Field
The present disclosure relates to beverage machines, and more specifically to beverage machines that can receive a cartridge, such as a cartridge containing a single serving of an instant beverage component for producing a beverage.
Description of the Related Art
Single-serve beverage machines are devices that are designed to produce a single serving, or sometimes a single cup, of a desired beverage. In comparison to other types of beverage machines (such as drip coffee makers having a multi-cup carafe), single-serve beverage machines can enhance convenience by reducing the time to prepare the beverage.
Some single-serve beverage machines use a cartridge or capsule containing one or more beverage components or precursors to produce the beverage. Generally, such cartridges are received in the single-serve beverage machine, are used to produce the single serving of the beverage, and are subsequently manually removed from the machine and discarded.
Various embodiments are depicted in the accompanying drawings for illustrative purposes, and should in no way be interpreted as limiting the scope of the embodiments. Furthermore, various features of different disclosed embodiments can be combined to form additional embodiments, which are part of this disclosure.
Various beverage preparation machines having multi-chamber basket units are described below to illustrate various examples that may be employed to achieve one or more desired improvements. These examples are only illustrative and not intended in any way to restrict the general disclosure presented and the various aspects and features of the disclosure. The general principles described herein may be applied to embodiments and applications other than those detailed below without departing from the spirit and scope of the disclosure. Indeed, the present embodiments are not intended to be limited to the particular embodiments shown, but are to be accorded the widest scope consistent with the principles and features disclosed or suggested herein. Certain aspects, advantages, and features of the inventions have been described herein. It is not necessary that any or all such aspects, advantages, and features are achieved in accordance with any particular embodiment. Some embodiments may not achieve the advantages described herein, but may achieve different advantages instead. Any structure, feature, or step in one example is contemplated to be used in place of or in addition to any structure, feature, or step of any other example. No features, structure, or step disclosed herein is essential or indispensable.
Certain single-serve beverage machines can accept only a single type of cartridge. For example, some such machines can use only cartridges having a certain configuration (e.g., diameter, height, shape, etc.). This can be problematic because variations in the cartridge configuration can be beneficial. Indeed, in some instances, one cartridge configuration may be suitable for preparing some beverages and another cartridge configuration may be suitable for preparing other beverages. For example, it can be beneficial to prepare brewed drinks using different cartridge configurations, which are useful for different brewing conditions (e.g., different temperatures and/or pressures). For example, brewed coffee drinks and espresso coffee drinks can be produced using different cartridge configurations (e.g., the espresso cartridge having a diameter that is less than a diameter of the brewed coffee cartridge, a height that is greater than the brewed coffee cartridge, and/or being adapted to withstand higher pressures than the brewed coffee cartridge).
Accordingly, some aspects of the present disclosure describe beverage preparation machines include a basket unit that is configured to accept multiple cartridge configurations. For example, some embodiments are configured to receive a first cartridge configuration in a first chamber of the basket unit and a second configuration in a second chamber of the basket unit. In some variants, the first chamber has a shape that substantially corresponds to the shape of the first cartridge and the second chamber has a shape that substantially corresponds to the shape of the second cartridge. In certain embodiments, the first cartridge configuration is for preparing brewed coffee beverages and the second cartridge configuration is for preparing espresso coffee beverages. In some implementations, the first cartridge configuration is for preparing beverages at a first pressure and the second cartridge configuration is for preparing beverages at a second pressure (e.g., greater than the first pressure).
In various embodiments, the first and second chambers are selectively accessible. This can facilitate loading the cartridges into the appropriate chamber (e.g., loading the first cartridge configuration into the first chamber and the second cartridge configuration into the second chamber). In several embodiments, the basket unit can be moved so that the first and second chambers can be selectively presented to and/or accessed by a user. For example, the basket unit can be rotated relative to a frame of the beverage machine so that the first or second chambers are selectively oriented generally upwardly and/or near a top portion of the beverage preparation machine, which can facilitate loading of a cartridge into the first or second chambers. In some embodiments, rotation of the basket unit is driven by a movable (e.g., rotatable) collar, which in turn can be driven by a motor and/or gear train.
In accordance with some embodiments, a machine for preparing beverages from cartridges includes a frame, a basket unit, and a rotatable collar. The basket unit can rotate in the frame. The basket unit can include a first chamber, which can receive a first single-serve cartridge configuration, and a second chamber, which can receive a second cartridge configuration. The second cartridge configuration can be the same or different from the first cartridge configuration. In some variants, when one of the chambers is in a loading position, the other of the chambers is in a non-loading (e.g., inverted) position. The ratchet assembly can have a ratchet member, a ratchet follower, and a biasing member (e.g., a spring). The ratchet member can be engaged with (e.g., abut against) the basket unit. The ratchet member can have an arm and a boss. The ratchet follower can be pivotally connected with the frame and can include a ramp. The biasing member can bias the ramp of the ratchet follower against the boss of the ratchet member. The rotatable collar can have a projection. In certain implementations, during rotation of the collar, the projection engages with the arm of the ratchet member, which slides the boss of the ratchet member along the ramp of the ratchet follower and/or rotates the basket unit. This can result in the chamber in the loading position being moved to the non-loading (e.g., inverted) position and the chamber in the non-loading position being moved to the loading position.
Certain variants of the machine include any one, or any combination, of any of the following. The first chamber can have a volume that is greater than a volume of the second chamber. The basket unit and the collar can be adapted to rotate about axes that are substantially perpendicular. The first chamber can receive cartridges for brewed coffee beverages and the second chamber can receive cartridges for espresso beverages.
In some implementations, a machine for preparing a beverage from a cartridge includes a basket unit, a ratchet assembly connected with the basket unit, and a collar. The basket unit can have a first chamber for receiving a first single-serve cartridge configuration and a second chamber for receiving a second cartridge configuration. The basket unit can rotate about an axis RAb between a first chamber loading position and a second chamber loading position. In certain embodiments, in the first chamber loading position, the first chamber is positioned to facilitate loading the first cartridge and the second chamber is inverted. In some embodiments, in the second chamber loading position, the second chamber positioned to facilitate loading the second cartridge and the first chamber is inverted. The collar can rotate about an axis RAc. In some variants, rotation of the collar engages the collar with the ratchet assembly, which causes the basket unit to rotate between the first chamber loading position and the second chamber loading position.
Certain variants of the machine include any one, or any combination, of any of the following. The axes RAb and RAc can be substantially perpendicular. The axis RAc can be substantially vertical, and the axis RAb can be substantially horizontal and pass through first and second sidewalls of the machine. The first chamber loading position can be such that the first chamber is generally upwardly oriented, and the second chamber loading position can be such that the second chamber is generally upwardly oriented. The collar can have a projection. The ratchet assembly can include an arm. The projection can engage the arm. The collar can have a wing. The ratchet assembly can have a rib. The wing can engage the rib. In some implementations, during normal operation of the machine (e.g., preparing one or more single-serve beverages from one or more cartridges), the collar is rotatable in the clockwise and counterclockwise directions. The basket unit can have a first outlet in fluid communication with the first chamber and a second outlet in fluid communication with the second chamber. Certain embodiments include a dispensing assembly that can move (e.g., rotate) into and out of engagement with one of the first and second outlets. In some variants, the dispensing assembly and one of the first and second chambers is in fluid communication during the engagement of the dispensing assembly and the one of the first and second outlets. In some variants of the machine, the first chamber can receive cartridges for brewed coffee beverages and the second chamber can receive cartridges for espresso beverages. Certain implementations include one or more of the cartridges.
In some embodiments, a machine for preparing a beverage from a cartridge has a frame, a basket unit, a ratchet assembly, and a rotatable collar. The basket unit can be rotatable in the frame. The basket unit can have a first chamber for receiving a first single-serve cartridge configuration and a second chamber for receiving a second single-serve cartridge configuration. The basket unit can rotate between a first position (e.g., in which the first chamber is oriented upwardly) and a second position (e.g., in which the second chamber is oriented upwardly). In some embodiments, the ratchet assembly is connected (e.g., directly or indirectly) with the basket unit. The rotatable collar can engage the ratchet assembly. In various embodiments, rotation of the collar in a first direction engages the collar with a first surface of the ratchet assembly. The first surface can be adapted (e.g., shaped and/or angled) such that the collar slides along the first surface without rotating the basket unit from the first position to the second position. In some embodiments, rotation of the collar in a second direction engages the collar with a second surface of the ratchet assembly. The second surface can be adapted such that the engagement with the collar rotates the ratchet assembly, which can cause the basket unit to rotate from the first position to the second position.
Some embodiments of the machine include any one, or any combination, of any of the following. The basket unit can rotate less than about 45° when the collar rotates in the first direction. The basket unit can rotate at least about 180° when the collar rotates in the second direction. The collar can have a projection. The ratchet assembly can have an arm. The projection can engage the arm during the rotation of the collar. The first chamber can receive cartridges for brewed coffee beverages and the second chamber can receive cartridges for espresso beverages. In some variants, the basket unit and the collar are adapted to rotate about axes that are substantially perpendicular.
According to certain implementations, a method of preparing an individual serving of a beverage includes rotating a basket unit to a first configuration (e.g., in which a first chamber of the basket unit is located in a loading position). The method can include receiving a cartridge in the first chamber. Some variants of the method include introducing liquid into the cartridge in the first chamber to prepare the individual serving of the beverage. The method can include dispensing the individual serving of the beverage into a vessel. Some embodiments of the method include rotating the basket unit to a second configuration in which a second chamber of the basket unit is located in the loading position.
