This application is the U.S. National Phase under 35 U.S.C. § 371 of International Patent Application No. PCT/JP2015/005396, filed on Oct. 27, 2015, which in turn claims the benefit of Japanese Application No. 2014-223608, filed on Oct. 31, 2014, the disclosures of which Applications are incorporated by reference herein.
The present invention relates to a beverage supplying apparatus that supplies a beverage.
Conventionally, beverage supplying apparatuses are known which produce a beverage by mixing a syrup with diluted water and supply the produced beverage. Such beverage supplying apparatuses can normally produce and supply a plurality of kinds of beverages.
More specifically, a beverage supplying apparatus is provided with a button for receiving an operation for selecting a beverage to be produced, and discharges, when the button is pressed, a syrup necessary to produce the beverage from among different kinds of syrups respectively stored in a plurality of syrup tanks. At the same time, the beverage supplying apparatus discharges diluted water and produces beverage by mixing the syrup with the diluted water.
As an example of such a beverage supplying apparatus, Patent Literature (hereinafter referred to as “PTL”) 1 discloses a technique of applying a gas pressure to a syrup stored in a syrup tank, intermittently opening/closing a solenoid valve provided in a passage for supplying the syrup to thereby discharge the syrup and diluting the discharged syrup with water.
PTL 1
Japanese Patent Publication No. 3947914
However, the above technique of PTL 1 has a problem that the number of beverage flavor choices is limited. This is because the number of kinds of syrups used to produce a beverage is limited to one. Two kinds of syrups may be mixed to increase the number of beverage flavor choices, but the technique disclosed in PTL 1 is not intended to mix two kinds of syrups in the first place, and does not disclose how such mixing should be carried out at all.
For example, by simply mixing two kinds of syrups, it is difficult to produce a beverage with two kinds of syrup flavors tasted well balanced. For this reason, development of a technique has been expected which can easily produce a beverage with two kinds of syrup flavors tasted well balanced.
It is an object of the present invention to provide a beverage supplying apparatus capable of effectively increasing the number of beverage flavor choices and appropriately adjusting beverage flavor even when syrups with a plurality of flavors are mixed.
A beverage supplying apparatus according to the present invention is an apparatus that supplies a plurality of types of beverages, the apparatus including: an operation receiving section that receives an operation for selecting a first syrup diluted with water or carbonated water to constitute a main beverage from among different types of syrups stored in a plurality of syrup tanks and an operation for selecting a second syrup to be added to the main beverage as a flavor, from among the different types of syrups; a valve that opens/closes a passage for supplying the second syrup stored under pressure in one of the plurality of syrup tanks; a pump that is provided in the passage for supplying the second syrup between the syrup tank storing the second syrup and the valve and that intermittently supplies the second syrup when the valve is open; and a mixing section that produces the main beverage by mixing the water or carbonated water and the first syrup at a prescribed ratio and that produces a beverage by mixing the second syrup with the main beverage without diluting the second syrup.
A beverage supplying apparatus according to the present invention is an apparatus that supplies a plurality of types of beverages, the apparatus including: an operation receiving section that receives an operation for selecting a first syrup diluted with water or carbonated water to constitute a main beverage from among different types of syrups stored in a plurality of syrup tanks and an operation for selecting a second syrup to be added to the main beverage as a flavor, from among the different types of syrups; a first valve that opens/closes a passage for supplying the first syrup stored under pressure in one of the plurality of syrup tanks; a second valve that opens/closes a passage for supplying the second syrup stored under pressure in one of the plurality of syrup tanks and that is opened in every N (N is an integer equal to or greater than 1) time zones among a plurality of time zones in which the first valve is opened; and a mixing section that produces the main beverage by mixing the water or carbonated water with the first syrup supplied via the first valve, at a prescribed ratio and that produces a beverage by mixing, with the main beverage, the second syrup supplied via the second valve without diluting the second syrup.
According to the present invention, it is possible to effectively increase the number of beverage flavor choices and appropriately adjust beverage flavor even when syrups with a plurality of flavors are mixed.
Hereinafter, an embodiment of the present invention will be described with reference to the accompanying drawings.
First, a configuration example of beverage supplying apparatus 100 according to an embodiment of the present invention will be described using
As shown in
More specifically, touch panel 2 displays choices for a main syrup constituting a main beverage and diluted with carbonated water and choices for a topping syrup added to the main beverage as a flavor, and receives an operation for selecting the main syrup and the topping syrup from the user.
As shown in
Physical button 3a corresponds to container placement area 4a, and also corresponds to diluted water nozzle 5a and syrup nozzle 50 shown in
The user performs an operation for selecting a beverage on touch panel 2, then places a container at one of container placement areas 4a to 4c and presses one of physical buttons 3a to 3c.
