This invention relates to beverage dispensers and more especially relates to beverage dispensers having disposable diaphragm type pumps.
Beverage dispensers commonly provide a ratiometric mixture of a beverage concentrate and a diluent and this is commonly done by regulating the flow of two pressurised sources of concentrate and diluent. However, some concentrates are highly viscous and do not flow easily, a problem which is enhanced at the low temperatures at which they are stored. The variance in viscosity means that it is hard to accurately meter a pressurised flow of viscous concentrates, for example orange juice concentrate, and to do so effectively requires a pressure much higher than is conventionally used. This problem is overcome to some degree by current juice dispensers which utilise a positive displacement pump to pump the concentrate and regulate the flow of diluent accordingly.
Another problem associated with the viscosity of some concentrates is that they do not readily mix with a diluent, for example water. This has two adverse effects. The first is that when the beverage is dispensed into a receptacle for consumption, there is often found a slug of unmixed concentrate at the bottom of the receptacle, which is unappealing to the consumer. Secondly, due to the viscosity and high sugar content of juice concentrates, the concentrate will tend to adhere to the internal components of the dispenser and is not easily cleaned by simple rinsing. This is particularly relevant for example, with orange juice concentrate, which can become highly toxic through bacterial growth if allowed to sit for long period of time at room temperature. A common contributory factor to these two problems is the non disposable part of the machine through which the concentrate (diluted or undiluted) passes.
There are three systems known in the art which provide a more sanitary system for dispensing concentrate by use of partially disposable components. Two of these are use of a rotary peristaltic pump, the deformable tube of which forms an integral part of the disposable concentrate reservoir, and a positive displacement pump comprising a disposable portion supplied with the reservoir and a non-disposable drive to reciprocate the pump, drawing fluid into, and expelling it from, the disposable portion, as shown in U.S. Pat. Nos. 5,114,047 and 5,154,319.
There are several problems associated with these designs, including problems with pumping high viscosity concentrates, long term permanent deformation of peristaltic tubes, inadequate mixing of concentrate and diluent and “streaming”, which is the visual effect of seeing stratification of concentrate and diluent as the beverage is dispensed.
A third solution has been proposed in EP 1 716 068, which comprises a disposable membrane pump driven by application of pressure and vacuum to the diaphragm to pump the concentrate. This solution overcomes many of the problems associated with previous designs, but has limitations. In particular, if the dispense is stopped part way through a dispense cycle, i.e., when a pump chamber is partially dispensed, it is not possible to easily determine how much concentrate has been dispensed from that pump chamber. The result of this is that it is virtually impossible to reliably get an exact ratiometric mix of concentrate to diluent when the dispense is stopped with a partially empty pump chamber. This problem is amplified when only dispensing a small amount, for example in a mixed drink (e.g., vodka and orange juice). In addition, the use of pressure and vacuum pumps and all the associated valving creates an overly complex solution needing a detailed control system that has many potential failure modes.
A primary object of the present invention is to provide an improved sanitary beverage dispenser having a diaphragm pump and which mitigates some of the problems with known systems.
According to the present invention, there is provided a beverage dispenser for dispensing a post-mix beverage from a disposable concentrate pump unit comprising two inlet valves, two pump chambers having a flexible membrane and two outlet valves, the dispenser comprising a diluent supply system to supply a flow of diluent to a section of the disposable pump unit; a cabinet area for receiving at least one reservoir of concentrate; and at least one pumping station for receiving, retaining and actuating a disposable pump unit. The pumping station comprises a drive plunger associated with each pump chamber and arranged for reciprocal movement to displace the flexible membrane in a first direction to expel concentrate from the pump chambers and in a second direction to draw concentrate into the pump chambers; and vacuum means for applying a pressure differential across the flexible membrane when a drive plunger is moving in its second direction, so as to cause concentrate to be drawn into the pump cavity as the plunger is withdrawn.
In a contemplated embodiment of the invention, the negative pressure differential across the flexible membrane when a drive plunger is moving in its second direction maintains the membrane in contact with the drive plunger as concentrate is drawn into the pump chambers. Each drive plunger is driven by a cam, and the cams are profiled such that movement of a drive plunger in the second direction is faster than movement of the plunger in the first direction, resulting in concentrate being drawn into a pump chamber in a shorter time interval than it is expelled from the pump chamber.
Each pump chamber has a dedicated vacuum means and a conduit leading from the vacuum means to the outer side of the flexible membrane, and the disposable concentrate pump sealingly engages with the pumping station to form an enclosed area between each pump chamber and the pumping station. Preferably, each vacuum means comprises an enclosed chamber having a vacuum pump inlet valve and a vacuum pump outlet valve, the vacuum pump inlet valve being in the conduit between the vacuum means and the outer side of the flexible membrane; and a vacuum drive member movable in the enclosed chamber in a first direction to draw air through the vacuum pump inlet valve and in the other direction to expel air from the enclosed chamber, thereby creating a pressure differential across the flexible membrane. The vacuum pump inlet and outlet valves may be check valves.
Each conduit passes into and through the drive plunger, terminating at an opening in the end of said plunger which, in use, displaces the flexible membrane. Each vacuum drive member is driven by a cam, and the vacuum drive member cam and drive plunger cam for each pump chamber are driven by a common drive shaft. The drive shafts for each pump chamber are driven simultaneously by a single motor.