Certain embodiments of the method include any one, or any combination, of any of the following. Some variants include ejecting the cartridge during rotation of the basket unit to the second configuration. For example, the cartridge can be ejected into a waste bin. The method can include rinsing at least one of an interior surface of the first chamber and a seal surface of the first chamber. The method can include disposing of residual beverage fluid in the first chamber into the waste bin. In some embodiments, the method includes compressing the cartridge in the first chamber with a tamp assembly. Certain implementations of the method include rotating a collar in a first direction. Some embodiments include engaging the collar with a first surface of a ratchet assembly that is connected with the basket unit, which can result in rotation of the basket unit between the first and second configurations. Some embodiments include rotating the collar in a second direction. Some embodiments include sliding the collar along a second surface of the ratchet assembly, thereby not rotating the basket unit between the first and second configurations. In certain implementations of the method, the collar rotates about an axis of rotation that is substantially perpendicular to an axis of rotation of the basket unit.
In some embodiments, a machine for preparing beverages from cartridges has a basket unit and a rotation mechanism. The basket unit can have a first chamber for receiving a first single-serve cartridge configuration and a second chamber for receiving a second cartridge configuration. The basket unit can rotate within the machine between a first configuration and a second configuration. In certain variants, in the first configuration, the first chamber is oriented in an upward direction and the second chamber is oriented in a downward direction. In certain variants, in the second configuration, the second chamber is oriented in the upward direction and the first chamber is orientated in the downward direction. The rotation mechanism can be coupled to the basket unit. The rotation mechanism can be adapted to rotate the basket unit from the first configuration to the second configuration.
According to some embodiments, the machine can include any one, or any combination, of any of the following. Certain embodiments include a motor coupled with the rotation mechanism. In some embodiments, after insertion of a first single-serve cartridge into the first chamber, the rotation mechanism rotates the basket unit at least about 5 degrees in a clockwise direction and at least about 5 degrees in a counterclockwise direction. This can facilitate settling of the contents of the first single-serve cartridge. Some variants have a sensor for determining whether the basket unit is in the first configuration or the second configuration. Some embodiments include a controller that can receive an input from a user, such as a command to begin operation.
I. Overview
The liquid reservoir can be located within or external to the housing 105. The liquid reservoir can be in fluid communication (e.g., via tubing or pipes) with the main housing 105 to provide liquid (e.g., water) stored within the liquid reservoir to a chamber within the main housing 105 where the beverage is prepared. In various embodiments, the liquid is pre-heated before entering the chamber. For example, the liquid may be heated within a separate storage reservoir or within fluid supply lines as the liquid travels to the chamber. The amount of liquid (e.g., water) provided to the chamber from the liquid reservoir may be determined by the beverage recipe. The liquid reservoir may include a water level sensor configured to determine whether enough liquid is present in the liquid reservoir to prepare a requested beverage. The frother unit can cause the beverage to be dispensed with a froth of bubbles (e.g., a frothed milk). After dispensing a brewed beverage into the cup 101, the frothed liquid (e.g., frothed milk) can be poured into the beverage. The frother unit may include a control input to toggle the frothing on and off.
As shown in
In some embodiments, a single-serve beverage cartridge includes a cartridge body holding a beverage precursor. The cartridge body may comprise any suitable material, including but not limited to, plastic, metal, wood, bio-degradable polymers, etc. The cartridge body may be reusable, recyclable, biodegradable, compostable, commercially compostable, etc. The beverage precursor may comprise, for example, coffee grounds, tea leaves, powdered milk, milk, juice, tea, coffee, green coffee, green coffee extract, coffee extract, flavorings, other beverage materials, etc.
In various embodiments, the main housing 105 includes an input and output unit 150. For example, the input and output unit 150 can include an indicator (e.g., a light, display, dial, or otherwise) to indicate status information, such as whether the main housing 105 has power, is operating, requires maintenance, etc. The input and output unit 150 can include a user-interface member (e.g., a button or switch) to provide instruction to the main housing 105, such as a command to begin the beverage production process. The input and output unit 150 can be connected with a memory and/or a controller, such as a microprocessor.
In some variants, the input and output unit 150 includes a reader. The reader can be configured to read a code (e.g., optical code, one dimensional bar code, two dimensional bar code, etc.) and/or a tag (e.g., a radio frequency identification (RFID) tag or near field communication (NFC) tag) on the cartridge or associated packaging. This can allow the machine 100 to identify the type of beverage to be produced. For example, reading a cartridge containing espresso coffee ingredients (e.g., grounds) can identify to the machine 100 that an espresso beverage is to be produced. In several implementations, the beverage production assembly 400 is adjusted based on the type of beverage to be produced, as is discussed in more detail below. Additional details regarding the reader, as well as associated functions, are disclosed in U.S. application Ser. No. 14/205,198, titled “SINGLE-SERVE BEVERAGE PRODUCTION MACHINE,” filed Mar. 11, 2014; the entirety of that application is hereby incorporated by reference.
In some implementations, when the cartridge 200 has been loaded into the basket unit 500 and the lid assembly 140 has been closed, a beverage preparation process can begin. In some embodiments of the beverage preparation process, liquid (e.g., hot water) is introduced into the cartridge 200 to produce a beverage, such as by a discharge head in the lid assembly 140. The beverage can exit the cartridge 200 and be conveyed to the cup 101 through portions of the main housing 105, such as via a dispensing assembly 300.
Further schematic embodiments of the beverage production assembly 400 are illustrated in
An embodiment of the beverage production assembly 400 is illustrated in
II. Multi-Chambered Basket Unit
In some implementations, the basket unit 500 includes a body portion 506. The illustrated body portion 506 has a generally cylindrical shape, though many other shapes are contemplated as well. As shown, the first chamber 502 can be positioned at a first end of the generally cylindrical shape and the second chamber 504 can be positioned at a second end of the generally cylindrical shape. In some embodiments, the first and/or second chambers 502, 504 protrude into the body portion 506 (e.g., are recessed within).
In certain variants, the first and second chambers 502, 504 are configured to receive different types of cartridges. For example, the first chamber 502 can be configured to receive a first type of cartridge with a first size and/or shape and the second chamber 504 can be configured to receive a second type of cartridge a second size and/or shape. In some embodiments, the first chamber 502 is adapted for producing a first type of beverage from beverage component or precursor in the first cartridge type, and the second chamber 504 is adapted for producing a second type of beverage from beverage component or precursor in the second cartridge type. For example, first chamber 502 can receive a first type of cartridge containing a beverage component or precursor for the production of a brewed coffee beverage and the second chamber 504 can receive a second type of cartridge containing a beverage component or precursor for the production of an espresso coffee beverage (e.g., latte, macchiato, cappuccino, espresso shot, etc.). In certain variants, the first type of cartridge is for the production of an espresso coffee beverage and the second type of cartridge can be for the production of a brewed coffee beverage. In several implementations, at least one of the chambers 502, 504 is for producing a coffee beverage, such as a brewed coffee or espresso coffee beverage. In certain embodiments, at least one of the cartridges 502, 504 is for producing a non-coffee beverage, such as tea, hot chocolate, fruit or vegetable based drink (e.g., juice, cider, or the like), or otherwise.
In embodiments in which at least one of chambers 502, 504 is for preparing brewed coffee, that chamber may include structural features such as filtration elements, strainers, large exit apertures, etc. configured to facilitate brewing of coffee grounds. In embodiments in which at least one of chambers 502, 504 is for preparing espresso coffee, that chamber may be smaller in size (e.g., diameter, volume, or otherwise) than the brewed coffee chamber. In some implementations, the chamber for preparing espresso coffee beverages may include structural features configured to prepare the espresso beverage at a higher pressure than the brewed coffee beverage (for example, the espresso coffee chamber may include very small exit apertures or may be configured to receive a tamp that compresses the grounds in the cartridge). In some embodiments, the chamber for preparing espresso coffee beverages is configured to withstand at least about 130.5 psi (about 9 bar) of pressure and the chamber for preparing brewed coffee beverages is configured to withstand less than 130.5 psi of pressure (e.g., about 5 psi of pressure). In some embodiments, the chamber for preparing brewed coffee beverages is configured to withstand pressures of at least about 3 psi and/or less than or equal to about 4 psi. In some implementations, the chamber for preparing espresso coffee beverages is configured to withstand at least about 195 psi and/or the chamber for preparing brewed coffee beverages is configured to withstand at least about 4.5 psi.
The cartridges to be received in each such respective chambers may also include different structural features to facilitate preparation of different types of beverages. For example, a cartridge for use in preparing an espresso or other high pressure type beverage may be configured may to withstand a higher pressure being applied to its contents, rather than a cartridge used for preparing a brewed type coffee or other low pressure type beverage, in order to prepare an espresso beverage rather than a brewed coffee beverage. Thus, an espresso or “high pressure” cartridge may include a stretchable lid (for receiving a tamp that compresses the grounds in the cartridge), may include smaller exit apertures, or may be smaller in size, while a brewed coffee or “low pressure” cartridge may include large or more exit apertures, may include a non-deformable or stretchable lid, or may be larger in size.
Various embodiments of the basket unit 500 can include one or more bracing elements. For example, some embodiments of the basket unit 500 can include one or more radially outwardly extending annular flanges 508. Certain variants have one or more cartridge support members 510, 512, such as shoulders or walls, that surround a portion of the first and second chambers 502, 504. For example, the embodiment and configuration shown has a generally upwardly extending first wall bounding a portion of the first chamber 502 and a generally downwardly extending second wall that bounds a portion of the second chamber 504. The cartridge support members can be configured to support a cartridge that is received in the chamber, such as by engaging an outwardly-extending lip or flange on the periphery of the cartridge (not shown).
In certain implementations, one or more of the cartridge support members 510, 512 include a sealing member 514, such as a gasket made of plastic, rubber, or another elastomeric material. As shown, the sealing member 514 can be located at an end of the respective cartridge support member 510, 512. In certain variants, the sealing member extends generally vertically. In some embodiments, a portion of the sealing member 514 is received in a recess 510a, 512a in the respective cartridge support member 510, 512.
