Bi-center bit adapted to drill casing shoe

Information

  • Patent Grant
  • 6340064
  • Patent Number
    6,340,064
  • Date Filed
    Wednesday, September 8, 1999
    25 years ago
  • Date Issued
    Tuesday, January 22, 2002
    22 years ago
Abstract
A bi-center bit adapted to be consecutively used in casing and in formation without the need of removing the bit from the borehole, the bit comprising a bit body defining a proximal end adapted for connection to a drill string, a distal end and a pass-through gauge, where the distal end defines a pilot bit and an intermediate reamer section, where each the pilot and reamer section define a cutting face. A plurality of cutting or wear elements are situated on cutting blades disposed about the cutting face of the pilot and reamer sections. Cutting or wear elements are disposed on one or more of the blades which extend to or are proximate to the pass-through gauge define an angle between the line of contact on the cutting or wear element and the material to be drilled of between 5-45 degrees.
Description




BACKGROUND OF THE INVENTION




1. Field of the Invention




The present invention is directed to downhole tools. More specifically, the present invention is directed to a bi-center drilling bit adapted to fit within and drill through a casing shoe without damage to the surrounding casing.




2. Background




Bi-center bits are adapted for insertion down a wellbore having a given diameter where, once in position, the rotation of the bi-center bit creates a borehole having a selectedly greater diameter than the borehole.




In conventional bi-center bits, the bit is designed to rotate about a rototial axis which generally corresponds to the rotational axis defined by the drill string. Such conventional designs are further provided with cutting elements positioned about the face of the tool to reveal a low backrake angle so as to provide maximum cutting efficiency.




Disadvantages of such conventional bi-center bits lie in their inability to operate as a cutting tool within their pass-through diameter while still retaining the ability to function as a traditional bi-center bit. In such a fashion, a conventional bi-center bit which is operated within casing of its pass-through diameter will substantially damage, if not destroy the casing.




SUMMARY OF THE INVENTION




The present invention addresses the above and other disadvantages of prior bi-center drilling bits by allowing selective modification of the use of the tool within the borehole.




In one embodiment, the present invention includes a drill bit body which defines a pilot section, a reamer section and a geometric axis. The pilot section defines a typical cutting surface about which is disposed a plurality of cutting elements. These elements are situated about the cutting face to generally define a second rototional axis separate from the rotational axis defined by the drill string as a whole. This second or pass-through axis is formed by the rotation of the bit about the pass-through diameter.




In one embodiment, the pilot section may define a smaller diametrical cross-section so as to further prevent the possibility of damage to the borehole and/or casing when the bit is rotated about the pass-through axis. To further accomplish this goal, a gauge pad may also be situated on the drill bit body opposite the reamer. In yet other embodiments, cutters emphasizing a high back rake angle are employed on the peripheral cutting blades of the tool.




The present invention presents a number of advantages over prior art bi-center bits. One such advantage is the ability of the bi-center bit to operate within a borehole or casing approximating its pass-through diameter without damaging the borehole or casing. In the instance of use in casing, the casing shoe may thus be drilled through.




A second advantage is the ability of the same tool to be used as a conventional bi-center bit to create a borehole having a diameter greater than its pass-through diameter. In such a fashion, considerable cost savings may be observed since only one tool need be used where this tool need not be retrieved to the surface to modify its character of use.











Other advantages of the invention will become obvious to those skilled in the art in light of the figures and the detailed description of the preferred embodiments.




BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is a side view of a conventional bi-center drill bit;





FIG. 2

is an end view of the working face of the bi-center drill bit illustrated in

FIG. 1

;





FIGS. 3A-C

are end views of a bi-center bit as positioned in a borehole illustrating the pilot bit diameter, the drill hole diameter and pass through diameter, respectively;





FIGS. 4A-B

illustrate a conventional side view of a bi-center bit as it may be situated in casing and in operation, respectively;





FIG. 5

is an end view of a conventional bi-center bit;





FIG. 6

illustrates a cutting structure brazed in place within a pocket milled into a rib of a conventional bi-center drill bit;





FIG. 7

illustrates a schematic outline view of an exemplary bi-center bit of the prior art;





FIG. 8

illustrates a revolved section of a conventional pilot section cutter coverage as drawn about the geometric axis;





FIG. 9

illustrates a revolved section of a conventional pilot section cutter coverage as drawn about the pass-through axis;





FIG. 10

illustrates a side view of one embodiment of the bi-center bit of the present invention;





FIG. 11

illustrates an end view of the bi-center bit illustrated in

FIG. 10

;





FIG. 12

illustrates a revolved section of the pilot section of the bi-center bit illustrated in

FIG. 10

, as drawn through the pass-through axis;





FIG. 13

illustrates a revolved section of the pilot section of the bi-center bit illustrated in

FIG. 10

, as drawn through the geometric axis;





FIG. 14

illustrates a graphic profile of the cutters positioned on the reamer section of the embodiment illustrated in FIG.


