in an exterior surface thereof, a cap to close the opening, and a collar comprising a plurality of flaps or other parts arranged spaced apart from each other along the circumferential extent thereof, each flap or other part being engageable with a respective one of said recesses to mount the collar to the container body, the cap and the collar including cooperating securement means by which the cap may be secured to the collar, thereby securing the cap to the container body when the collar is mounted on the container body.
Preferably the cap, the collar (or other part), and the container body are configured such that removal of the cap from the container body causes or allows removal of the collar from the container body.
An advantage of the invention is that by providing a collar on a beverage container body, to which a cap may be secured in order to close the container, which collar preferably may be removed from the container body, enables the container body to be free from exterior threads or other securement means for securing the cap thereto. Providing a beverage container that is free from exterior threads or other securement means enables the provision of a truly practical beverage container from which consumers may drink directly. This is because the presence of threads adjacent to the opening is a major reason for bottles and known wide-mouth containers being impractical as truly acceptable drinking vessels for consumers.
The recesses may be formed by the underside of a radially outwardly projecting rim of the container body, together with ribs or stops provided underneath the rim. Preferably, the collar is retained on the container body by being trapped beneath the rim. Additionally or alternatively, the recesses may be formed by a depression or indentation in an exterior surface of a wall of the container body or within the rim (e.g. at the lower edge thereof) of the container body. The container body may thus be provided with a plurality of recesses provided spaced from each other around the exterior circumference of a wall of the container body or of the container rim.
Preferably the cap, the collar (or other part) and the container body are configured such that movement of the cap with respect to the collar and/or the container body causes or allows disengagement of the collar from the container body.
Preferably, such movement of the cap with respect to the collar and/or the container body that causes or allows disengagement of the collar from the container body comprises rotation (e.g. an unscrewing rotation) of the cap with respect to the collar and/or the container body. For example, an initial movement of the cap with respect to the collar may allow a continued or subsequent movement of the cap to cause the cap and the collar both to move with respect to the container body. Even more preferably, such movement of the cap and the collar with respect to the container body causes or allows one or more parts of the collar to move outwards (e.g. radially outwards) with respect to the container body, thereby disengaging the collar from the recesses in the container body. Once the collar is disengaged from the container body, preferably the collar is removed or is removable from the container body.
In preferred embodiments of the invention, the collar can engage with and/or can be secured to the container body independently of the cap. That is, preferably the collar does not require the action or the presence of the cap in order for the collar to be engaged with and/or secured to the container body. More preferably, the collar (or other part) has a relaxed and/or rest and/or default configuration in which its radial dimensions enable or ensure engagement and/or securement of the collar with the container body. For example, one or more flaps or other parts of the collar (or other part of the container) preferably have a relaxed configuration in which they provide a minimum inner diameter that is smaller than a maximum outer diameter of a part (preferably a retaining part) of the container body (preferably near to the opening of the container body). In a preferred arrangement, a first set of the flaps may have a relaxed configuration in which they provide a minimum inner diameter smaller than the maximum outer diameter of part of the container whereas a second set of the flaps have a relaxed configuration in which they provide a minimum inner diameter larger than the maximum outer diameter of said container part.
The cap is arranged so that, in the closed position, it prevents the flaps from moving radially outwards so they cannot disengage from the recesses. However, in a preferred arrangement, the cap (and specifically the threadforms thereon) is shaped to press the flaps radially inwards as the cap is rotated to the closed position relative to the collar so as to force the flaps further into the recesses and to positively hold them there. The flaps are thus tightly secured between the container and the cap by this camming action of the cap which urges the flaps radially inwards. Preferably, the cap is arranged to urge all of the flaps inwards in this manner even those, such as the first set referred to above, which are inclined inwards. The second set of flaps which are inclined outwards will, of course, also need to be urged inwards by the cap to engage them with the respective recesses.