The sealing member 514 can be configured to facilitate a seal (e.g., a substantially liquid-tight seal and/or substantially gas-tight seal) between the respective cartridge support members 510, 512 and the cartridge. For example, in certain implementations, during the beverage production process the peripheral flange of the cartridge and one of the cartridge support members 510, 512 are pressed together, thereby resiliently deforming the sealing member 514 and providing a closure between the cartridge and the cartridge support member. In some embodiments, a tamping mechanism (e.g., in the lid assembly) depresses the cartridge against one of the cartridge support members 510, 512 (e.g., the cartridge support member oriented generally upwardly). Additional details regarding the tamping mechanism and the sealing member can be found in U.S. application Ser. No. 14/205,241, titled “BEVERAGE PRODUCTION MACHINES AND METHODS WITH TAMPING ASSEMBLY,” filed Mar. 11, 2014; the entirety of that application is hereby incorporated by reference.
With continued reference to
According to some implementations, at least one of the axle portions includes a mating feature 520, such as a groove, notch, tooth, or otherwise. The mating feature can be configured to engage with a portion of the ratchet assembly 600. In some embodiments, at least one of the axle portions 516, 518 includes a stop member 522, such as a shoulder. The stop member 522 can engage a mating portion (e.g., a hole) of the frame 125 to inhibit or prevent translational movement of the basket unit 500 relative to the frame 125 along the axis RAb.
In various embodiments, the basket unit 500 can include bottom portions 524, 526 that can define a bottom of each of the chambers. In some embodiments, each of the bottom portions 524, 526 are configured to support a cartridge placed in the respective chamber. For example, as shown in
In some embodiments, one or more of the bottom portions 524, 526 include a restriction assembly 534. The restriction assembly 534 can be configured to facilitate creating or providing an increase in pressure in one or more of the chambers 502, 504 during the beverage production process. This can be beneficial in producing certain types of beverages. For example, producing espresso at under elevated pressure conditions (e.g., about at least 9 bar) can yield an improved beverage. Additional details regarding restriction assemblies can be found in U.S. application Ser. No. 14/205,232, titled “BEVERAGE PRODUCTION MACHINES AND METHODS WITH RESTRICTORS,” filed Mar. 11, 2014; the entirety of that application is hereby incorporated by reference.
With regard to
In some embodiments, one or more of the outlets 540, 542 extend generally perpendicular to the axis RAb. In certain variants, the outlets 540, 542 can extend generally parallel to, or at a slight angle (e.g., less than about: 5°, 10°, 15°, values between the aforementioned values, or otherwise) relative to, the axis RAb This can facilitate engaging the one or more of the outlets 540, 542 with the dispensing assembly 300 during a rotational operation of the basket unit 500, as is discussed in more detail below. In some implementations, each of the outlets 540, 542 include a mating member, such as a flange 540a, 542a. As shown in the side view of
In some embodiments, the basket unit 500 includes features configured to indicate the position of the basket unit 500 relative to the frame 125 or other portions of the main housing 105. For example, the basket unit 500 can include one or more basket position elements 546, and the main housing 105 can include one or more basket position sensors (not shown) configured to detect the presence of the basket position elements 546. In some embodiments, the basket position elements 546 are magnetic markers and the basket position sensors are magnetic sensors. In certain variants, the basket position elements 546 are light reflective elements and the basket position sensors are configured to emit and detect a light signal (e.g., a light signal reflected off of the basket position elements). In various implementations, the basket position sensors are configured to determine the presence or non-presence of at least one of the basket position elements 546. For example, at least one of the basket position sensors can sense whether at least one of the basket position elements 546 is in close proximity to and/or is facing the basket position sensor.
In some embodiments, the basket position elements 546 are configured to indicate the position of the basket unit 500. For example, in the embodiment illustrated in
III. Ratchet Assembly
With reference to
The ratchet member 610 can include one or more collar engaging members, such as arms 618 and/or ribs 620. In some embodiments, the ratchet member 610 includes at least one, two, three, four, five, six, seven, or eight arms 618 and/or at least one, two, three, four, five, six, seven, or eight ribs 620. For example, the embodiment shown includes two arms 618 and four ribs 620. In some implementations, the arms 618 are longitudinally spaced-apart (e.g., in a direction generally parallel to an axis of rotation of the ratchet member) from a rear portion of the ratchet member 610. For example, the arms 618 can be located at a central portion of the ratchet member 610. This can allow portions of the collar 700 to pass behind the arms 618, as discussed in more detail below.
As discussed in more detail below, when some variants are in certain configurations, the ribs 620 can engage with the collar 700. For example, in some embodiments, the ribs 620 engage with the collar 700 when a lid of the lid assembly 140 is in the open position. This can inhibit unintended rotation of the basket unit 500. In certain variants, when the lid is not in the open position, the ribs 620 do not engage with the collar 700, thereby allowing rotation of the basket unit 500.
As illustrated in
Each of the arms 618 can have a first surface 618a and a second surface 618b. As shown in
As illustrated in
With regard to
As shown, the ratchet follower 630 can include a cam-following portion 640. In certain variants, the cam-following portion 640 includes a first ramp 642 and a second ramp 644. Relative to a longitudinal axis of the ratchet follower 630, the first ramp 642 can be at an angle α and the second ramp 644 can be at an angle β. In various implementations, the angle α is greater than or equal to the angle β. In some implementations, the angle α is less than or equal to the angle β. In some variants, the angles α, β are about equal.
IV. Collar
With regard to
As shown, the collar 700 can include a radially outwardly extending flange 714. In some embodiments, the flange 714 includes a circumferentially-extending notch 716. Certain variants of the flange 714 have one or more position indication features 718, such as tick marks, dimples, or grooves. In some embodiments, the main housing 105 includes a rotation detection sensor (not shown) that is configured to detect the position indication features 718. The sensor can send a signal to the controller in the main housing 105, which can use that signal to discern the rotational position of the collar 700 relative to other portions of the main housing 105 (e.g., the basket unit 500).
In various embodiments, the collar 700 is configured to be rotatably driven by a motor (not shown). For example, the collar 700 can include a plurality of gear teeth 720 adapted to engage with a gear or gear train that engages with a shaft of the motor. The motor can drive the gear or gear train, which in turn rotates the collar 700 about the axis RAc.
Several embodiments of the collar 700 include one or more ratchet engaging members. For example, certain embodiments of the collar 700 include a leg 722 with a projection 724 (e.g., a tab, bump, finger, or otherwise). In some implementations, the leg 722 extends generally downward and/or the projection 724 extends radially outwardly. In some embodiments, the collar 700 includes a wing 726. In some embodiments, the wing 726 is positioned radially inward of the leg 722 and/or the projection 724. As discussed in further detail below, in some variants, to facilitate rotation of the basket unit 500, the projection 724 can be configured to engage with the arms 618 of the ratchet member 610 and/or the wing 726 can be configured to engage with the ribs 620 of the ratchet member 610.
As noted above, when some variants are in certain configurations, the ribs 620 can engage with the collar 700. For example, when the lid is in the open position, the collar 700 can be rotatably positioned such that the wing 726 and the ribs 620 of the ratchet member 610 are engaged. This engagement can inhibit unintended rotation of the basket unit 500. In certain variants, when the lid is not in the open position, the ribs 620 do not engage with the wing 726, thereby allowing rotation of the basket unit 500.
V. Beverage Production Assembly
With reference to
In some embodiments, the collar 700 is positioned and adapted such that cartridges can be passed through the collar 700 for receipt into one of the chambers. For example, as shown, the collar 700 can surround an upper portion of the basket unit 500 while also allowing access to the chamber that is in the loading position. In certain variants, an axial centerline of the collar 700 is collinear with a line drawn between the centers of the first and second chambers 502, 504.
As noted above, the beverage production assembly 400 can include a motor (not shown). The motor can drive (e.g., rotate) the collar 700, such as via a gear or gear train. In turn, the collar 700 can drive other components of the beverage production assembly. For example, the collar 700 can engage the ratcheting assembly 600 and/or the dispensing assembly 300, which can result in movement of those components as well as other components (e.g., the basket unit 500). As described in more detail below, rotation of the collar 700 about a rotational axis RAc can result in one or more of the following: rotational movement of the ratchet member 610 relative to the collar 700, rotational movement of the basket unit 500 relative to the collar 700, pivoting movement of the ratchet follower 630, energizing of the biasing member 650, and pivoting movement of a component of the dispensing assembly 300 relative to the collar 700. As also described below, in various embodiments, the projection 724 and/or the wing 726 of the collar 700 engages the ratchet member 610. In the state shown in
As illustrated, the ratchet assembly 600 can engage with the body portion 506 of the multi-chamber basket unit 500. In some embodiments, one of the axle portions 516, 518 is partly received into the channel in the ratchet member 610. As shown, the mating features 616 (e.g., teeth) of the ratchet member 610 can engage with the corresponding mating features 520 (e.g., grooves or notches) in the axle portion 516 of the basket unit 500. In certain implementations, the engagement facilitates a generally rigid connection between the ratchet member 610 and the body portion 506 of the basket unit 500. In various embodiments, the engagement of the ratchet member 610 and the body portion 506 inhibits rotation of the ratchet assembly 600 and the basket unit 500 relative to each other. The engagement can result in rotation of the ratchet assembly 600 being transferred to the body portion 506 of the basket unit 500. This can facilitate rotation of the basket unit 500, as will be discussed in further detail below.
To facilitate clarity of presentation, some components of the upper portion of the main housing are not shown in
As previously discussed, the arm 636 at the second end 634 of the ratchet follower 630 can be connected with the biasing member 650. As shown, the biasing member 650 can also be connected with a mount or fastener 652, such as a hook or screw, which in turn is connected with the frame. As such, downward pivoting movement of the ratchet follower 630 (e.g., about the first end 632) can energize the biasing member 650, thereby producing a restoring force on the second end 634 of the ratchet follower 630.