10


.





FIG. 15

illustrates a schematic view of the orientation of cutters in one preferred embodiment of the invention.











While the present invention will be described in connection with presently preferred embodiments, it will be understood that it is not intended to limit the invention to those embodiments. On the contrary, it is intended to cover all alternatives, modifications, and equivalents included within the spirit of the invention and as defined in the appended claims.




DESCRIPTION OF THE PREFERRED EMBODIMENTS





FIGS. 1-9

generally illustrate a conventional bi-center bit and its method of operating in the borehole.




By reference to these figures, bit body


2


, manufactured from steel or other hard metal, includes a threaded pin


4


at one end for connection in the drill string, and a pilot bit


3


defining an operating end face


6


at its opposite end. A reamer section


5


is integrally formed with the body


2


between the pin


4


and the pilot bit


3


and defines a second operating end face


7


, as illustrated. The term “operating end face” as used herein includes not only the axial end or axially facing portion shown in

FIG. 2

, but also contiguous areas extending up along the lower sides of the bit


1


and reamer


5


.




The operating end face


6


of bit


3


is transversed by a number of upsets in the form of ribs or blades


8


radiating from the lower central area of the bit


3


and extending across the underside and up along the lower side surfaces of said bit


3


. Ribs


8


carry cutting members


10


, as more fully described below. Just above the upper ends of rib


8


, bit


3


defines a gauge or stabilizer section, including stabilizer ribs or gauge pads


12


, each of which is continuous with a respective one of the cutter carrying rib


8


. Ribs


8


contact the walls of the borehole that has been drilled by operating end face


6


to centralize and stabilize the tool


1


and to help control its vibration. (See FIG.


4


).




The pass-through diameter of the bi-center is defined by the three points where the cutting blades are at gauge. These three points are illustrated at

FIG. 2

are designated “x,” “y” and “z.” Reamer section


5


includes two or more blades


11


which are eccentrically positioned above the pilot bit


3


in a manner best illustrated in FIG.


2


. Blades


11


also carry cutting elements


10


as described below. Blades


11


radiate from the tool axis but are only positioned about a selected portion or quadrant of the tool when viewed in end cross section. In such a fashion, the tool


1


may be tripped into a hole having a diameter marginally greater than the maximum diameter drawn through the reamer section


5


, yet be able to cut a drill hole of substantially greater diameter than the pass-through diameter when the tool


1


is rotated about the geometric or rotational axis “A.” The axis defined by the pass-through diameter is identified at “B.” (See

FIGS. 4A-B

.)




In the conventional embodiment illustrated in

FIG. 1

, cutting elements


10


are positioned about the operating end face


7


of the reamer section


5


. Just above the upper ends of rib


11


, reamer section


5


defines a gauge or stabilizer section, including stabilizer ribs or kickers


17


, each of which is continuous with a respective one of the cutter carrying rib


11


. Ribs


11


contact the walls of the borehole that has been drilled by operating end face


7


to further centralize and stabilize the tool


1


and to help control its vibration.




Intermediate stabilizer section defined by ribs


11


and pin


4


is a shank


14


having wrench flats


15


that may be engaged to make up and break out the tool


1


from the drill string (not illustrated). By reference again to

FIG. 2

, the underside of the bit body


2


has a number of circulation ports or nozzles


15


located near its centerline. Nozzles


15


communicate with the inset areas between ribs


8


and


11


, which areas serve as fluid flow spaces in use.




With reference now to

FIGS. 1 and 2

, bit body


2


is intended to be rotated in the clockwise direction, when viewed downwardly, about axis “A.” Thus, each of the ribs


8


and


11


has a leading edge surface


8


A and


11


A and a trailing edge surface


8


B and


11


B, respectively. As shown in

FIG. 6

, each of the cutting members


10


is preferably comprised of a mounting body


20


comprised of sintered tungsten carbide or some other suitable material, and a layer


22


of polycrystalline diamond carried on the leading face of stud


38


and defining the cutting face


30


A of the cutting member. The cutting members


10


are mounted in the respective ribs


8


and


11


so that their cutting faces are exposed through the leading edge surfaces


8


A and


11


, respectively.