When the cap is unscrewed an action of the cap and/or an action of the container preferably forces (e.g. flexes) the flaps or other parts of the collar outwardly to enable the collar to be removed from the container body, although this may not be necessary for the second set of flaps as these may move outwards by their own resilience as they assume their relaxed, unscrewed position. Preferably the flaps or other parts of the collar are flexible, more preferably resiliently flexible.
For those embodiments of the invention in which movement of the cap with respect to the collar allows disengagement of the collar from the container body, this preferably is due to one or more features of the cap. For example, the cap may include one or more recesses in which one or more parts of the collar may be accommodated (e.g. following an initial movement of the cap with respect to the collar). Such recess(es) may allow outward movement (e.g. radially outward movement) of the part(s) of the collar with respect to the container body and consequently may allow disengagement of the collar from the container body. Advantageously, such recess or recesses of the cap may comprise part of a thread of the cap, e.g. as explained later in this specification.
For those embodiments of the invention in which movement of the cap and collar with respect to the container body causes disengagement of the collar from the container body, this preferably is due at least in part to one or more features on the container body. For example, one or more parts of the collar may ride up or over one or more features of the container body in the form of protrusions, ramps, ribs or walls provided on the exterior of the container body (or container rim). Thus, for example, if the recesses on the container body are formed by an outwardly projecting rim of the container body with ribs or stops beneath the rim, the collar may be disengaged from the container body by one or more parts of the collar riding up one or more ramps adjacent the ribs or stops, causing the collar to disengage from said recesses. Additionally or alternatively, if recesses are provided in an exterior surface of the container body or container rim, the collar may be disengaged from the container body or rim by one or more parts of the collar riding up a wall or ramp at the end of a corresponding recess in which the part is engaged, causing the part to exit the recess and thus causing the collar to disengage from the recess in the container body or rim. The shape of the container thus drives the flaps outwards to disengage them from the recesses in the manner of a cam as the collar is rotated relative to the container.
Once the parts of the collar have ridden up out of the respective recesses, it is desirable to reduce the risk of the parts accidentally re-engaging the recesses or an underside of a projecting rim. Accordingly, the surface onto which the parts of the collar ride up onto out of the recesses preferably has a tapered form such that its diameter reduces towards the open end of the container. Said parts of the collar (or at least some of them) are preferably arranged to assume a diameter smaller than that of said surface so they have a tendency to ride up the surface towards the smaller diameter end and thus facilitate disengagement of the collar from the container. In embodiments in which the collar parts engage recesses in the wall of the container body, the surface having the tapered form is the external wall of the container body adjacent the opening. In embodiments in which the collar parts engage under a projecting rim or recesses within the rim, the surface having a tapering form is the external surface of the rim leading to the container opening.
Advantageously, the invention may include the aforesaid feature(s) on the container body and the aforesaid features of the cap, e.g. functioning cooperatively. Thus, the feature(s) on the container body may cause part(s) of the collar to move outwardly, and the feature(s) of the cap may accommodate such outward movement of the part(s) of the collar, for example.
Preferably the flaps or other parts of the collar are indirectly connected to each other by means of a ring portion of the collar to which the flaps or other parts are directly connected. When the collar is attached to the container body with the container body upright and the opening uppermost, preferably the ring portion of the collar is the lowermost portion thereof, with the flaps or other parts extending substantially vertically therefrom. The flaps or other parts of the collar preferably include radially-inwardly projecting shoulders which preferably engage with the recesses of the container body to retain the collar thereon.
In a preferred arrangement, the collar may have two sets of flaps, e.g. arranged alternately around the ring portion, a first set of flaps which naturally assume positions at a first radius and a second set of flaps which naturally assume positions at a second radius larger than the first radius. The first set of flaps may, for example, be inclined radially inwards by a few degrees relative to the ring and the second set of flaps inclined radially outwards by a few degrees relative to the ring. In an unstressed state, the first set of flaps is preferably arranged to engage the container and have to be resiliently flexed outwards to disengage them from the container whereas, in the unstressed state, the second set of flaps are arranged so they have to be resiliently flexed inwards to engage the container.