VI. Dispensing Assembly
In various embodiments, the pivoting member 310 includes a passage 316. As discussed in further detail below, the passage 316 can convey liquid beverage from the basket unit 500 to the catch member 320. When the pivoting member 310 is not in a position to convey the beverage to the catch member 320, it can be configured to inhibit dripping outside the machine 100. For example, the pivoting member 310 can be positioned such that the rear portion of the passage 316 is inclined downward and/or away from the catch member 320. This can inhibit or prevent liquid residue in the passage 316 from flowing into the catch member 320, and thus can reduce the chance of unintentional liquid discharge (e.g., drips) from the dispensing nozzle 330. In some embodiments, when the pivoting member 310 is not in a position to convey the beverage to the catch member 320, it can be configured to route drips to a reservoir (not shown), such as a waste bin located below the basket unit 500.
VII. Rotation from First Chamber to Second Chamber
In some embodiments, rotation of the basket unit 500 can aid in ejecting or otherwise removing a used or unwanted cartridge from one of the chambers 502, 504. For example, after a cartridge that was loaded into one of the chamber has been used to prepare a beverage, that chamber can be rotated to eject the cartridge from the chamber. This is because, as a result of the rotation, the chamber that was in the loading position has been moved to a generally downwardly oriented position (e.g., the inverted position), thereby facilitating ejection (e.g., by force of gravity or otherwise) of the cartridge in that chamber. More details about cartridge ejection mechanisms and features can be found in U.S. application Ser. No. 14/205,261, titled “CARTRIDGE EJECTION SYSTEMS AND METHODS FOR SINGLE-SERVE BEVERAGE PRODUCTION MACHINES,” filed Mar. 11, 2014; the entirety of that application is hereby incorporated by reference. In certain embodiments, after ejection of the cartridge from a chamber, liquid (e.g., water) is introduced into that chamber to rinse away debris and/or residual beverage. In certain such implementations, an interior surface of the chamber (e.g., a radially inwardly facing surface) and/or one of the sealing members 510, 512 can be rinsed with the introduced liquid.
As shown in
As shown due to the rotation of the ratchet member 610, the bosses 622a, 622b on the ratchet member 610 have been rotated relative to the ratchet follower 630. This rotation has resulted in one of the bosses 622b being separated from the ramps 642, 644 of the ratchet follower 630, and the other of the bosses 622a being moved along the first ramp 642 of the ratchet follower 630. As shown, the boss 622a is positioned at about an apex between the ramps 642, 644. As will be discussed below, with continued rotation of the collar 700 and ratchet assembly 600, the boss 622a will pass the apex and begin to descend along the second ramp 644.
As shown, the movement boss 622a of the ratchet member 610 along the ramp 642 of the ratchet follower 630 has resulted in the second end 634 of the ratchet follower 630 being pivoted (e.g., generally downwardly) relative to the first end 632 of the ratchet follower 630. In some embodiments, such movement of the second end 634 of the ratchet follower 630 is against the bias of the biasing member 650, which tends to energize (e.g., elongate the longitudinal length of) the biasing member 650. For example, in the position shown in
With reference to
In some embodiments, the biasing member 650 can motivate at least one of the bosses 622a, 622b on the ratchet member 610 to traverse along (e.g., slide relative to) the second ramp 644. This is because the biasing force from the biasing member 650 is encouraging the second end 634 of the ratchet follower 630 generally upwardly. That force can be transmitted through the ratchet follower 630 to the engagement between the second ramp 644 and the boss 622a. As the second ramp 644 is at an angle relative to the direction of the transmitted biasing force, the boss 622a can be encouraged to traverse (e.g., slide down) a portion of the second ramp 644. In some embodiments, movement of the boss 622a along the second ramp 644 results in further rotation of the ratchet member 610, and thus the basket unit 500. In some embodiments, such rotation of the ratcheting member 610 via the engagement of the boss 622a and the second ramp 644 rotates the ratchet member 610 even when the projection 724 and/or wing 726 of the collar 700 are not engaged with the arm of the ratchet member 610.
As shown in
VIII. Second Chamber Dispensing
With regard to
In some embodiments, whether the dispensing assembly is in fluid communication with the basket unit 500 is a function of the position of the collar 700. For example, in the illustrated embodiment, the collar 700 has rotated into a position such that the notch 716 in the flange 714 of the collar 700 is circumferentially aligned with the cam 312 on the pivoting member 310 of the dispensing assembly 300. This can result in the bias of the biasing member 314 (e.g., torsional spring) encouraging the cam 312 into the notch 716, which in turn can result in the pivoting member 310 moving toward the second outlet port 542 of the basket unit 500. This can provide a fluid communication path between the second outlet port 542 of the basket 500 and the passage of the pivoting member 310 of the dispensing assembly 300. As shown, in certain embodiments, the pivoting member 310 can receive some or all of the second outlet port 542 of the basket 500. As shown, the pivoting member 310 is angled downward, thereby allowing the liquid to flow down the passage 316 and into the catch member 320 by force of gravity. The liquid can flow from the catch member 320 to the dispensing nozzle 330 for dispensing to the cup 101 or other vessel.
In certain variants, the catch member 320 is configured to encourage the liquid to flow toward and out of the dispensing nozzle 330. For example, the catch member 320 can be configured to pivot such that an end of the catch member 320 with the dispensing nozzle 330 is lower than an opposite end of the catch member 320. For example, the catch member 320 can include hinge features, such as pins, that pivotally connect with other portions of the machine 100, such as with the frame 125. During the dispensing portion of the beverage preparation process, the catch member 320 can be pivoted (e.g., by an actuator or other mechanism) such that gravity encourages the liquid to flow toward and through the dispensing nozzle 330.
In some implementations, the catch member 320 can include a funnel member 322 in communication with the pivoting member 310 during dispensing of the beverage. The funnel member 322 can be inclined, with a lower portion at or near an inlet 332 of the dispensing nozzle 330, thereby allowing gravity to encourage the liquid to flow toward and out of the dispensing nozzle 330. In certain embodiments, because the funnel member 322 is configured to encourage flow of the liquid in the funnel member 322 during dispensation to the cup 101, the funnel member 322 can reduce the likelihood of liquid remaining in the catch member 320. This can inhibit or avoid dripping from the funnel member 322 and/or the dispensing nozzle 330. In some embodiments, the funnel member 322 includes a low friction material and/or coating, which can reduce the chance and/or amount of liquid residue remaining in the funnel member 322.
IX. Rotation from Second Chamber to First Chamber
For example, as shown in
As shown in
In some embodiments, rotation of the ratchet assembly 600 and basket unit 500 are further encouraged by the bias of the biasing member 650 on the second end 634 of the ratchet follower 630 and/or because of the engagement between at least one of the bosses 622a, 622b on the ratchet assembly 600 and at least one of the ramps 642, 644 on the ratchet follower 630. For example, as shown in
With reference to
X. First Chamber Dispensing
Similar to the description above in connection with
XI. Reset Operations
In certain implementations, the beverage production assembly can perform a reset operation. During the reset operation the rotational direction of the collar 700 is reversed. For example, the collar 700 can rotate a first direction (e.g., clockwise) during the flip operations (e.g., the half flip of
In various implementations, during the reverse-rotation of the collar 700, engagement between certain components can be reduced or avoided. This can facilitate circumferentially positioning the collar 700 relative to the ratchet member 610 without flipping the basket unit 500. For example, in some embodiments, during the reverse-rotation of the collar 700, the wing 726 can rotate beyond the ratchet member 610 without flipping the basket unit 500. In some embodiments, the wing 726 of the collar 700 is configured to pass behind the arm 618 of the ratchet assembly 600 (e.g., between the arm and the basket unit 500), thereby not engaging the arm 618. In some embodiments, the wing 726 can pass over (e.g., be vertically spaced apart from) the rib 620 of the ratchet assembly 600, thereby not engaging the rib 620.
As illustrated in
XII. Certain Operational Modes
As noted above, embodiments of the beverage production assembly 400 can produce multiple types of beverages. In some embodiments, the first chamber 502 is adapted for producing a first type of beverage type and the second chamber 504 is adapted for producing a second beverage type. For example, the first chamber 502 in the basket unit 500 can be for producing brewed coffee beverages and the second chamber 504 can be for producing espresso beverages. The rotation of the basket unit 500 can facilitate producing such a multiplicity of beverage types and/or can transition the beverage production assembly 400 from being configured to produce one beverage type to being configured to produce another beverage type.
For example, in the situation that the first cartridge 502 is in the loading position, yet the beverage desired is prepared using the second chamber 504, the basket unit 500 can rotate (e.g., at least about 170°) to bring the second chamber 504 to the loading position. An example of such a rotational operation is shown above in
In the reverse situation, in which the second cartridge 504 is in the loading position, yet the beverage desired is prepared using the first chamber 502 (e.g., a brewed coffee drink), the basket unit 500 can rotate (e.g., at least about 180°) to bring the first chamber 502 to the loading position. Such a rotational operation is shown above in
In several embodiments, when rotating from one chamber being in the loading position to another chamber being in the loading position, the basket unit 500 rotates at least about: 45°, 90°, 135°, 170°, 175°, 180°, 185°, 190°, 225°, 270°, values between the aforementioned values, or otherwise.