Each of the concentrate pump inlet valves comprises a flexible membrane overlaying an inlet orifice, and the pumping station further comprises an inlet valve plunger associated with each inlet orifice and arranged for reciprocal movement to displace the flexible membrane in a first direction to cover and close the inlet orifice, thereby preventing flow of concentrate therethrough, and in a second direction to allow the membrane to move away from the orifice and allow concentrate to pass therethrough. Each inlet valve plunger is driven by the common drive shaft by means of a cam.
In a contemplated arrangement, each of the concentrate pump outlet valves comprises a flexible membrane overlaying an outlet orifice, and the pumping station further comprises an outlet valve plunger associated with each outlet orifice and arranged for reciprocal movement to displace the flexible membrane in a first direction to cover and close the outlet orifice, thereby preventing flow of concentrate therethrough, and in a second direction to allow the membrane to move away from the orifice and allow concentrate to pass therethrough. Each outlet valve plunger is driven by the common drive shaft by means of a cam. Alternatively, each outlet valve is a check valve.
Where present, each valve cam is profiled to open the valve quickly and to maintain it in its open position as the pump chamber fills with, or expels, concentrate, and to then close the valve quickly. The pumping station actuates the two sets of inlet valves, pump chamber and outlet valves out of phase with each other. Advantageously, the flow of concentrate expelled from each of the pump chambers overlaps one another so that, in use, concentrate is constantly expelled from the concentrate pump.
The diluent supply system may comprise a flow meter to measure the flow of diluent passing therethrough, and the rate of pumping concentrate may be controlled to be dependant on the flow of water being supplied to the pump, which may be accomplished by controlling the speed of a motor for a concentrate pump to be dependant on the measured flow of water. Desirably, the flow of water is set to a desired flow rate.
The foregoing and other objects, advantages and features of the invention will become apparent from the following detailed description, when taken in conjunction with the accompanying drawings.
a is a cross section of a valve for use in the pump cartridge of
Referring to
Referring to
Referring now to
Referring to
The disposable concentrate unit 60 and disposable pump unit 62 are placed in the dispenser 54, such that both are within the refrigerated area 72 of the dispenser 54, and the pump unit 62 is positioned such that it interfaces with the pumping station 74, of which two are situated within the dispenser 54. By maintaining both the pump unit and the reservoir in the refrigerated section, any juice within the cavities of the disposable pump unit is maintained at its refrigerated temperature. The re-usable rigid container is preferably of a two part hinged construction for ease of use and may optionally have an angled lower surface (not shown) to aid the concentrate to drain, under the influence of gravity, towards the disposable pump unit 64. An angle of the surface of approximately 15 degrees was found to be most beneficial. The upper refrigerated cabinet area is cooled by means of a standard air blown refrigeration system as known in the art. The dispenser 54 has a drip tray 76 positioned below the point of dispense to retain any drips from the static mixers 68.
Referring to
The mechanical drive linkage comprises two identical drive shafts 98 with associated components, each of which drives one set of inlet valve plunger, drive plunger and outlet valve plunger. The two drive shafts 98 are simultaneously driven through a bevel gear system 100 by a single motor 96. Each drive shaft has mounted to it four cams, each of which drives a different element of the pumping station. The uppermost cam 102 of each drive shaft 98 drives the inlet valve plunger. It is a follower cam and the outlet plunger 90 is maintained in contact with it by means of spring 104. The cam 102 acts against a roller 106 and moves the inlet valve plunger 90 into and out of the recess 88. The cam profile is such that it is in its withdrawn state (when the valve is open) for a shorter time than it is in its extended state (when the valve is shut). This enables the pump chambers to fill with concentrate in a shorter time than they empty the concentrate, enabling an overlap of concentrate output from each pump chamber to be achieved resulting in a substantially constant output form the cartridge 78. The second cam 108 is also a follower cam and moves the drive plunger 92 into and out of the recess 88. The drive plunger 92 has two follower rollers 110, 112 opposed to one another across the cam in the direction of plunger travel, thus the drive plunger 92 is driven in both directions by the cam. The third cam 114 drives the outlet valve plungers 94 and acts with spring 116 and roller 118 in the same way as the inlet valve cam and substantially 180 degrees out of phase with it. The cam 114 profile, however, is different and is profiled such that the valve open time is longer that the valve closed time. The forth cam 120 drives a small vacuum pump comprising vacuum plunger 122 and vacuum cavity (the cavity can not be seen in the drawings as the vacuum plunger 122 is in its fully extended position completely filling the vacuum cavity). The cam 120 has the same profile and acts in the same manner, with two rollers 124, 126, and in phase with the drive plunger 92 to reciprocate the vacuum plunger 122 in and out of the vacuum chamber. A vacuum conduit 128 passes through the vacuum plunger 122, through a connecting conduit 130, and then through the drive plunger wherein it splits and opens through ports 132 at the driving face thereof. The drive shafts are each held in captive by four bearings 134 in which they rotate.
In use, starting from the position shown in the drawings and in relation to the valve-pump-valve arrangement in the
The two drive shafts 98 and associated components operate so as to drive the two sets of valve-pump-valve plungers substantially out of phase with one another. However, as the inlet valve is open for less than half of the cycle and the outlet valve is open for more than half of the cycle, there will be an overlap in the output of concentrate from the two pump chambers of the valve. This will give a substantially constant output of concentrate resulting in a ratiometric mixture of the dispensed beverage that is substantially constant independent of where in the cycle the dispense apparatus is stopped.
Referring to
Modifications of the invention, for example the replacement of the cam driven vacuum pump with a separate vacuum pump or combinations with any of the many known features of beverage dispensers, will be obvious to those skilled in the art and are within the scope of the invention.