The cap is releasably securable to the container body via the collar, preferably by means of a threaded engagement with the collar. Consequently, the (or each) securement means of the collar and/or the cap preferably is a thread. The threaded engagement may comprise a screw-threaded engagement. Preferably, however, the threaded engagement is a bayonet-style engagement. The term “thread” as used herein includes (at least in the broadest aspects of the invention) continuous and discontinuous threads, (e.g. continuous and discontinuous screw threads), and bayonet-style threads, for example. Threads used in relation to the invention may, for example, comprise a plurality of segments (each thread segment comprising a said securement means), in which case the thread may be discontinuous (e.g. a discontinuous screw-thread or a bayonet-thread), or it may be substantially continuous because the effect is that of a substantially continuous screw-thread pattern.
In preferred embodiments of the invention, the collar includes a bayonet thread on the one or more protrusions, such that the cap is secured to the container body by being secured to the collar when the collar is mounted on the container body.
The (or each) bayonet thread preferably comprises a substantially circumferentially-extending part and a substantially axially-extending part. The substantially circumferentially-extending part of the thread provides the securement (via the collar) of the cap to the container body, by preventing axial movement between the cap and the container body; it may include a slight incline such that it extends over a small axial distance along its circumferential length. The substantially axially-extending part of the thread enables a protrusion engageable with the thread to become engaged therewith and/or disengaged therefrom. However, at least in some embodiments of the invention (as explained below) the bayonet thread may comprise only a substantially circumferentially-extending part, and may not include a substantially axially-extending part.
Preferably, a plurality of bayonet threads is provided. Thus, the number of bayonet threads preferably is at least two, more preferably at least four, even more preferably at east six, e.g. eight or more. The bayonet threads preferably are substantially evenly spaced around the circumference of the cap or collar. Preferably, each flap (or other part) of the collar carries one of the bayonet threads.
The (or each) stop member of a bayonet thread may for example comprise a step, ledge, obstruction or projecting member of the bayonet thread over which a respective protrusion (engaged with the bayonet thread) must pass in order to disengage the protrusion from the bayonet thread. Most preferably, the (or each) stop member of the bayonet thread comprises a step between two axially differing levels of the bayonet thread (the axis being an axis of the circumferentially-extending thread, and being the same as the axis extending through the opening of the container body when the cap is secured to the container body).
For those embodiments of the invention in which the bayonet thread(s) of the invention is/are provided in a skirt of the cap, as described earlier in this specification, each bayonet thread preferably includes a radially-outwardly extending recess, for example for accommodating a radially-outward protrusion provided on the collar. The recess preferably is provided substantially at an end region in the disengaging direction, of the substantially circumferentially-extending part of the bayonet thread. That is, a protrusion on the collar preferably is able to extend into the recess when the cap and the collar are rotated with respect to each other as far as possible in the disengaging direction. Consequently, when the cap and the container body are in this rotational orientation with respect to each other, and the cap is lifted axially away from the container body, the collar preferably is removed from the container body together with the cap, by means of an outward flexing or movement of parts (e.g. flaps) of the collar accommodated by the recesses provided in the bayonet thread. It should be understood that for such embodiments of the invention, it is not always necessary for the bayonet thread to include an axially-extending part in addition to the generally circumferentially-extending part of the thread, because it may not be necessary for the cap to be separated from the collar.
In preferred arrangements, the threadform(s) on the cap provide two functions, first they provide securement of the cap to the collar in the axial direction and, secondly, they provide a camming action to urge the flaps of the collar radially inwards to engage the flaps securely against the recesses in the container body.
The opening of the container body may be a narrow-mouth opening, e.g. a bottle-type opening. Such an opening may have a diameter of less then 40 mm, for example. Conventional standard bottle mouth sizes include diameters of 28 mm and 38 mm, and the opening of the container body of some embodiments of the present invention may have such a diameter.