As noted above, after a cartridge has been loaded in the chamber that is appropriate for the type of beverage to be made, the beverage production process can proceed. After that process has occurred and the beverage has been dispensed, the beverage production assembly 400 can be moved into a configuration to expediently execute another rotation of the basket unit 500. This can reduce the time a user may have to wait before being able to load another cartridge into the basket unit 500. For example, after the dispensing operations shown in
In certain situations, a user may wish to produce multiple consecutive beverages of the same type. For example, a first brewed coffee beverage may have been produced, then the user may scan (e.g., by providing the cartridge to the reader) another cartridge to instruct the machine 100 to produce another brewed coffee beverage. In some embodiments, when that situation occurs, the basket unit 500 makes a two half rotations (also called one full rotation) of the first chamber 502 after the first beverage has been produced and dispensed. The first half rotation includes moving the first chamber 502 from the loading position to the inverted position, as is shown in
In some embodiments, for the first half rotation, the projection 724 on the collar 700 is already in position for engaging the ratchet member 610. For example, as such was previously discussed, after preparing the first brewed coffee beverage, the projection 724 can be rotated so as to be positioned at or near the ratchet member 610, such as the position of the collar 700 shown in
As shown in
In various embodiments, the two half (or one full rotation) operation described above can aid in ejecting or otherwise removing the cartridge in the first chamber 502. For example, when the first chamber 502 is oriented downward (e.g., in the inverted position or otherwise tilted downward), the cartridge can be encouraged out of the chamber by force of gravity. As such, when the first chamber 502 is returned to the loading position, it can be configured to accept another cartridge.
Although the example above involves preparing consecutive beverages using the first chamber 502, similar operations could be used to prepare consecutive beverages using the second chamber 504. For example, in the first half rotation, the second chamber 504 can be rotated from the loading position to the inverted position, as is shown in
In some embodiments, the beverage production assembly 400 is configured to facilitate settling (e.g., a generally equally distribution of) the contents of a cartridge inserted into the basket unit 500. In certain instances, such as if the cartridge was stored on its side, more coffee grounds may be located on one side of the cartridge than the other. This can hinder beverage production, such as by reducing extraction efficiency. As such, it can be desirable to distribute the grounds generally equally on the bottom of the cartridge. In some embodiments, after insertion of a cartridge into one of the chambers 502, 504, the basket unit 500 is rotated back-and-forth (clockwise and counterclockwise) to encourage settling of the contents of the cartridge. For example, the basket unit 500 can be rotated in a clockwise direction less than or equal to about: 45°, 30°, 25°, 20°, 15°, 10°, 5°, 3°, 1°, values between the aforementioned values, or otherwise. The basket unit 500 can be rotated in a counterclockwise direction less than or equal to about: 45°, 30°, 25°, 20°, 15°, 10°, 5°, 3°, 1°, values between the aforementioned values, or otherwise. In some embodiments, during the settling operation, the basket unit 500 is rotated between about 10° and about 20° in the counterclockwise direction and between about 10° and about 20° in the clockwise direction. In some embodiments, during the settling operation, the basket unit 500 is rotated less than about 5° in the counterclockwise direction and less than about 5° in the clockwise direction. In several embodiments, during the settling operation, the basket unit 500 is not rotated a sufficient amount to flip the basket unit 500. In various implementations, after the settling operation, the basket unit 500 is returned to a generally level position (e.g., as shown in
XIII. Swinging Spout
With regard to
As illustrated, the dispensing assembly 300A includes a pivoting member 310 with a passage 316A and a nozzle 330A. The passage 316A can be bounded on one or more sides by walls, which can aid in containing liquid flow. The passage 316A can be angled downwardly to facilitate liquid flow to the nozzle 330A by gravity. The dispensing assembly 300A can be rotatably connected to the housing 105, such as by a support column 334A.
In various embodiments, the dispensing assembly 300A can be selectively rotated into and out of engagement with the outlet ports 540, 542 of the basket unit 500. For example, as shown in
In certain embodiments, the dispensing assembly 300A engages with the collar 700. For example, the pivoting member 310A can include features (e.g., one or more cams) that engage with the collar 700 (e.g., one or more tabs or slots). In some embodiments, rotation of the collar 700 to a first circumferential position results in the pivoting member 310A swinging into engagement with one of the outlet ports 540, 542 of the basket unit 500. In certain variants, rotation of the collar 700 to a second circumferential position results in the pivoting member 310A swinging out of engagement with one of the outlet ports 540, 542 of the basket unit 500. A biasing member (not shown), such as a spring, can bias the dispensing assembly 300A toward the non-engaged position.
XIV. Ratchet Assembly with Cam Member
As shown, the ratchet assembly 600A can include a ratchet member 610A and a ratchet follower 630A. Some embodiments also include a biasing member (not shown). The ratchet member 610A can be configured to engage with the basket unit 500. For example, the ratchet member 610A can include one or more mating features 616A, such as a projection with a non-circular cross-section that is configured to engage a corresponding recess in the axle portion 516 of the basket unit 500.
The ratchet member 610A can include a first portion 624A and a second portion 626A. In some embodiments, the first and second portions 624A, 626A are spaced-apart by a cam member 628A. As shown, the ratchet follower 630A can be received into the space between the first and second portions 624A, 626A. The biasing member can bias the ratchet follower 630A into engagement with the cam member 628A.
As shown in the cross-sectional view of
During rotation of the ratchet assembly 600A with the collar, the ratchet member 610A can be rotated. This can result in the cam member 628A rotating with respect to the ratchet follower 630A. Similar to the previously-described way that rotation of the bosses 622a, 622b deflects the ratchet follower 630A, rotation of the cam member 628A deflects the ratchet follower 630A. This, in turn, can energize the biasing member.
In certain implementations, when the collar 700 has rotated sufficiently so as to disengage with the ratchet member 610A, then the cam member 628A has rotated to a position such that the rounded or chamfered ends are engaged with the ratchet follower 630A. In certain embodiments, when the collar 700 has rotated out of engagement with the ratchet member 610A, a region of engagement between the cam member 628A and the ratchet follower 630A has crossed-over a longitudinal centerline CLc of the cam member 628A. In some variants, after the collar 700 has rotated out of engagement with the ratchet member 610A, the bias of the biasing member encourages the ratchet follower 630A against the cam member 628A, which can cause the cam member 628A to slide with respect to the ratchet follower 630A. This can result in the ratchet member 610A being further rotated (e.g., by the bias of the basing member acting on the cam member 628A via the ratchet follower 630A). For example, the region of engagement between the cam member 628A and the ratchet follower 630A can slide down the rounded or chamfered end, which can cause further rotation of the ratchet member 610A. In various implementations, rotation of the cam member 628A also rotates the ratchet member 610A and basket unit 500 a corresponding amount.
Thus, according to some embodiments, the engagement between the collar 700 and the ratchet member 610A provides a first amount of rotation of the basket unit 500, and the bias of the basing member acting on the cam member 628A via the ratchet follower 630A provides a second amount of rotation of the basket unit 500. In various embodiments, total of the first amount of rotation and the second amount of rotation of the basket unit 500 is at least about 170° and/or less than or equal to about 190°. Such total rotation is preferably equal to about 180°.
XV. Certain Translating Features
The beverage production assembly 1400 can include a multi-chambered basket unit 1500. The basket unit 1500 includes a first chamber (not shown) and a second chamber 1504, which can be generally opposite the first chamber. As shown, a lid assembly 1140 can be opened to facilitate loading of a cartridge into the chamber 1504. As shown in
In some embodiments, the basket unit 1500 can rotate to selectively orient one of the first and second chambers to the loading position. For example,
As illustrated, an outlet of at least one of the conduits 1536, 1538 can engage with the dispensing assembly 1300. The dispensing assembly 1300 can include a pivoting member 1310 (e.g., an anti-drip unit), catch member 1320, and outlet 1330. The pivoting member 1310 can be pivotally connected with the catch member 1320 or a frame 1125, such as by a pinned connection.
In some variants, the basket unit 1500 is configured to translate, such as moving substantially vertically. As shown, the basket unit 1500 is connected with a cam collar 1800. The cam collar 1800 in turn can engage with a collar 1700 (not shown), which can be rotated (e.g., by a motor and/or gearing) about the axis RAc. The engagement between the collar 1700 and cam collar 1800 can provide substantially vertical translation of the basket unit 1500, such as between the upper position of
In certain embodiments, the cam collar 1800 has one or more cam tracks 1810 that are configured to receive one or more cam teeth 1712 (not shown) on the collar 1700. The cam tracks 1810 can include angled tracks 1810a, which form a portion of a helix on a periphery of the collar 1800. The cam tracks 1810 can also include non-angled tracks 1810b, which extend around a portion of the periphery of the collar 1800 generally parallel to a circumferential axis of the collar. As shown, the angled tracks 1810a and non-angled tracks 1810b can intersect. For example, the cam tracks 1810 can include an angled track 1810a portion and then a non-angled track portion 1810b.
During rotation of the collar 1700 about the axis RAc, the cam teeth 1712 travel along the cam tracks 1810. When the teeth travel along the angled tracks 1810a, the cam collar 1800 is drawn toward or away from the collar 1700, depending on the direction of rotation of the collar 1700. Because the cam collar 1800 is connected with the basket unit 1500, such vertical movement of the cam collar 1800 also vertically moves the basket unit 1500. In some implementations, the basket unit 1500 translates vertically (e.g., downward) during rotation of the basket unit 1500 about the axis RAb.
Vertical movement can be beneficial, for example, to inhibit or prevent dripping. For example, as shown in
In the embodiment illustrated, the collar 1700 and the cam collar 1800 is shown at least partly below the basket unit 1500. However, in some embodiments, the collar 1700 and the cam collar 1800 are located at least partly above the basket unit 1500. For example, the collar 1700 can be positioned similarly to what is shown in
In certain variants, the cam collar 1800 is connected with a tamp assembly rather than or in addition to the basket unit 1500. Translation of the cam collar 1800 can result in translation of the tamp assembly relative to a cartridge in one of the chambers. This can facilitate compressing beverage component or precursor components (e.g., espresso grounds) in the cartridge. Translation of certain components in a main housing, as well as tamping functionality, is discussed in more detail in U.S. application Ser. No. 14/205,241, titled “BEVERAGE PRODUCTION MACHINES AND METHODS WITH TAMPING ASSEMBLY,” filed Mar. 11, 2014; as noted above, that application is incorporated by reference herein in its entirety.