When, for example, physical button 3a is pressed, a syrup in bag-in-box (hereinafter referred to as “BIB”) 6 shown in
When, for example, physical button 3b is pressed, a syrup is mixed with diluted water and/or carbonated water at nozzle 5b and a beverage is thus produced. The beverage produced in this way is discharged from nozzle 5b and supplied to a container placed at container placement area 4b.
When, for example, physical button 3c is pressed, a syrup in BIB 7 shown in
Note that each aforementioned beverage is supplied to each container while physical button 3a to 3c is being pressed.
Driving of aforementioned BIB tube pumps 17 and 18 are controlled by control section 20 (see
Aforementioned carbonated water nozzle 52 may be provided on a BIB 6 side or may be provided on both BIB 6 and BIB 7 sides.
Aforementioned BIBs 6 and 7 are provided in a refrigerating area. BIBs 6 and 7 store syrups requiring cool storage. Syrups not requiring cool storage are stored in syrup tank 10 which will be described later using
Syrups referred to here in the present embodiment are assumed to include not only condensed liquid containing sugar but also condensed liquid not containing sugar (e.g., stock solution of green tea or tea).
Aforementioned nozzle 5b is a mixing section that produces a main beverage by mixing water or carbonated water with a main syrup at a prescribed ratio and produces a beverage by mixing an undiluted topping syrup with the main beverage (hereinafter referred to as “flavor-added beverage”). The flavor-added beverage produced at nozzle 5b is discharged from nozzle 5b into a container placed in container placement area 4b.
Mixing two kinds of syrups, that is, main syrup and topping syrup, can drastically increase the number of beverage flavor choices to be provided to the user.
Here, the main syrup and the topping syrup are stored in syrup tanks 10 shown in
Furthermore, as shown in
Cleaning filter 8 cleans tap water supplied from blade tube 11 and supplies the cleaned water into beverage supplying apparatus 100 via blade tube 12. Blade tube 12 is connected, for example, to diluted water inlet solenoid valve 31 (see
Carbon dioxide gas cylinder 9 stores a carbon dioxide gas. This carbon dioxide gas is supplied to carbonator 23 via blade tube 14 at a prescribed pressure (e.g., 0.6 MPa) set in gas regulator 13. This carbon dioxide gas is further supplied to each syrup tank 10 via blade tube 15 at a prescribed pressure (e.g., 0.2 MPa) set in gas regulator 13.
A plurality of syrup tanks 10 store different syrups. As described above, these syrups are used as a main syrup or topping syrup. These syrups are pushed out under a pressure of the gas supplied from carbon dioxide gas cylinder 9 and supplied to nozzle 5b via blade tube 16.
Next, beverage supply control processing by beverage supplying apparatus 100 of the present embodiment will be described using
(Method of Supplying Strong Carbonated, Flavor-Added Beverage)
First, an example of control operation when a strong carbonated, flavor-added beverage is supplied will be described.
Here, the “strong carbonated, flavor-added beverage” is a beverage in which a main syrup, carbonated water and topping syrup are mixed together.
As shown in
Syrup tank 10a and syrup tank 10b are each one of syrup tanks 10 in
Control section 20 is a control device such as a CPU (central processing unit). Storage section 21 is a memory device such as a ROM (read only memory) or RAM (random access memory).
When the user performs an operation for selecting a strong carbonated, flavor-added beverage on touch panel 2, control section 20 reads data relating to the selected beverage from storage section 21.
Examples of such data include data on a dilution ratio among a main syrup, carbonated water and topping syrup registered in association with combinations of main syrup and topping syrup, setting data for controlling opening/closing of each solenoid valve (carbonated water solenoid valve 22, first syrup solenoid valve 25, second syrup solenoid valve 28, diluted water inlet solenoid valve 31, diluted water solenoid valve 32, pressurized water solenoid valve 39) in accordance with the dilution ratio and setting data for controlling driving of each motor (first syrup motor 26, second syrup motor 29) in accordance with the dilution ratio.
When the user presses physical button 3b, control section 20 performs the following control based on each of the above pieces of data.
As shown in
Note that the amount of carbonated water produced in carbonator 23 is managed by a level switch provided in carbonator 23. When the amount of carbonated water stored in carbonator 23 falls to or below a prescribed amount, the level switch is turned on. When the level switch is turned on, control section 20 performs the following control to produce carbonated water.
That is, control section 20 opens diluted water inlet solenoid valve 31 and pressurized water solenoid valve 39 to drive diluted water pump motor 33. At this time, diluted water solenoid valve 32 is controlled so as to be closed. Diluted water pump 34 is thereby driven and pressurized diluted water (pressurized tap water) is supplied to carbonator 23 via diluted water inlet solenoid valve 31 and pressurized water solenoid valve 39.