In the conventional bi-center bit illustrated in

FIGS. 1-9

, cutting members


10


are mounted so as to position the cutter face


30


A at an aggressive, low angle, e.g., 15-20° backrake, with respect to the formation. This is especially true of the cutting members


10


positioned at the leading edges of bit body


2


. Ribs


8


and


11


are themselves preferably comprised of steel or some other hard metal. The tungsten carbide cutter body


38


is preferably brazed into a pocket


32


and includes within the pocket the excess braze material


29


.




As illustrated in profile in

FIG. 7

, the conventional bi-center bit normally includes a pilot section


3


which defines an outside diameter at least equal to the diameter of bit body


2


. In such a fashion, cutters on pilot section


3


may cut to gauge.




The cutter coverage of a conventional bi-center bit may be viewed by reference to a section rotated about a given axis.

FIG. 8

illustrates the cutter coverage for the pilot bit illustrated in

FIGS. 1-2

. The revolved section identifies moderate to extreme coverage overlap of the cutters, with the maximum overlap occurring at the crown or bottommost extent of pilot section


3


when said pilot section


3


is rotated about geometric axis “A.” The cutter coverage illustrated in

FIG. 8

should be compared with the absence of cutter coverage occurring when pilot section


3


is rotated about the pass-through axis “B.” (See

FIG. 9.

) Clearly, the bi-center bit illustrated in

FIG. 9

would be inefficient if used in hard or resilient formations such as a casing shoe.




When a conventional bi-center bit is rotated about its rotational axis “A,” the bit performs in the manner earlier described to create a borehole having a diameter larger than its pass-through diameter. (See

FIGS. 4A-4B

.) This result is not desirable when the bit is used in casing to drill through a casing shoe since, while the shoe might be removed, the casing above the shoe would also be damaged. Consequently, it has become accepted practice to drill through a casing shoe using a conventional drill bit which is thereafter retrieved to the surface. A bi-center bit is then run below the casing to enlarge the borehole. However, the aforedescribed procedure is costly, especially in deep wells when many thousand feet of drill pipe may need be tripped out of the well to replace the conventional drilling bit with the bi-center bit. The bi-center bit of the present invention addresses this issue.




One embodiment of the bi-center bit of the present invention may be seen by reference to

FIGS. 10-15

.

FIG. 10

illustrates a side view of a preferred embodiment of the bi-center bit of the present invention. By reference to the figures, the bit


100


comprises a bit body


102


which includes a threaded pin at one end


104


for connection to a drill string and a pilot bit


103


defining an operating end face


106


at its opposite end. For reasons discussed below, end face


106


defines a flattened profile. A reamer section


105


is integrally formed with body


102


between the pin


104


and pilot bit


103


and defines a second operating end face


107


.




The operating end face


106


of pilot


103


is traversed by a number of upsets in the form of ribs and blades


108


radiating from the central area of bit


103


. As in the conventional embodiment, ribs


108


carry a plurality of cutting members


110


. The reamer section


105


is also provided with a number of blades or upsets


152


, which upsets are also provided with a plurality of cutting elements


110


which themselves define cutting faces


130


A.




The embodiment illustrated in

FIG. 10

is provided with a pilot section


103


defining a smaller cross-section of diameter than the conventional embodiment illustrated in

FIGS. 1-8

. The use of a lesser diameter for pilot section


103


serves to minimize the opportunity for damage to the borehole or casing when the tool


100


is rotated about the pass-through axis “B.”




In a conventional bit, cutters


110


which extend to gauge generally include a low backrake angle for maximum efficiency in cutting. (See

FIG. 11.

) In the bi-center bit of the present invention, it is desirable to utilize cutting elements which define a less aggressive cutter posture where they extend to gauge when rotating about the pass-through axis. In this connection, it is desirable that cutters


110


at the pass-through gauge and positioned on the leading and trailing blades


118


define a backrake angle of between 30-90 degrees with the formation. Applicant has discovered that a preferred backrake angle for soft to medium formations is 55 degrees. The orientation of cutting elements


110


to define such high backrake angles further reduces the potential for damage to casing


136


when the tool


110


is rotated about the pass-through axis “B.”




In a preferred embodiment, bit


100


may be provided with a stabilizer pad


160


opposite reamer section


105


. Pad


160


may be secured to bit body


102


in a conventional fashion, e.g., welding, or may be formed integrally. Pad


160


serves to define the outer diametrical extent of tool


100


opposite pilot


103


. (See

FIG. 10.

) It is desirable that the uppermost extent


161


of pad


160


not extend beyond the top of cutters


110


on reamer blades


152


.