As shown, the beverage production assembly 2400 can include a multi-chambered basket unit 2500, ratchet assembly 2600, and/or collar 2700. The collar 2700 can engage with a lid portion 2800. For example, one of the collar 2700 and the lid portion 2800 can include one or more teeth 2712 that can be received in one or more cam tracks 2810 in the other of the collar 2700 and the lid portion 2800. As shown, a portion of the cam tracks 2810 are at an angle relative to an axis of rotation of the collar 2700. In some variants, the cam tracks 2810 form a portion of a substantially helical shape.
In certain embodiments, rotation of the collar 2700 can result in the teeth moving along the tracks 2810. Due to the angle of the cam tracks 2810, this can cause translational movement between the collar 2700 and the lid portion 2800. In some implementations, the collar 2700 is generally translationarily stationary relative to the housing 105 and the lid portion 2800 translates. In certain implementations, the lid portion 2800 is generally translationarily stationary relative to the housing 105 and the collar 2700 translates. In some variants, both the collar 2700 and the lid portion 2800 translate relative to each other and to the housing 105.
In certain variants, the lid portion 2800 is connected with a tamp assembly. In various embodiments, the translation of the collar 2700 and/or the lid portion 2800 can cause the tamp assembly to move relative to (e.g., into and/or out of engagement with) a cartridge in one of the chambers. This can facilitate compressing beverage component or precursor components (e.g., espresso grounds) in the cartridge. As noted above, translation of certain components in a main housing, as well as tamping functionality, is discussed in more detail in U.S. application Ser. No. 14/205,241, titled “BEVERAGE PRODUCTION MACHINES AND METHODS WITH TAMPING ASSEMBLY,” filed Mar. 11, 2014, as noted above that application is incorporated by reference herein in its entirety.
With continued reference to
In some implementations, the conduit 2310 is flexible and/or resilient. In certain embodiments, this can aid in translation of the basket unit 2500. For example, in some embodiments in which the basket unit 500 can translate relative to the outlet 2330, the conduit 2310 can flex to maintain a liquid flow path between the basket unit 2500 and the outlet 2330.
In certain embodiments, the flexible and/or resilient conduit 2310 can facilitate closing a fluid flow path between the outlet 2330 and the chambers of the basket unit 2500. For example, certain embodiments include one or more pinch members (not shown) that can pinch the conduit 2310, thereby selectively reducing the size of or eliminating the fluid flow path between the outlet 2330 and the chambers 502, 504 of the basket unit 2500. In some embodiments, at least one of the pinch members engages with the collar 2700 such that rotation of the collar 2700 can engage and/or disengage the pinch members with the collar 2700. For example, the pinch members can include gears that engage with the teeth 720 on the collar 700. In some implementations, one of the pinch members is engaged with another of the pinch members in a master-slave gear relationship.
XVI. Waste Bin Unit
Several embodiments include a waste bin unit for collecting and/or storing cartridges, such as used or unwanted cartridges. The waste bin unit can be selectively received in, and removable from, the housing 105. This can facilitate removing and/or discarding cartridges from the machine 100.
As illustrated in
The first receptacle 3201 can be configured to receive a cartridge (e.g., a spent, used, or discarded cartridge 3203) from the single-serve brewing machine. In some implementations, the first receptacle 3201 may comprise a porous (e.g., perforated) floor. The porous floor can be configured to retain the cartridge body and/or to permit excess water, beverage, and/or any stray beverage precursor material to pass through (e.g., to enter the second receptacle). Such a drainage system may be beneficial to limit molding, odor, and other negative aspects of storing wet, used cartridges. The porous floor may comprise, for example, mesh, netting, a single opening, a plurality of openings, etc. In some variations, the openings may range from 0.1 mm to 5 mm; 0.5 mm to 5 mm; 1 mm to 5 mm; 0.1 mm to 2 mm; 0.5 mm to 2 mm; or 1 mm to 2 mm such that liquid is permitted to pass through but the cartridge body and beverage precursor material is substantially retained. In some variations, the openings may range from 1 mm to 20 mm; 1 mm to 10 mm; 1 mm to 5 mm; 3 mm to 20 mm; 3 mm to 10 mm; 3 mm to 5 mm; 5 mm to 20 mm; or 5 mm to 10 mm to permit beverage precursor material to pass through. In some embodiments the porous floor comprises the same material as the first receptacle. In other implementations, the perforated floor comprises a different material than the first receptacle. In some embodiments, the porous floor and the reminder of the first receptacle 3201 (e.g., walls) are formed as a single unitary component. In other variants, the porous floor and the reminder of the first receptacle 3201 are formed as separate components that are subsequently assembled together.
In some embodiments, the waste bin unit includes a removal mechanism. This can assist the user in disassociating the waste bin unit from the beverage machine. In some embodiments, the removal mechanism is configured to tilt one or more of the receptacles, such as tilting the first and/or second receptacles generally toward a front of the machine 100.
In some embodiments, the waste bin unit includes a compression device (not shown) to compress the contents of one or more of the receptacles. For example, the machine 100 can include a piston that extends into the first and/or second receptacle to apply compressive force to cartridges located therein. This can reduce the amount of volume of the receptacle that is occupied by discarded cartridges, which can increase the number of cartridges the receptacle is able to contain, can reduce the frequency that the receptacle needs to be emptied, and/or can facilitate disassociating the waste bin unit from the beverage machine.
In certain embodiments, the waste bin unit includes a sensing mechanism (not shown) configured to determine a status of one or more of the receptacles. For example, the sensing mechanism can include a position sensor to monitor whether one or both of the receptacles are properly engaged in the machine 100. In some implementations, the sensing mechanism includes a sensor for monitoring the amount or level of material in one or both of the receptacles. For example, the sensing mechanism can include a sensor (e.g., a proximity sensor, weight sensor, or otherwise) configured to send a signal to a controller of the machine 100 when a characteristic (e.g., height or weight) of the materials in one or more of the receptacles exceeds a certain amount.
XVII. Summary
Various embodiments and examples of beverage preparation machines and methods including multi-chamber basket units have been described herein. Although certain embodiments and examples have been described herein with respect to cartridges for producing coffee beverages, the basket units and chambers described herein can be configured to receive cartridges containing other particulate materials or components for producing many other types of beverages, such as a chocolate based product (e.g., hot cocoa), tea, juice, soup, broth, and other beverages. Further, although some embodiments have been disclosed in which liquid is introduced into the cartridge, the introduction of other phases is contemplated. For example, in some embodiments, steam or a combination of steam and liquid water is introduced into the cartridge. Additionally, although certain embodiments have been disclosed that include a single beverage component or precursor, the term “beverage component or precursor” is not limited to only a single component. Rather, the beverage component or precursor can comprise one component (e.g., coffee) or a plurality of components (e.g., coffee and a sweetener).
As used herein, the term “beverage,” in addition to having its ordinary meaning, can include, among other things, any liquid or substantially liquid substance or product having a flowing quality such as juices, coffee beverages, teas, frozen yogurt, beer, wine, cocktails, liqueurs, spirits, cider, soft drinks, flavored water, energy drinks, soups, broths, combinations of the same, or the like. The term “cartridge” as used herein shall be given its ordinary and customary meaning, and includes, among other things, cartridges, capsules, cups, pods, pucks, pads, and the like, whether or not such cartridge is capable of being pierced or otherwise ruptured in order to form an inlet and/or outlet for the cartridge.
Although this disclosure describes certain embodiments and examples of beverage preparation machines, it will be understood by those skilled in the art that many aspects of the methods and devices shown and described in the present disclosure may be differently combined and/or modified to form still further embodiments or acceptable examples. All such modifications and variations are intended to be included herein within the scope of this disclosure. Indeed, a wide variety of designs and approaches are possible and are within the scope of this disclosure. No feature, structure, or step disclosed herein is essential or indispensable. Moreover, while illustrative embodiments have been described herein, the scope of any and all embodiments having equivalent elements, modifications, omissions, combinations (e.g., of aspects across various embodiments), adaptations and/or alterations as would be appreciated by those in the art based on the present disclosure. Although there may be some embodiments within the scope of this disclosure that are not expressly recited above or elsewhere herein, the present disclosure contemplates and includes all embodiments within the scope of what this disclosure shows and describes. Further, this disclosure contemplates and includes embodiments comprising any combination of any structure, material, step, or other feature disclosed anywhere herein with any other structure, material, step, or other feature disclosed anywhere herein.
Furthermore, certain features that are described in this disclosure in the context of separate implementations can also be implemented in combination in a single implementation. Conversely, various features that are described in the context of a single implementation can also be implemented in multiple implementations separately or in any suitable subcombination. Moreover, although features may be described above as acting in certain combinations, one or more features from a claimed combination can, in some cases, be excised from the combination, and the combination may be claimed as a subcombination or variation of a subcombination.
Moreover, while operations may be depicted in the drawings or described in the specification in a particular order, such operations need not be performed in the particular order shown or in sequential order, or that all operations be performed, to achieve desirable results. Other operations that are not depicted or described can be incorporated in the example methods and processes. For example, one or more additional operations can be performed before, after, simultaneously, or between any of the described operations. Further, the operations may be rearranged or reordered in other implementations. Also, the separation of various system components in the implementations described above should not be understood as requiring such separation in all implementations, and it should be understood that the described components and systems can generally be integrated together in a single product or packaged into multiple products.