The diluted water supplied to carbonator 23 is mixed with a carbon dioxide gas and becomes carbonated water. After that, when the amount of carbonated water produced reaches a prescribed amount, the level switch is turned off. When the level switch is turned off, control section 20 stops the above control. Production of carbonated water is thereby stopped.
Here, flowmeter 24 generates a pulse every time a unit amount of carbonated water passes. Control section 20 performs, for example, the following control based on this pulse.
Control section 20 counts the pulse of flowmeter 24 and thereby detects a flow rate of carbonated water sent from nozzle 5b while physical button 3b is being pressed.
Furthermore, control section 20 counts the pulse of flowmeter 24, controls the number of revolutions of first syrup motor 26 based on the pulse and thereby controls the flow rate of the first syrup sent from nozzle 5b while physical button 3b is being pressed.
Furthermore, control section 20 counts the pulse of flowmeter 24, controls the number of revolutions of second syrup motor 29 based on the pulse and thereby controls the flow rate of the second syrup sent from nozzle 5b while physical button 3b is being pressed.
Furthermore, control section 20 is provided with a timer that is activated simultaneously with pressing of physical button 3b and measures an elapsed time from the time of pressing. Control section 20 performs, for example, the following various types of control based on the elapsed time measured by the timer.
As shown in
Simultaneously, control section 20 controls first syrup motor 26 as shown in
After prescribed time A (e.g., 0 to 0.7 seconds) passes from the start of driving of first syrup motor 26 (start of opening of first syrup solenoid valve 25 or second syrup solenoid valve 28), control section 20 controls second syrup motor 29 to start driving second syrup motor 29.
At this time, control section 20 intermittently drives second syrup motor 29. For example, as shown in
Driven by second syrup motor 29, second syrup pump 30 sends a small amount of undiluted topping syrup supplied from syrup tank 10b to nozzle 5b via second syrup solenoid valve 28 which is open. Second syrup pump 30 is, for example, a gear pump.
In this way, while physical button 3b is being pressed, the aforementioned carbonated water, main syrup and topping syrup are mixed together at nozzle 5b and discharged into a container placed in container placement areas 4b as a strong carbonated, flavor-added beverage.
Note that as described above, beverage supplying apparatus 100 produces a main beverage by mixing carbonated water and a main syrup at a prescribed ratio, and also produces a beverage by mixing an undiluted topping syrup with the main beverage, and control section 20 changes the above prescribed ratio when mixing carbonated water and the main syrup in accordance with a combination of the main syrup and the topping syrup.
It is thereby possible to keep the sugar content or the like of the beverage produced within a predetermined range irrespective of the combination of the main syrup and the topping syrup.
Note that the flow rate of carbonated water may also be detected from an opening time (time period during which the valve is open) of carbonated water solenoid valve 22 instead of flowmeter 24. Furthermore, the flow rates of the first syrup and the second syrup may also be detected from a flowmeter which is not shown (e.g., flowmeter provided downstream of first syrup solenoid valve 25 or downstream of second syrup solenoid valve 28).
A configuration may also be adopted in which control section 20 not only generates a pulse every time a unit amount of carbonated water passes through flowmeter 24 but also counts this pulse and measures the time, and thereby controls first syrup motor 26, second syrup motor 29, carbonated water solenoid valve 22, first syrup solenoid valve 25, second syrup solenoid valve 28 or the like based on the time.
Since the topping syrup is added as a flavor, an adding amount thereof may be very small and an excessive adding amount may upset the flavor balance between the main syrup and the topping syrup. Therefore, a prescribed amount of topping syrup needs to be added precisely.
An attempt to add such a small amount of topping syrup for a long period of time as in the case of the discharge control of the main syrup shown in
Therefore, the topping syrup is intermittently added without diluting it in the present embodiment. It is thereby possible to precisely add a prescribed amount of topping syrup and prevent loss of flavor balance. As a result, the beverage manufacturer can provide a beverage with an intended flavor to users.
As described above, if the topping syrup is sent using second syrup pump 30, it is possible to precisely add a prescribed amount of topping syrup no matter how small the amount may be.
After that, when a strong carbonated, flavor-added beverage is discharged into the container and the pressing of physical button 3b ends, control section 20 closes first syrup solenoid valve 25 and second syrup solenoid valve 28 as shown in
Simultaneously, control section 20 stops driving of first syrup motor 26 and second syrup motor 29. Discharging of the beverage from nozzle 5b is thus stopped.