Alternatively, the opening of the container body may be a wide-mouth opening. By a “wide-mouth opening” is meant (at least in its broadest sense) an opening of a size suitable for a person to drink from the container in the same manner as from a drinks glass or similar drinking vessel. That is, in its broadest sense, the wide-mouth opening of the container (for embodiments of the invention having a wide-mouth opening) generally renders the container suitable as a drinking vessel from which a beverage supplied in the container may be conveniently drunk (in contrast to conventional narrow-necked bottles and ring-pull cans which generally are not regarded as comfortable drinking vessels). In practice, this requirement means that the diameter of the wide-mouth opening of the container will normally need to be at least 40 mm, preferably at least 45 mm, and more preferably at least 50 mm. Additionally, an excessively wide opening is generally difficult for the consumer to drink from, and thus the wide-mouth opening preferably has a diameter no greater than 150 mm, more preferably no greater than 100 mm, and especially no greater than 80 mm. A particularly preferred diameter range for the wide-mouth opening is 50 to 80 mm, and examples of particular preferred diameters included 53 mm and 63 mm.
The container body preferably has no thread or thread segments on its exterior. Consequently, the container body preferably is comfortable for a consumer to drink directly from the container body.
A wide variety of thread forms for securing the cap to the container body via the collar, is possible. As indicated at the beginning of this specification, at least some embodiments of the invention are intended for the storage and supply of carbonated and other sparkling drinks, for example beers, ciders, sparkling wines (including champagne), other fizzy alcoholic beverages, and non-alcoholic fizzy and sparkling beverages, including sparkling water and carbonated soft drinks. For such beverages, it is preferred for the engagement between the cap and the collar to include provision for gas venting upon partial removal of the cap from the container body, to prevent so-called “missiling” of the cap whereby the cap is violently ejected from the container body as the container is opened, by the gas pressure of the contents of the container.
Advantageously, therefore, the collar and the cap may include means, preferably engageable elements, to block or restrict removal of the cap from the collar beyond an intermediate position (between fully secured and fully released) when the cap is under an axial pressure in a direction emerging from the container body.
Preferably the cap, the collar and the container body are constructed and arranged to provide a vent for venting gas from the container body at least when the cap is in an intermediate position (between fully secured and fully released).
As mentioned above, the cap, the collar, and the container body preferably are configured such that removal of the cap from the container body causes or allows removal of the collar from the container body. In some of the simplest embodiments of the invention, removal of the cap from the container body merely allows removal of the collar from the container body. Such removal of the collar from the container body may comprise simply pulling the collar from the opposite end of the container body from the opening (and indeed, this might be achieved automatically by gravity, in some embodiments). Alternatively, a more positive act of removal of the collar may be required of the consumer, for example tearing the collar from the container body, e.g. by means of one or more frangible portions of the collar. Of course, where removal of the collar from the container body is not automatic, the consumer might opt to leave the collar in place. However, this is less preferred because an advantage of the collar is that its removal from the container body can leave the exterior of the container body free from threads, thus enhancing the experience of the consumer drinking directly from the container body. In other embodiments of the invention, the removal of the cap from the container body may cause the removal of the collar from the container body. For example, the act of removing the cap from the container body may tear the collar (e.g. via one or more frangible portions of the collar). Additionally or alternatively, the act of removal of the cap from the container body may cause the collar to be removed from the container body together with the cap. That is, the collar may be removed from the container body together with the cap, for example as described above.
In some embodiments of the invention, the cap and/or the collar may include tamper-evident means (e.g. a tamper-evident band). Preferably the tamper-evident means is removed from the cap or the collar (respectively) by the act of removal of the cap from the container body. Advantageously, the tamper-evident means and/or the collar may include means to prevent the cap from accidentally unscrewing from the collar under the influence of pressurization within the container (e.g. due to a pressurized beverage held in the container).