For purposes of this disclosure, certain aspects, advantages, and novel features are described herein. Not necessarily all such advantages may be achieved in accordance with any particular embodiment. Thus, for example, those skilled in the art will recognize that the disclosure may be embodied or carried out in a manner that achieves one advantage or a group of advantages as taught herein without necessarily achieving other advantages as may be taught or suggested herein.
Conditional language, such as “can,” “could,” “might,” or “may,” unless specifically stated otherwise, or otherwise understood within the context as used, is generally intended to convey that certain embodiments include, while other embodiments do not include, certain features, elements, and/or steps. Thus, such conditional language is not generally intended to imply that features, elements, and/or steps are in any way required for one or more embodiments or that one or more embodiments necessarily include logic for deciding, with or without user input or prompting, whether these features, elements, and/or steps are included or are to be performed in any particular embodiment.
Conjunctive language such as the phrase “at least one of X, Y, and Z,” unless specifically stated otherwise, is otherwise understood with the context as used in general to convey that an item, term, etc. may be either X, Y, or Z. Thus, such conjunctive language is not generally intended to imply that certain embodiments require the presence of at least one of X, at least one of Y, and at least one of Z.
Unless otherwise explicitly stated, articles such as ‘a’ or ‘an’ should generally be interpreted to include one or more described items. Accordingly, phrases such as “a device configured to” are intended to include one or more recited devices. Such one or more recited devices can also be collectively configured to carry out the stated recitations. For example, “a processor configured to carry out recitations A, B, and C” can include a first processor configured to carry out recitation A working in conjunction with a second processor configured to carry out recitations B and C.
Language of degree used herein, such as the terms “approximately,” “about,” “generally,” and “substantially” as used herein represent a value, amount, or characteristic close to the stated value, amount, or characteristic that still performs a desired function or achieves a desired result. For example, the terms “approximately”, “about”, “generally,” and “substantially” may refer to an amount that is within less than 10% of, within less than 5% of, within less than 1% of, within less than 0.1% of, and within less than 0.01% of the stated amount. As another example, in certain embodiments, the terms “generally parallel” and “substantially parallel” refer to a value, amount, or characteristic that departs from exactly parallel by less than or equal to 15°, 10°, 5°, 3°, 1°, 0.1°, or otherwise. Similarly, in certain embodiments, the terms “generally perpendicular” and “substantially perpendicular” refer to a value, amount, or characteristic that departs from exactly perpendicular by less than or equal to 15°, 10°, 5°, 3°, 1°, 0.1°, or otherwise.
The language of the claims is to be interpreted broadly based on the language employed in the claims and not limited to the examples described in the present specification or during the prosecution of the application, which examples are to be construed as non-exclusive.
Some embodiments have been described in connection with the accompanying drawings. However, the figures are not drawn to scale. Distances, angles, etc. are merely illustrative and do not necessarily bear an exact relationship to actual dimensions and layout of the devices illustrated. Components can be added, removed, and/or rearranged. Further, the disclosure herein of any particular feature, aspect, method, property, characteristic, quality, attribute, element, or the like in connection with various embodiments can be used in all other embodiments set forth herein. Additionally, it will be recognized that any methods described herein may be practiced using any device suitable for performing the recited steps.
In summary, various illustrative embodiments and examples of beverage preparation machines have been disclosed. Although the beverage preparation machines have been disclosed in the context of those embodiments and examples, it will be understood by those skilled in the art that this disclosure extends beyond the specifically disclosed embodiments to other alternative embodiments and/or other uses of the embodiments, as well as to certain modifications and equivalents thereof. This disclosure expressly contemplates that various features and aspects of the disclosed embodiments can be combined with, or substituted for, one another. Accordingly, the scope of this disclosure should not be limited by the particular disclosed embodiments described above, but should be determined only by a fair reading of the claims that follow as well as their full scope of equivalents.
This application is a divisional of U.S. application Ser. No. 14/205,256, titled “BEVERAGE PRODUCTION MACHINES WITH MULTI-CHAMBERED BASKET UNITS,” filed Mar. 11, 2014, now U.S. Pat. No. 9,439,532. This application is related to at least U.S. application Ser. No. 14/205,198, titled “SINGLE-SERVE BEVERAGE PRODUCTION MACHINE,” filed Mar. 11, 2014; U.S. application Ser. No. 14/205,261, titled “CARTRIDGE EJECTION SYSTEMS AND METHODS FOR SINGLE-SERVE BEVERAGE PRODUCTION MACHINES,” filed Mar. 11, 2014; U.S. application Ser. No. 14/205,241, titled “BEVERAGE PRODUCTION MACHINES AND METHODS WITH TAMPING ASSEMBLY,” filed Mar. 11, 2014; U.S. application Ser. No. 14/205,232, titled “BEVERAGE PRODUCTION MACHINES AND METHODS WITH RESTRICTORS,” filed Mar. 11, 2014; and U.S. application Ser. No. 14/205,197, titled “POD-BASED RESTRICTORS AND METHODS,” filed Mar. 11, 2014. The entirety of each of the aforementioned applications is hereby incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3483811 | Heier | Dec 1969 | A |
3948157 | Layre | Apr 1976 | A |
4860645 | van der Lijn et al. | Aug 1989 | A |
5495793 | Muis et al. | Mar 1996 | A |
5520093 | Ackermann | May 1996 | A |
5551988 | Reyhanloo et al. | Sep 1996 | A |
6009792 | Kraan | Jan 2000 | A |
6021705 | Dijs | Feb 2000 | A |
6026732 | Kollep et al. | Feb 2000 | A |
6079315 | Beaulieu et al. | Jun 2000 | A |
6182554 | Beaulieu et al. | Feb 2001 | B1 |
6290063 | Vogt et al. | Sep 2001 | B1 |
6494128 | Yu | Dec 2002 | B1 |
6510783 | Basile et al. | Jan 2003 | B1 |
6607762 | Lazaris et al. | Aug 2003 | B2 |
6655260 | Lazaris et al. | Dec 2003 | B2 |
6685365 | White | Feb 2004 | B2 |
6725762 | Kollep et al. | Apr 2004 | B2 |
6763759 | Denisart | Jul 2004 | B2 |
6786134 | Green | Sep 2004 | B2 |
6832542 | Hu et al. | Dec 2004 | B2 |
6948420 | Kirschner et al. | Sep 2005 | B2 |
6955116 | Hale | Oct 2005 | B2 |
6978682 | Foster et al. | Dec 2005 | B2 |
6990891 | Tebo | Jan 2006 | B2 |
7028604 | Cortese | Apr 2006 | B2 |
7093530 | Meister et al. | Aug 2006 | B2 |
7165488 | Bragg et al. | Jan 2007 | B2 |
7216582 | Yoakim et al. | May 2007 | B2 |
7219596 | Kief, Jr. | May 2007 | B2 |
7243867 | Steckhan | Jul 2007 | B2 |
7255039 | Halliday et al. | Aug 2007 | B2 |
7320274 | Castellani | Jan 2008 | B2 |
7325479 | Laigneau et al. | Feb 2008 | B2 |
7347138 | Bragg et al. | Mar 2008 | B2 |
7464636 | Mariller | Dec 2008 | B2 |
7543527 | Schmed | Jun 2009 | B2 |
7569243 | Yoakim et al. | Aug 2009 | B2 |
7592027 | Halliday et al. | Sep 2009 | B2 |
7650831 | Denisart et al. | Jan 2010 | B2 |
7669518 | Bardazzi | Mar 2010 | B2 |
7698992 | Wei | Apr 2010 | B2 |
7707927 | Boussemart et al. | May 2010 | B2 |
7726233 | Kodden et al. | Jun 2010 | B2 |
7798054 | Evers et al. | Sep 2010 | B2 |
7815953 | Mastropasqua et al. | Oct 2010 | B2 |
7823501 | Rijskamp et al. | Nov 2010 | B2 |
7827905 | Bardazzi | Nov 2010 | B2 |
7832328 | Koeling et al. | Nov 2010 | B2 |