After a prescribed time (e.g., 0.1 seconds) passes from the end of pressing of physical button 3b, control section 20 closes carbonated water solenoid valve 22. The reason that carbonated water solenoid valve 22 is not closed immediately after the pressing of physical button 3b ends is to clean nozzle 5b with carbonated water.
As described above, according to beverage supplying apparatus 100 of the present embodiment, the topping syrup is discharged intermittently without diluting it using the syrup pump, and it is thereby possible to control the amount of topping syrup discharged with high accuracy and produce a beverage with an intended flavor.
Next, a case will be described using
As shown in
On the other hand, for time E from start to end of pressing of physical button 3b, when an elapsed time after driving of first syrup motor 26 is started (or after opening of first syrup solenoid valve 25 or second syrup solenoid valve 28 is started) is equal to or greater than prescribed time A (e.g., 0 to 0.7 seconds), control section 20 drives second syrup motor 29. In this case, the topping syrup is added to the addition target beverage.
When the addition operation is performed under such control, the topping syrup can be easily added.
Note that when the addition operation is repeatedly performed, for which the elapsed time after driving of first syrup motor 26 is started is less than above prescribed time A, the ratio of the topping syrup to the beverage decreases. For this reason, control section 20 may perform the following control.
More specifically, when physical button 3b is pressed a plurality of times, if the total elapsed time after driving of first syrup motor 26 each time is started (or opening of first syrup solenoid valve 25 or second syrup solenoid valve 28 is started) is equal to or greater than prescribed time A (e.g., 0 to 0.7 seconds), control section 20 may drive second syrup motor 29.
Thus, even when an addition operation is repeatedly performed, for which the elapsed time after driving of first syrup motor 26 is started is less than above prescribed time A, the topping syrup is added and a beverage with a more optimum flavor can be supplied to the user.
(Method of Supplying Carbonate-Free, Flavor-Added Beverage)
Next, an example of control operation when a carbonate-free, flavor-added beverage is supplied will be described. Even when a carbonate-free, flavor-added beverage is supplied, control section 20 can control each solenoid valve 22, 25, 28, 31 or 32 and each motor 26, 29 or 33 as in the case of control operation when the aforementioned strong carbonated, flavor-added beverage is supplied.
Here, the carbonate-free, flavor-added beverage is a beverage in which the main syrup, diluted water (tap water) and topping syrup are mixed together.
Furthermore, diluted water solenoid valve 32 is opened and diluted water pump motor 33 is driven. Thus, diluted water pump 34 is driven and diluted water is supplied to nozzle 5b via diluted water solenoid valve 32 and flowmeter 40 provided downstream of diluted water solenoid valve 32.
Here, flowmeter 40 generates a pulse every time a unit amount of diluted water passes. Control section 20 performs, for example, the following control based on this pulse.
Control section 20 counts pulses of flowmeter 40 and detects a flow rate of diluted water sent from nozzle 5b while physical button 3b is being pressed.
Furthermore, control section 20 counts pulses of flowmeter 40, controls the number of revolutions of first syrup motor 26 based on the pulses and thereby controls a flow rate of the first syrup sent from nozzle 5b while physical button 3b is being pressed.
Control section 20 counts pulses of flowmeter 40, controls the number of revolutions of second syrup motor 29 based on the pulses, and thereby controls a flow rate of the second syrup sent from nozzle 5b while physical button 3b is being pressed.
Furthermore, control section 20 is provided with a timer that is activated simultaneously with the pressing of physical button 3b and measures an elapsed time from the time of pressing. Control section 20 performs, for example, the following control based on the elapsed time measured by the timer.
After prescribed time A (e.g., 0 to 0.7 seconds) passes from the start of driving of first syrup motor 26 (start of opening of first syrup solenoid valve 25 or second syrup solenoid valve 28), control section 20 controls second syrup motor 29 to start driving second syrup motor 29.
At this time, control section 20 intermittently drives second syrup motor 29. For example, as shown in
Driven by second syrup motor 29, second syrup pump 30 sends a small amount of undiluted topping syrup supplied from syrup tank 10b to nozzle 5b via second syrup solenoid valve 28 which is open. Second syrup pump 30 is, for example, a gear pump.
While physical button 3b is being pressed in this way, the aforementioned diluted water, main syrup and topping syrup are mixed together at nozzle 5b and discharged into a container placed at container placement area 4b as a carbonate-free, flavor-added beverage.
Note that as described above, beverage supplying apparatus 100 produces a main beverage by mixing the diluted water and the main syrup at a prescribed ratio and also produces a beverage by mixing an undiluted topping syrup with the main beverage, and control section 20 changes the above prescribed ratio when mixing the diluted water and the main syrup in accordance with a combination of the main syrup and the topping syrup.