Embodiments of the invention preferably include sealing means to seal the container. Such sealing means may comprise part of the cap and/or the container body and/or the collar and/or a separate component, for example. Preferred sealing means include sealing flanges and/or other sealing members, for example gaskets and the like. Another possible sealing member is a membrane seal, for example comprising a metal foil seal (e.g. formed from aluminium foil), which may optionally be provided with one or more polymer layers on one or both major surfaces thereof. The foil seal may provide an excellent gas barrier, for example. Advantageously, the use of a metal foil seal may enable the formation of a seal by induction heating, e.g. by bonding one or more polymer layers to the container body and/or to the cap. The foil seal or other membrane seal may be provided on the cap and/or the container body and/or the collar and/or separately. A foil seal may also be used in the form of an annular ring to provide a seal between the cap and the container body.
The container and its components may be made from any suitable material, including metal and/or glass and/or polymer material. Polymer materials are generally preferred for the cap and the collar, especially polyolefins, e.g. polyethylene or polypropylene. The container body preferably is formed from glass or polymer material, especially a polyolefin, e.g. polyethylene terephthalate (PET). The polymeric components preferably are formed by moulding, especially injection moulding and/or blow moulding.
According to a second aspect of the invention there is provided a cap and/or a collar for use to provide a beverage container as referred to above.
According to a third aspect of the invention there is provided a container body for use to provide a beverage container as described above.
Some preferred embodiments of the invention will now be described, by way of example, with reference to the accompanying drawings, of which:
a) and (b) are schematic illustrations of two similar embodiments of the invention;
a) and (b) are schematic illustrations of another embodiment of the invention;
a) and (b) are schematic illustrations of a further embodiment of the invention;
a), (b) and (c) are schematic illustrations of an opening procedure of a still further embodiment of the invention;
a) and 14(b) show perspective and front views, respectively, of another embodiment of the invention (showing a cap and collar prior to assembly with a container);
a) and 15(b) show enlarged, perspective views from above and below of the cap and collar shown in
As shown in the cross-sectional view of
In order to install the collar 7 onto the container body 3, the collar 7 is initially placed around the rim 11. This is possible because the internal diameter of the ring portion 15 and the main parts of the flaps 13 is greater than the external diameter of the rim 11. The collar 7 is then pressed down further onto the container body 3 such that the flaps 13 flex outwardly over the rim and are then trapped beneath the rim. This is possible because the flaps 13 are joined to each other only via the ring portion 15, enabling them to flex outwardly, and because the flaps are resilient, causing them to recover—or at least to attempt to recover—to their original configuration after being flexed over the rim 11. Once the collar 7 has been attached to the container body 3, it is then possible to secure the cap 5 to the collar, thereby closing and sealing the wide-mouth opening 9 of the container body. A variety of sealing mechanisms is possible. One possible sealing mechanism is shown in
In order to open the container, the cap 5 is removed from the collar 7 by unscrewing the cap from the collar. The collar 7 may be removed from the container body 3 by the act of removal of the cap from the collar, or the collar may be removed in a separate action. It is also generally possible for the collar to remain on the container body, but this is less preferred because an advantage of the collar is that its removal from the container body can leave the exterior of the container body adjacent to the wide-mouth free from threads, thus enhancing the experience of the consumer drinking directly from the container body. The embodiment of the collar 7 shown in view 1(a) includes a generally wedge-shaped projection 25 on the upper exterior periphery of each flap 13. These projections 25 may cooperate with one or more projections and/or recesses (not shown) on the interior of the cap 5 such that the act of unscrewing the cap 5 from the collar 7 causes one or more frangible portions 27 of the ring portion 15 of the collar, between adjacent flaps 13, to be torn, thus allowing removal of the collar 7 from the container body 3. The fact that the projections 25 are wedge-shaped enables the cap to be screwed onto the collar without tearing the collar.