When rotated in the casing, the tool


100


is compelled to rotate about pass-through axis “B” due to the physical constraints of casing


136


. Casing


136


is not cut since contact with tool


100


is about the three points defined by leading edges


118


and stabilizer pad


160


. As set forth above, edges


118


include cutting elements having a high backrake angle not suited to cut casing


136


. Likewise, pad


160


is not adapted to cut casing


136


. The cutters disposed elsewhere about operating face


107


incorporate a backrake angle of 15°-30° and thus are able to cut through the casing shoe. When the casing shoe has been cut, the tool


100


is able to rotate free of the physical restraints imposed by casing


136


. In such an environment, the tool reverts to rotation about axis “A.”




The method by which the bi-center bit of the present invention may be constructed may be described as follows. In an exemplary bi-center bit, a cutter profile is established for the pilot bit. Such a profile is illustrated, for example, in

FIG. 8

as drawn through the geometrical axis of the tool. The pass-through axis is then determined from the size and shape of the tool.




Once the pass-through diameter is determined, a cutter profile of the tool is made about the pass-through axis. This profile will identify any necessary movement of cutters


110


to cover any open, uncovered regions on the cutter profile. These cutters


110


may be situated along the primary upset


131


or upsets


132


radially disposed about geometric axis “A.”




Once positioning of the cutters


110


has been determined, the position of the upsets themselves must be established. In the example where it has been determined that a cutter


110


must be positioned at a selected distance r


1


, from pass-through axis “B,” an arc


49


is drawn through r


1


, in the manner illustrated in FIG.


15


. The intersection of this arc


49


and a line drawn through axis “A” determines the possible positions of cutter


110


on radially disposed upsets


132


.




To create a workable cutter profile for a bi-center bit which includes a highly tapered or contoured bit face introduces complexity into the placement of said cutters


110


since issues of both placement and cutter height must be addressed. As a result, it has been found preferable to utilize a bit face which is substantially flattened in cross section. (See

FIG. 10.

)




Once positioning of the upsets has been determined, the cutters


110


must be oriented in a fashion to optimize their use when tool


100


is rotated about both the pass-through axis “B” and geometric axis “A.” By reference to

FIGS. 11 and 15

, cutters


110


positioned for use in a conventional bi-center bit will be oriented with their cutting surfaces oriented toward the surface to the cut, e.g., the formation. In a conventional bi-center bit, however, cutters


110


so oriented on the primary upset


131


in the area


140


between axes “A” and “B” will actually be oriented 180° to the direction of cut when tool


100


is rotated about pass-through axis “B.” To address this issue, it is preferable that at least most of cutters


110


situated on primary upset


131


about area


140


be oppositely oriented such that their cutting faces


130


A are brought into contact with the formation or the casing shoe, as the case may be, when tool


100


is rotated about axis “B.” This opposite orientation of cutter


110


is in deference to the resilient compounds often comprising the casing shoe.




Cutters


110


disposed along primary upset


131


outside of region


140


in region


141


are oriented such that their cutting faces


130


A are brought into at least partial contact with the formation regardless when rotated about axis “A.” Cutters


110


oppositely disposed about primary upset


131


in region


142


are oriented in a conventional fashion. (See

FIG. 15.

)




Cutting or wear elements situated on blades which extend to or are proximate the pass-through gauge define a backrake angle, a skew angle and an angle between the line of contact on the cutting or wear element and the material to be drilled. This angle of contact is preferably between 5 and 45 degrees.