This makes it possible to keep the sugar content or the like of beverage to be produced within a certain range irrespective of a combination of the main syrup and the topping syrup.
Note that the flow rate of diluted water may be detected from an opening time period (time during which the valve is open) of diluted water solenoid valve 32 instead of flowmeter 40. Furthermore, the flow rates of the first syrup and the second syrup may be detected by a flowmeter which is not shown (e.g., flowmeters provided downstream of first syrup solenoid valve 25 and downstream of second syrup solenoid valve 28 respectively).
Furthermore, a configuration may also be adopted in which control section 20 not only generates a pulse every time a unit amount of diluted water passes through flowmeter 40 but also counts this pulse and measures the time, and thereby controls first syrup motor 26, second syrup motor 29, diluted water solenoid valve 32, first syrup solenoid valve 25, second syrup solenoid valve 28 or the like based on the measured time.
After that, when a carbonate-free, flavor-added beverage is discharged into the container and pressing of physical button 3b ends, control section 20 closes first syrup solenoid valve 25 and second syrup solenoid valve 28 as shown in
Simultaneously, control section 20 stops driving of first syrup motor 26 and second syrup motor 29. In this way, discharging of the beverage from nozzle 5b is stopped.
Control section 20 opens carbonated water solenoid valve 22 for a prescribed time (e.g., 0.1 seconds) after pressing of physical button 3b ends. The reason that carbonated water solenoid valve 22 is opened for a prescribed time after pressing of physical button 3b ends is to clean nozzle 5b with carbonated water.
Simultaneously with the end of pressing of physical button 3b, control section 20 stops diluted water pump motor 33, closes diluted water solenoid valve 32 after a prescribed time (e.g., 0.2 seconds) passes from the end of pressing of physical button 3b and closes diluted water inlet solenoid valve 31 after a prescribed time (e.g., 0.5 seconds) passes from the end of pressing of physical button 3b. The reason that interlocking among diluted water pump motor 33, diluted water inlet solenoid valve 31, and diluted water solenoid valve 32 is controlled is to prevent the occurrence of water hammer.
As described above, according to beverage supplying apparatus 100 of the present embodiment, an undiluted topping syrup is intermittently discharged using the syrup pump, and it is thereby possible to control the discharge amount of the topping syrup with high accuracy and produce a beverage with a flavor as intended by the beverage manufacturer.
Next, a case will be described using
As shown in
On the other hand, for time E from start to end of pressing of physical button 3b, if an elapsed time after driving of first syrup motor 26 is started (or opening of first syrup solenoid valve 25 or second syrup solenoid valve 28 is started) is equal to or greater than prescribed time A (e.g., 0 to 0.7 seconds), control section 20 drives second syrup motor 29. In this case, the topping syrup is added to the addition target beverage.
When an addition operation is performed under such control, the topping syrup can be easily added.
(Method for Supplying Weak Carbonated, Flavor-Added Beverage)
Next, an example of control operation when a weak carbonated, flavor-added beverage is supplied will be described. When weak carbonated, flavor-added beverage is supplied, control section 20 can also control each solenoid valve 22, 25, 28, 31, 32 or 39 and each motor 26, 29 or 33 as in the case of control operation when the aforementioned strong carbonated or carbonate-free, flavor-added beverage is supplied.
Here, the weak carbonated, flavor-added beverage refers to a beverage in which the main syrup, diluted water (tap water), carbonated water and topping syrup are mixed together.
Here, control section 20 is provided with a timer that is activated simultaneously with pressing of physical button 3b and measures an elapsed time from the time of pressing. Control section 20 then performs, for example, the following control based on the elapsed time measured by the timer.
For example, control section 20 controls opening/closing of carbonated water solenoid valve 22 so as to repeat a cycle in which carbonated water solenoid valve 22 is opened for 1.0 second and closed for 1.0 second as shown in
Here, flowmeter 24 generates a pulse every time a unit amount of carbonated water passes. Flowmeter 40 generates a pulse every time a unit amount of diluted water passes. Control section 20 then performs, for example, the following control based on these pulses.
Control section 20 counts a pulse of flowmeter 24, and thereby detects the flow rate of carbonated water sent from nozzle 5b while physical button 3b is being pressed.
Furthermore, control section 20 counts pulses of flowmeter 40, and thereby detects the flow rate of diluted water sent from nozzle 5b while physical button 3b is being pressed.
Furthermore, control section 20 counts pulses of flowmeter 24 or flowmeter 40, controls the number of revolutions of first syrup motor 26 based on the pulses, and thereby controls the flow rate of the first syrup sent from nozzle 5b while physical button 3b is being pressed.