7856920 | Schmed et al. | Dec 2010 | B2 |
7883733 | Cortese | Feb 2011 | B2 |
7946217 | Favre et al. | May 2011 | B2 |
7992486 | Constantine et al. | Aug 2011 | B2 |
7993691 | Yoakim et al. | Aug 2011 | B2 |
8002146 | Cahen et al. | Aug 2011 | B2 |
8028616 | Van Der Meer et al. | Oct 2011 | B2 |
8039036 | Knitel et al. | Oct 2011 | B2 |
8071147 | Steenhof et al. | Dec 2011 | B2 |
8074560 | Levi et al. | Dec 2011 | B2 |
8079300 | Jing | Dec 2011 | B2 |
8091469 | Cahen et al. | Jan 2012 | B2 |
8095242 | Quah | Jan 2012 | B2 |
8109200 | Hansen | Feb 2012 | B2 |
8191463 | Spinelli | Jun 2012 | B2 |
8202560 | Yoakim et al. | Jun 2012 | B2 |
8210095 | Brezovnik et al. | Jul 2012 | B2 |
8210098 | Boussemart et al. | Jul 2012 | B2 |
8225710 | Kristiaan et al. | Jul 2012 | B2 |
8272319 | Jarisch et al. | Sep 2012 | B2 |
8307754 | Ternite et al. | Nov 2012 | B2 |
8312806 | De Graaf et al. | Nov 2012 | B2 |
8327754 | Kirschner et al. | Dec 2012 | B2 |
8333144 | Boussemart et al. | Dec 2012 | B2 |
8409646 | Yoakim et al. | Apr 2013 | B2 |
8431175 | Yoakim et al. | Apr 2013 | B2 |
8468934 | Epars et al. | Jun 2013 | B2 |
8475860 | Colantonio et al. | Jul 2013 | B2 |
8512776 | Yoakim et al. | Aug 2013 | B2 |
8567304 | Saxton et al. | Oct 2013 | B2 |
8613248 | Steenhof et al. | Dec 2013 | B2 |
8616117 | Evers et al. | Dec 2013 | B2 |
8651012 | Yoakim et al. | Feb 2014 | B2 |
8656827 | Vanni | Feb 2014 | B2 |
8658232 | Yoakim et al. | Feb 2014 | B2 |
8733229 | Jarisch et al. | May 2014 | B2 |
8752478 | Nocera | Jun 2014 | B2 |
8758844 | Nocera | Jun 2014 | B2 |
8784915 | Evers et al. | Jul 2014 | B2 |
8800433 | Cahen et al. | Aug 2014 | B2 |
8808777 | Kamerbeek et al. | Aug 2014 | B2 |
8813634 | Yoakim et al. | Aug 2014 | B2 |
8833238 | Hansen et al. | Sep 2014 | B2 |
8844427 | Beutlrock et al. | Sep 2014 | B2 |
8846121 | Hansen et al. | Sep 2014 | B2 |
8887622 | Bentley et al. | Nov 2014 | B2 |
8906435 | Kamerbeek et al. | Dec 2014 | B2 |
8931397 | Frigeri et al. | Jan 2015 | B2 |
8695484 | Quelever et al. | Feb 2015 | B2 |
8950317 | Tanner et al. | Feb 2015 | B2 |
8956672 | Yoakim et al. | Feb 2015 | B2 |
8962048 | Gerbaulet et al. | Feb 2015 | B2 |
8974846 | Burton-Wilcock et al. | Mar 2015 | B2 |
8978545 | Yoakim et al. | Mar 2015 | B2 |
8986764 | Yoakim et al. | Mar 2015 | B2 |
9439532 | Crarer et al. | Sep 2016 | B2 |
9504348 | Windler et al. | Nov 2016 | B2 |
20020121198 | Kollep et al. | Sep 2002 | A1 |
20030066431 | Fanzutti et al. | Apr 2003 | A1 |
20030145736 | Green | Aug 2003 | A1 |
20040129145 | Denisart | Jul 2004 | A1 |
20040244599 | Wei | Dec 2004 | A1 |
20040255790 | Green | Dec 2004 | A1 |
20050076786 | Meister et al. | Apr 2005 | A1 |
20050076787 | Grant et al. | Apr 2005 | A1 |
20050076788 | Grant et al. | Apr 2005 | A1 |
20050095158 | Kirschner et al. | May 2005 | A1 |
20050126400 | Bragg et al. | Jun 2005 | A1 |
20050172820 | Cortese | Aug 2005 | A1 |
20050188854 | Green et al. | Sep 2005 | A1 |
20050223904 | Laigneau et al. | Oct 2005 | A1 |
20050241489 | Kirschner et al. | Nov 2005 | A1 |
20060075903 | Dijs | Apr 2006 | A1 |
20060196364 | Kirschner | Sep 2006 | A1 |
20060266225 | Hammad | Nov 2006 | A1 |
20070144355 | Denisart et al. | Jun 2007 | A1 |
20070148290 | Ternite et al. | Jun 2007 | A1 |
20070158366 | Van Deer Meer et al. | Jul 2007 | A1 |
20070261564 | Liverani et al. | Nov 2007 | A1 |
20080041234 | Cortese | Feb 2008 | A1 |
20080089982 | Brouwer et al. | Apr 2008 | A1 |
20080105131 | Castellani | May 2008 | A1 |
20080115673 | Zelioli et al. | May 2008 | A1 |
20080121111 | Paget et al. | May 2008 | A1 |
20080173181 | Startz | Jul 2008 | A1 |
20080245236 | Ternite et al. | Oct 2008 | A1 |
20080250936 | Cortese | Oct 2008 | A1 |
20090022864 | Steenhof et al. | Jan 2009 | A1 |
20090130270 | Cortese | May 2009 | A1 |
20090211457 | Cortese | Aug 2009 | A1 |
20090293733 | Martin | Dec 2009 | A1 |
20100147873 | Yoakim et al. | Jul 2010 | A1 |
20100173056 | Yoakim et al. | Jul 2010 | A1 |
20100178404 | Yoakim et al. | Jul 2010 | A1 |
20100203208 | Yoakim et al. | Aug 2010 | A1 |
20100258010 | Castellani | Oct 2010 | A1 |
20100282088 | Deuber | Nov 2010 | A1 |
20100313766 | Liverani et al. | Dec 2010 | A1 |
20110100228 | Rivera | May 2011 | A1 |
20110113968 | Schmed et al. | May 2011 | A1 |
20110154993 | Bertolina | Jun 2011 | A1 |
20110162533 | Fumagalli | Jul 2011 | A1 |
20110183055 | Mariller | Jul 2011 | A1 |
20110274802 | Rivera | Nov 2011 | A1 |
20110277642 | Mariller | Nov 2011 | A1 |
20110297002 | Vitel et al. | Dec 2011 | A1 |
20120031279 | Mariller et al. | Feb 2012 | A1 |
20120055343 | Remo et al. | Mar 2012 | A1 |
20120104025 | Anselmino | May 2012 | A1 |
20120121765 | Kamerbeek et al. | May 2012 | A1 |
20120148709 | Kamerbeek et al. | Jun 2012 | A1 |
20120171332 | Lai et al. | Jul 2012 | A1 |
20120171334 | Yoakim et al. | Jul 2012 | A1 |
20120199010 | Mariller | Aug 2012 | A1 |
20120207895 | Rivera | Aug 2012 | A1 |
20120207896 | Rivera | Aug 2012 | A1 |
20120210878 | Mariller | Aug 2012 | A1 |
20120251669 | Kamerbeek et al. | Oct 2012 | A1 |
20120251670 | Kamerbeek et al. | Oct 2012 | A1 |
20120251671 | Kamerbeek et al. | Oct 2012 | A1 |
20120312174 | Lambert | Dec 2012 | A1 |
20120328740 | Nocera | Dec 2012 | A1 |
20130008316 | Hoglauer et al. | Jan 2013 | A1 |
20130025465 | Schnyder | Jan 2013 | A1 |
20130045308 | Gorbatenko | Feb 2013 | A1 |
20130068108 | Rivera | Mar 2013 | A1 |
20130068110 | Pagano | Mar 2013 | A1 |
20130142931 | Fin et al. | Jun 2013 | A1 |
20130149424 | Fischer | Jun 2013 | A1 |
20130156898 | Fisk et al. | Jun 2013 | A1 |
20130183130 | Etter | Jul 2013 | A1 |
20130269535 | Colantonio et al. | Oct 2013 | A1 |
20130340387 | Mariller | Dec 2013 | A1 |
20140102310 | Aardenburg et al. | Apr 2014 | A1 |
20140157993 | Brouwer et al. | Jun 2014 | A1 |
20140202338 | Remo et al. | Jul 2014 | A1 |
20140220205 | Kamerbeek et al. | Aug 2014 | A1 |
20140238249 | Mariller et al. | Aug 2014 | A1 |
20140290493 | Rivera | Oct 2014 | A1 |
20140302204 | Evers et al. | Oct 2014 | A1 |
20140328981 | Kamerbeek et al. | Nov 2014 | A1 |
20140360377 | Yoakim et al. | Dec 2014 | A1 |
20150060481 | Murray et al. | Mar 2015 | A1 |
20150068403 | Bentley et al. | Mar 2015 | A1 |
20150093484 | Kamerbeek et al. | Apr 2015 | A1 |
20150257585 | Windler et al. | Sep 2015 | A1 |
20150257586 | DiNucci | Sep 2015 | A1 |
20160309946 | Gunstone et al. | Oct 2016 | A1 |
20160367068 | Cable et al. | Dec 2016 | A1 |
20160367069 | Cable et al. | Dec 2016 | A1 |
20160367070 | Cable et al. | Dec 2016 | A1 |
Number | Date | Country |
---|---|---|
2557883 | Nov 2009 | CA |
2429631 | Jan 2011 | CA |
1521541 | Jul 2003 | EP |
1631176 | May 2004 | EP |
1208782 | Aug 2004 | EP |
1522241 | Apr 2005 | EP |
1829467 | Sep 2007 | EP |
1502528 | May 2008 | EP |
1653832 | Oct 2008 | EP |
1912542 | Feb 2009 | EP |
1854384 | Dec 2009 | EP |
2210539 | Jul 2010 | EP |
2000062 | Aug 2010 | EP |
2004028 | Aug 2010 | EP |
2413754 | Jan 2013 | EP |
2842090 | Jan 2004 | FR |
201540241 | Nov 2015 | TW |
WO 02043541 | Jun 2002 | WO |
WO 2007016977 | Feb 2007 | WO |
WO 2007017455 | Feb 2007 | WO |
WO 2007045553 | Apr 2007 | WO |
WO 2007110842 | Oct 2007 | WO |
WO 2007138457 | Dec 2007 | WO |
WO 2009016444 | Feb 2009 | WO |
WO 2010081311 | Jul 2010 | WO |
WO 2010136601 | Dec 2010 | WO |
WO 2011051867 | May 2011 | WO |
WO 2011138723 | Nov 2011 | WO |
WO 2012123857 | Sep 2012 | WO |
WO 2015082662 | Jun 2015 | WO |
WO 2015138292 | Sep 2015 | WO |
WO 2015138293 | Sep 2015 | WO |
WO 2016205072 | Dec 2016 | WO |
Entry |
---|
International Search Report and Written Opinion in corresponding International Patent Application No. PCT/US2015/019395, dated Jun. 23, 2015, in 9 pages. |
International Preliminary Report on Patentability in corresponding International Patent Application No. PCT/US2015/019395, dated Sep. 22, 2016, in 7 pages. |
Number | Date | Country | |
---|---|---|---|
20170042364 A1 | Feb 2017 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14205256 | Mar 2014 | US |
Child | 15251824 | US |