The embodiment shown in
Not shown in
The cap 5 of the
The collar 7 comprises a plurality of flaps 13 arranged spaced-apart from each other along the circumferential extent of the collar, and connected to each other by means of a ring portion 15 of the collar. Each of the flaps 13 carries a radially-outwardly projecting thread or other protrusion 19, and a radially-inwardly projecting shoulder 17. Similarly to the
As shown in
At least in this embodiment of the invention, the cap may be engaged with the collar either before or after the collar is mounted on the container body.
If the cap 5 is engaged with the collar 7 before the collar is mounted on the container body 3, the cap is pushed onto the collar such that initially the substantially axially-extending parts 61 of the bayonet threads 57 receive respective threads or protrusions 19 of the flaps 13 of the collar, and then the substantially circumferentially-extending parts 59 of the bayonet threads receive the protrusions. As can be seen in
Whether the cap 5 has been engaged with the collar 7 before or after the collar is mounted on the container body, initially, each thread or protrusion 19 of the collar 7 is accommodated in a relatively deep region (in a radial direction) of a respective bayonet thread 57 of the cap 5, namely in the recess 60. Then, in order fully to close the opening 9 of the container body by forming a tight seal between the cap 5 and the rim 11, the cap 5 is twisted in a clockwise direction (as drawn in the figures; an anti-clockwise thread may instead be used, of course). If the flaps 13 of the collar 7 are not already abutting respective ribs 31 provided spaced-apart around the outer circumference of the container body below the rim 11, then twisting the cap 5 will normally cause a partial rotation of the collar 7 with respect to the container body until the flaps do abut the ribs. The right-hand edge of each rib 31 provides a stop to prevent further rotation of the collar 7. Consequently, continued twisting of the cap 5 relative to the container body causes the cap to be tightened down onto the rim 11 of the container body, because the protrusions or threads 19 of the collar have effectively become threads of the container body. In particular, each thread or protrusion 19 of the collar 7 moves from the deep region of a bayonet thread 57 (i.e. a recess 60) to a shallower region of the bayonet thread (i.e. the region 62). Consequently, the flaps 13 of the collar 7 are tightened against the container body 3 by a camming or urging action caused by the interaction of the threads. The tamper-evident band 47 attached to the cap 5 is arranged such that its inwardly-facing teeth 50 engage with the outwardly-facing teeth 51 on the collar 7. In particular, the two sets of teeth are arranged as a ratchet, such that the outer teeth 50 are able to pass over the inner teeth 51 in the twisting-on direction (i.e. clockwise in the embodiment illustrated in the figures).
When the cap 5 is fully engaged with the collar 7, with the collar mounted on the container body 3 such that the cap is secured to the container body, each protrusion or thread 19 is located in an end region 62 in the twisting-on direction, of the circumferentially-extending part 59 of a respective bayonet thread 57. Each protrusion or thread 19 is retained in this location by a stop member 65 included in the bayonet thread. Each stop member 65 preferably comprises a step in its respective bayonet thread, between the region 62 and the region of the thread that includes the recess 60. In the embodiments of the invention illustrated in
Removal of the cap and the collar is accomplished by twisting the cap anti-clockwise (in the embodiments of the invention as drawn) with respect to the container body, initially with a torque sufficient to overcome the engagement between each protrusion or thread 19 and its respective stop member 65. Such twisting of the cap 5 causes the cap to be rotated relative to the collar 7, and also causes the collar 7 initially to be rotated relative to the container body 3. Rotation of the cap 5 relative to the collar 7 causes the frangible webs 49 connecting the tamper-evident band 47 to the cap to be ruptured because the tamper-evident band is unable to rotate with the cap due to the ratchet teeth 50 and 51 being interlocked with each other. The precise order in which the relative rotations between the cap 5, the collar 7 and the container body 3 occur will depend upon the relative frictional forces and other forces between the various components. However, eventually the cap 5 will be rotated relative to the collar 7 such that each protrusion or thread 19 is located at an end of the circumferentially-extending part 59 of its respective bayonet thread 57, and the collar 7 will be rotated relative to the container body 3 such that each flap 13 abuts against a chamfered or ramped edge 45 of a respective rib 31. Continued twisting of the cap 5 relative to the container body 3 therefore causes the flaps 13 of the collar 7 to ride up the ramped edges 45 of the ribs 31, thus flexing the flaps outwardly into respective recesses 60 in the bayonet threads 57 and releasing the collar from the container body. In order further to assist the outward flexing of the flaps 13, their leading edges 63 in the releasing direction preferably are also chamfered or ramped. Consequently, the collar 7 is removed from the container body together with the cap 5, and the container is opened.