Control section 20 counts pulses generated by flowmeter 24 or flowmeter 40, controls the number of revolutions of second syrup motor 29 based on the pulses, and thereby controls the flow rate of the second syrup sent from nozzle 5b while physical button 3b is being pressed.
As shown in
After prescribed time A (e.g., 0 to 0.7 seconds) passes from the start of the driving of first syrup motor 26 (start of opening of first syrup solenoid valve 25 or second syrup solenoid valve 28), control section 20 controls second syrup motor 29 to start driving second syrup motor 29.
At this time, control section 20 intermittently drives second syrup motor 29. For example, as shown in
Driven by second syrup motor 29, second syrup pump 30 sends a small amount of undiluted topping syrup supplied from syrup tank 10b to nozzle 5b via second solenoid valve 28 which is open. Second syrup pump 30 is, for example, a gear pump.
Thus, while physical button 3b is being pressed, the aforementioned carbonated water, diluted water, main syrup and topping syrup are mixed together at nozzle 5b and discharged into a container placed at container placement area 4b as a weak carbonated, flavor-added beverage.
Note that as described above, beverage supplying apparatus 100 produces a main beverage by mixing diluted water, carbonated water and main syrup at a prescribed ratio and produces a beverage by mixing an undiluted topping syrup with the main beverage, and control section 20 changes the above prescribed ratio when mixing diluted water, carbonated water and main syrup in accordance with the combination of the main syrup and the topping syrup.
This makes it possible to keep the sugar content or the like of the beverage to be produced irrespective of the combination of the main syrup and the topping syrup.
Note that the flow rate of carbonated water may be detected from the opening time (time period during which the valve is open) of carbonated water solenoid valve 22 instead of flowmeter 24. Furthermore, the flow rate of the diluted water may also be detected from the opening time (time period during which the valve is open) of diluted water solenoid valve 32 instead of flowmeter 40.
Furthermore, the flow rates of the first syrup and the second syrup may also be detected from a flowmeter which is not shown (e.g., flowmeter provided downstream of first syrup solenoid valve 25 or downstream of second syrup solenoid valve 28).
A configuration may also be adopted in which not only by generating a pulse every time a unit amount of carbonated water passes through flowmeter 24, but also by counting this pulse to thereby measure the time, control section 20 controls first syrup motor 26, second syrup motor 29, carbonated water solenoid valve 22, first syrup solenoid valve 25, second syrup solenoid valve 28 or the like based on the time.
A configuration may also be adopted in which not only by generating a pulse every time a unit amount of carbonated water passes through flowmeter 40, but also by counting this pulse to thereby measure the time, control section 20 controls first syrup motor 26, second syrup motor 29, diluted water solenoid valve 32, first syrup solenoid valve 25, second syrup solenoid valve 28 or the like based on the time.
After that, when a weak carbonated, flavor-added beverage is discharged into the container and the pressing of physical button 3b ends, control section 20 closes first syrup solenoid valve 25 and second syrup solenoid valve 28 as shown in
Simultaneously, control section 20 stops driving of first syrup motor 26 and second syrup motor 29. Discharging of the beverage from nozzle 5b is thereby stopped.
Control section 20 closes carbonated water solenoid valve 22 for a prescribed time (e.g., 0.1 seconds) from the end of pressing of physical button 3b. The reason that carbonated water solenoid valve 22 is opened after the end of the pressing of physical button 3b is to clean nozzle 5b with carbonated water.
Simultaneously with the end of pressing of physical button 3b, control section 20 stops diluted water pump motor 33, closes diluted water solenoid valve 32 after a prescribed time (e.g., 0.2 seconds) passes from the end of pressing of physical button 3b and closes diluted water inlet solenoid valve 31 after a prescribed time (e.g., 0.5 seconds) passes from the end of pressing of physical button 3b. The reason that interlocking among diluted water pump motor 33, diluted water inlet solenoid valve 31, and diluted water solenoid valve 32 is controlled is to prevent the occurrence of water hammer.
Next, a case will be described using
As shown in
On the other hand, for time E from start to end of pressing of physical button 3b, if an elapsed time after driving of first syrup motor 26 is started (or opening of first syrup solenoid valve 25 or second syrup solenoid valve 28 is started) is equal to or greater than prescribed time A (e.g., 0 to 0.7 seconds), control section 20 drives second syrup motor 29. In this case, the topping syrup is added to the addition target beverage.
When an addition operation is performed under such control, the topping syrup can be easily added.
The embodiment of the present invention has been described so far, but the present invention is not limited to the above embodiment, and can be modified in various ways. Hereinafter, such modifications will be described.
(Modification 1)
In the above embodiment, only discharging of a topping syrup is performed intermittently, but, in addition, discharging of a main syrup may also be performed intermittently. Hereinafter, such a case will be described using
As shown in
In this case, second syrup motor 29 is driven in every other time zone among a plurality of time zones in which first syrup motor 26 is driven. This allows second syrup pump 30 to be driven with a smaller amount of discharge than the amount of discharge of first syrup pump 27. As a result, it is possible to accurately add a small amount of undiluted topping syrup by a prescribed amount.
Note that second syrup motor 29 is assumed to be driven in every other time zone but the present invention is not limited to this, and it is possible to drive second syrup motor 29 in conjunction with timing in every N time zones (N is an integer equal to or greater than 1) among the plurality of time zones in which first syrup motor 26 is driven.
Furthermore, in this case, the undiluted topping syrup is discharged at the same timing as the main syrup. It is thereby possible to further promote mixing of carbonated water, main syrup and topping syrup in nozzle 5b.
Furthermore, by reducing the drive interval of second syrup motor 29 to a certain degree, it is possible to easily obtain a beverage in which carbonated water, main syrup and topping syrup are uniformly mixed even when the user stops pressing of physical button 3b at any time.
Note that in
(Modification 2)
In modification 1 above, it is assumed that first syrup pump 27 and second syrup pump 30 achieve intermittent discharging of the main syrup and the topping syrup, but it is also possible to control discharging of the pressurized main syrup and topping syrup by opening/closing the solenoid valve and achieve intermittent discharging of the syrups.
In this case, instead of continuously discharging the topping syrup for a long period of time, the undiluted topping syrup is intermittently added, and it is therefore possible to precisely add a prescribed amount of topping syrup and prevent upsetting of flavor balance. As a result, the beverage manufacturer can provide to users, a beverage with an intended flavor.
Hereinafter, control processing on a beverage supply by beverage supplying apparatus 110 according to the present modification will be described using
Note that an example will be described below where strong carbonated flavor-added beverage (beverage in which main syrup, carbonated water and topping syrup are mixed together) is supplied.
As shown in
Syrup tank 10a and syrup tank 10b each correspond to one of syrup tanks 10 in
Control section 20 is a control device such as a CPU (central processing unit). Storage section 21 is a memory device such as a ROM (read only memory) or RAM (random access memory).
When the user performs an operation for selecting a strong carbonated, flavor-added beverage on touch panel 2, control section 20 reads data relating to the selected beverage from storage section 21.
Examples of such data include data on a dilution ratio among a main syrup, carbonated water and topping syrup registered in association with combinations of the main syrup and topping syrup and setting data for controlling opening/closing of each solenoid valve (diluted water inlet solenoid valve 31, carbonated water solenoid valve 22, first syrup solenoid valve 35, second syrup solenoid valve 37).
When the user presses physical button 3b, control section 20 performs the following control based on each of the above pieces of data.
As shown in
Here, flowmeter 24 generates a pulse every time a unit amount of carbonated water passes and control section 20 counts this pulse. Note that since the processing carried out by control section 20 based on the pulse is as described above, description thereof will be omitted here.
Control section 20 is provided with a timer that is activated simultaneously with the pressing of physical button 3b and measures an elapsed time from the time of pressing. Control section 20 performs, for example, the following control based on the elapsed time measured by the timer.
As shown in
More specifically, after a prescribed time (e.g., 0.2 seconds) passes from the opening of carbonated water solenoid valve 22, control section 20 intermittently opens first syrup solenoid valve 35 to discharge a main syrup.
For example, as shown in
Control section 20 also intermittently opens second syrup solenoid valve 37 to discharge a topping syrup. For example, second syrup solenoid valve 37 is opened in every other time zone among a plurality of time zones in which first syrup solenoid valve 35 is opened.
This makes it possible to discharge the topping syrup with a discharge amount smaller than the discharge amount of the main syrup. As a result, it is possible to precisely add a small amount of undiluted topping syrup by a prescribed amount.
Note that it is assumed here that second syrup solenoid valve 37 is opened in every other time zone, but the present invention is not limited to this. For example, second syrup solenoid valve 37 may be opened in conjunction with timing of every N (N is an integer equal to or greater than 1) time zones among a plurality of time zones in which first syrup solenoid valve 35 is opened.
In this way, while physical button 3b is being pressed, the aforementioned carbonated water, main syrup and topping syrup are mixed together at nozzle 5b and is discharged into a container placed at container placement area 4b as a strong carbonated, flavor-added beverage.
Note that as described above, beverage supplying apparatus 110 produces a main beverage by mixing the carbonated water and main syrup at a prescribed ratio and produces a beverage by mixing an undiluted topping syrup with the main beverage, but control section 20 changes the above prescribed ratio when mixing the carbonated water and main syrup in accordance with the combination of the main syrup and topping syrup.