The embodiment of the invention shown in
a) also shows a membrane seal 71 provided between the cap 5 and the container body 3, to form a seal between the cap 5 and the rim 11 when the cap is fully secured to the container body. The membrane seal preferably comprises metal foil (e.g. aluminium foil), preferably with a polymer layer on one or both major surfaces of the foil. Preferably the membrane seal 71 is bonded (e.g. thermally bonded) to the underside of the cap 5, but is not bonded to the container body 3 and instead forms a seal against the rim 11 due to the pressure between the cap and the rim. Consequently, when the cap 5 is lifted slightly from the rim 11 in the initial stage of opening the container 1, the seal between the rim and the cap is broken by the release of the pressure between the cap and the rim, and any pressurised gas in the container body may be vented to the atmosphere.
In other embodiments, the foil 71 may be bonded to the container body to seal the container opening. It may also be bonded to the underside of the cap 5 so that removal of the cap assists in detaching the foil from the container body.
In use, when the cap 5 is secured to the container body 3 via the collar 73, the shoulder 17 of each flap 13 of the collar is located in (and thereby engaged with) a respective recess 75 in the exterior of the container body, the shoulder 17 of each flap 13 being located beneath and engaging an upper surface 75A of the respective recess 75. The upper surfaces 75A provide the same function as the underside of the rim of the embodiments described above and are preferably substantially horizontal. As described above, rotation of the cap 5 relative to the collar 73 in the tightening direction then preferably drives the flaps 13, and hence the shoulders 17, into secure engagement with the recesses 75 and securely holds them in this arrangement until the cap is unscrewed.
As with above-described embodiments of the invention, in order to open the container, the cap 5 is rotated (i.e. unscrewed) with respect to the container body 3 and the collar 73 until each protrusion or thread 19 of the collar is situated at an end region (in the unscrewing direction) of the thread of the cap. Consequently, further rotation of the cap 5 with respect to the container body 3 forces the collar 73 to rotate together with the cap. This forces each shoulder 17 out of its respective recess 75, and this is possible because the protrusion or thread 19 of each flap 13 of the collar 73 is accommodated by a radially outwardly extending recess 60 of the thread of the cap, thus allowing each flap to flex outwardly. Such exiting of the shoulders 17 out of the recesses 75 is aided not only by the chamfered leading edge 63 (in the releasing direction) of each flap 13, but also by the end wall 77 (in the releasing direction) of each recess 75 being ramped (i.e. inclined).
As shown in
The embodiment of the invention illustrated in
The four inwardly inclined flaps 13A enable the collar to snap-fit with the container as it is fitted over the container lip 80 (the collar 73 may need to be rotated until the flaps 13A align with and engage the respective recesses 80). These four flaps 13A thus also prevent or limit rotation of the collar 73 relative to the container body 3 when the cap 5 is fitted to the collar 73.
When the cap 5 is fitted over the collar 73, it biases the four outwardly inclined flaps 13B to an inwardly inclined position so they also engage in respective recesses 80. The advantage of having four flaps 13B which naturally assume a slightly outwardly inclined position is that these flaps 13B provide a more secure connection between the cap 5 and the collar 73 when the cap is unscrewed for removal from the container body 3 as they spring outwards to engage the recesses provided in the cap. This helps ensure that the collar 73 is removed with the cap 5. It also helps reduce the risk of blow-off or missiling of the cap 5 when it is initially unscrewed to allow venting of the container 3.
In use, the collar 73 is preferably installed onto the container lip 81 on its own. It can be applied in a random orientation relative to the container (i.e. the flaps 13A, 13B do not need to be aligned with the recesses 80) as it can then be rotated a few degrees until flaps 13A align with and engage in recesses 80. The cap 5 is then fitted over the collar and rotated relative thereto so the thread portions of the cap and collar engage and the flaps 13B are driven into engagement with respective recesses 80 (if they are not already located therein). In the closed position, the cap 5 also preferably urges all the flaps 13A and 13B radially inwards to hold them securely in the respective recesses 80. As in earlier embodiments, once the cap is fully secured, it also prevents the flaps 13A from moving radially outwards so they cannot disengage from the recesses 80, the shoulders 17A and 17B engaging upper surfaces 80A of the recesses 30 (the upper surfaces 80A preferably being substantially horizontal).
To open the container, the cap is unscrewed relative to the container body 3 and the collar 73 until the thread portions of the collar 73 reach the end regions of the thread of the cap 5. Further rotation of the cap 5 with respect to the container body 3 forces the collar 73 to rotate together with the cap 5. This forces each of the shoulders 17A and 17B out of its respective recess 80, this being possible (as in earlier embodiments) because the thread portions of each flap 13A, 13B of the collar 73 is accommodated in a radially outwardly extending recess in the cap 5 so each flap 13A, 13B is able to move radially outwards although the collar is located within the skirt of the cap 5. Movement of the flaps 13A, 13B out of the recess 80 is aided by the leading edge of each flap 13A, 13B being chamfered and an end wall of each recess 80 engaged by this leading edge being ramped so as to drive the flap up onto the outer surface of the lip 81 in the manner of a cam. The outward movement of flaps 13A at this stage is against their natural tendency to assume an inwardly inclined position whereas the outward movement of the flaps 13B is back towards their natural outwardly inclined position.
An additional important feature is that lip 81 is tapered so that its external diameter decreases towards the open end of the container. Thus, once the shoulders 17A, 17B have moved up onto the external surface of the lip, there is a tendency for the shoulders 17A, 17B to ride up this inclined surface towards the open end of the container so helping disengage the closure from the container. This movement is assisted by flaps 13A which, once on the outer surface of the lip 81, try to assume their inwardly inclined position and so tend to slide up the inclined surface of the lip 81 to move radially inwards. This, therefore, facilitates removal of the closure from the container and helps reduce the risk of the shoulders slipping downwards on the lip 81 and getting caught on the underside of the lip 81.
The provision of recesses 80 in the lip 81 of the container rather than in the side walls thereof (as in
In each of the above embodiments, it will be appreciated that as the cap is moved to its secured position with the collar, the collar is drawn upwards to engage an upper surface of a recess (whether this be the underside of the rim or the upper surface of a slot or other form of recess) whilst the cap is drawn downwards to sealingly engage the mouth of the container (whether directly or via some form of intermediate sealing member). The cap and collar combination is thus tightened or clamped in a substantially vertical direction (i.e. parallel to the axis of the container opening) about a first surface provided by the upper surface of the container mouth and a second surface provided by the upper surface of said recesses.
It will be appreciated that features of the above described embodiments may be interchanged to provide further embodiments of the invention.
The invention also relates to a cap and/or a collar for use in providing a beverage container as described herein. It also relates to a container body for use in providing such a beverage container.
Number | Date | Country | Kind |
---|---|---|---|
0414065.3 | Jun 2004 | GB | national |
0505934.0 | Mar 2005 | GB | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/GB2005/002479 | 6/23/2005 | WO | 00 | 12/7/2007 |