It is thereby possible to keep the sugar content or the like of the beverage to be produced within a certain range irrespective of the combination of the main syrup and topping syrup.
Note that while physical button 3b is being pressed, control section 20 can detect the mixing ratio of beverage being produced at any appropriate time from the detected flow rate of flowmeter 24, first syrup flowmeter 36 and second syrup flowmeter 38.
A configuration may also be adopted in which not only by generating a pulse every time a unit amount of carbonated water passes through flowmeter 24 but also by counting this pulse to thereby measure the time, control section 20 controls diluted water inlet solenoid valve 31, diluted water pump motor 33, carbonated water solenoid valve 22, first syrup solenoid valve 35, second syrup solenoid valve 37 or the like based on the time.
Although the present modification adopts a configuration in which control section 20 counts pulses generated by flowmeter 24, it is also possible to count pulses generated every time a unit amount of syrup passes through, for example, any one of first syrup flowmeter 36 and second syrup flowmeter 38.
After that, when a strong carbonated, flavor-added beverage is discharged into the container and pressing of physical button 3b ends, control section 20 closes first syrup solenoid valve 35 and second syrup solenoid valve 37 as shown in
After a prescribed time (e.g., 0.1 seconds) passes from the end of pressing of physical button 3b, control section 20 closes carbonated water solenoid valve 22. The reason that carbonated water solenoid valve 22 is not closed immediately after the end of pressing of physical button 3b is to clean nozzle 5b with carbonated water.
As described above, beverage supplying apparatus 110 according to the present modification intermittently discharges an undiluted topping syrup using the solenoid valve, and can thereby control the amount of topping syrup discharged with high accuracy and produce beverage with a flavor as intended by the beverage manufacturer.
Next, a case will be described using
As shown in
On the other hand, as shown in
When an addition operation is performed under such control, the topping syrup can be easily added.
Note that if an addition operation in which the number of time zones during which first syrup solenoid valve 35 is open is less than two is repeatedly performed, the ratio of the topping syrup to the beverage decreases. Therefore, control section 20 may perform the following control.
More specifically, when physical button 3b is pressed a plurality of times, if the total number of time zones in which first syrup solenoid valve 35 is closed each time is two or more, control section 20 may open second syrup solenoid valve 37 in every other time zone among those time zones.
Even when an addition operation is repeatedly performed for which the number of time zones in which first syrup solenoid valve 35 is open is less than two, a topping syrup is added and a beverage with a more optimum flavor can be supplied to the user.
The modifications of the embodiment of the present invention have been described so far, but the aforementioned modifications may be implemented in any combination.
The disclosure of Japanese Patent Application No. 2014-223608, filed on Oct. 31, 2014, including the specification, drawings and abstract is incorporated herein by reference in its entirety.
The present invention is useful for a beverage supplying apparatus that supplies a beverage.
Number | Date | Country | Kind |
---|---|---|---|
2014-223608 | Oct 2014 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2015/005396 | 10/27/2015 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2016/067600 | 5/6/2016 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2757839 | Carew | Aug 1956 | A |
3584764 | Elkins | Jun 1971 | A |
4487333 | Pounder | Dec 1984 | A |
5191999 | Cleland | Mar 1993 | A |
5316180 | Cleland | May 1994 | A |
5381926 | Credle, Jr. | Jan 1995 | A |
5738248 | Green | Apr 1998 | A |
5803320 | Cutting | Sep 1998 | A |
20010048958 | Funk | Dec 2001 | A1 |
20020060226 | Kameyama | May 2002 | A1 |
20020074348 | Heyes | Jun 2002 | A1 |
20060168986 | Saitoh | Aug 2006 | A1 |
20070205221 | Carpenter et al. | Sep 2007 | A1 |
20080189078 | Vok | Aug 2008 | A1 |
20090069932 | Rudick | Mar 2009 | A1 |
20110049180 | Carpenter | Mar 2011 | A1 |
20120325845 | Newman | Dec 2012 | A1 |
20150210522 | Jersey | Jul 2015 | A1 |
20160023883 | Jersey | Jan 2016 | A1 |
20170305735 | Kuboi | Oct 2017 | A1 |
Number | Date | Country |
---|---|---|
H07-165294 | Jun 1995 | JP |
2001-213499 | Aug 2001 | JP |
2002-179194 | Jun 2002 | JP |
3947914 | Jul 2007 | JP |
2013-189251 | Sep 2013 | JP |
Entry |
---|
Inntemational Search Report and Written Opinion issued in International Patent Application No. PCT/JP2015/005396, dated Jan. 19, 2016; with partial English translation. |
Number | Date | Country | |
---|---|---|---|
20170313566 A1 | Nov 2017 | US |