Claims
  • 1. A bi-center bit adapted to be consecutively used in casing and in formation without the need of removing the bit from the borehole, said bit comprising: a bit body defining a proximal end adapted for connection to a drill string, a distal end and a pass-through gauge, where the distal end defines a pilot bit and an intermediate reamer section, where each the pilot and reamer section define a cutting face; and a plurality of cutting or wear elements situated on cutting blades disposed about the cutting face of the pilot and reamer sections, where the cutting or wear elements disposed on one or more of the blades which extend to or are proximate to the pass-through gauge define a backrake angle, a skew angle and an angle between the line of contact on the cutting or wear element and the material to be drilled of between 5-45°.
  • 2. The bi-center bit of claim 1 further including one or more stabilizing elements disposed opposite said reamer section such that the proximal most portion of said stabilizing elements do not extend beyond the most proximally disposed cutting elements on said reamer section.
  • 3. The bi-center bit of claim 2 where the stabilizing elements comprise a gauge pad.
  • 4. The bi-center bit of claim 1 where the backrake angle is between 45-85°.
  • 5. The bi-center bit of claim 2 where the stabilizing elements extend to the pass-through gauge.
  • 6. The bi-center bit of claim 1 where the body is adapted to rotate about one axis when operated in casing and a second, independent axis when operated free of casing.
  • 7. The bi-center bit of claim 1 where the bit body is manufactured from steel.
  • 8. The bi-center bit of claim 1 further defining a rotational axis “A” and a pass-through axis “B” where the cutting face of most of the cutting elements disposed on cutting blades situated between the rotational axis “A” and the pass-through axis “B” are oriented such that such elements are brought into at least partial contact with the material to be drilled when the bit is rotated about said axis “B.”
  • 9. The bi-center bit of claim 1 where the cutting blades on the pilot and reamer includea primary and one or more secondary cutting blades, where both the rotational and pass-through axis are disposed about the primary cutting blade; where each cutting element defines a cutting face; and where the cutting faces of most cutting elements disposed along the primary cutting blade not between the rotational axis “A” and pass-through axis “B” but between the pass-through axis and pass-through gauge are brought into at least partial contact with the material to be drilled when said bit is rotated about axis “B.”
  • 10. The bi-center bit of claim 9 including cutting elements positioned on the secondary cutting blades such that at least a portion of the cutting face of most elements engages the material to be drilled when the bit is rotated about axis “A.”
  • 11. The bi-center bit of claim 9 where the skew angle of said cutting elements positioned on the secondary blades is between 0-80°.
  • 12. The bi-center bit of claim 1 where cutting elements disposed on cutting blades comprising the reamer section, other than those cutting elements disposed on cutting blades which extend to the pass-through gauge, define an angle formed between the line of contact on the cutting element and the material to be drilled of between 50-80°.
  • 13. The bi-center bit of claim 1 where the bit body includes tungsten carbide matrix.
  • 14. The bi-center bit of claim 6 where the cutting elements disposed about the pilot and reamer sections demonstrate substantially complete cutter overlap when the bit is rotated about either axis.
  • 15. A two stage drilling tool comprising:a bit body defining a proximal end adapted for connection to a drill string and a distal end where said distal end terminates in a primary bit face and a secondary bit face spaced proximally from said primary bit face where said primary bit face includes a primary upset and secondary upsets and where one or more cutting elements are disposed about said upsets; said tool defining a rotational axis “A” and a pass-through axis “B”; where cutting elements disposed along said primary upset between said axis “A” and axis “B” define cutting faces where most of said cutter faces are brought into at least partial contact with the material to be drilled when said tool is rotated about said pass-through axis “B.”
  • 16. The drilling tool of claim 15 where both of said axes “A” and “B” are disposed along the primary upset.
  • 17. The tool of claim 15 where the cutting faces of most of the cutting elements disposed about the primary upset not between the rotational axis “A” and pass-through axis “B” but between said pass-through axis “B” and gauge are brought into at least partial contact with the material to be drilled when said bit is rotated about either axis “A” or “B.”
  • 18. The tool of claim 15 further including the step of positioning the cutting elements on said secondary upsets such that they define a skew angle between 0-80°.
  • 19. A bi-center bit comprising:a bit body defining a proximal end for connection to a drill string and a distal end, where the distal end defines a pilot bit and an intermediate reamer section, where each said pilot and reamer sections each define a bit face; the bit face on said pilot being comprised of a primary upset and one or more secondary upsets; the bit body defining a rotational axis “A” and a pass-through axis “B”; and cutting elements disposed about said primary and secondary upsets where each of said cutting elements defines a cutting face, where most of the cutting elements disposed along the primary or secondary upsets between said rotational axis “A” and pass-through axis “B” are brought into contact with the material to be drilled when the bit is rotated about either the pass-through axis “B” or the rotational axis “A.”
  • 20. The bi-center bit of claim 19 where most of the cutting elements disposed along said primary upset not between said axis “A” and “B” but between axis “B” and the pass-through gauge are brought into at least partial contact with the formation when the bit is rotated about the rotational axis “B.”
  • 21. The bi-center bit of claim 20 where said reamer section defines leading and trailing upsets such that cutting elements positioned about said leading and trailing upsets and extending or proximate to the pass-through gauge define an effective backrake angle of between 45-85° where the effective backrake angle is equal to 180° minus the angle of contact between the cutter face and the material to be drilled and the angle of inclination of the contact surface of the cutting element.
  • 22. The bi-center bit of claim 20 further including one or more stabilizer elements disposed opposite said reamer section where the proximal most portion of said elements does not extend beyond the proximal most cutting element on said reamer section.
  • 23. A bit adapted to rotate about two or more rotational axes where such bit defines a pass-through gauge, said bit comprising:a bit body defining a proximal end adapted for connection to a drill string and a distal end, where the distal end defines a pilot bit and an intermediate reamer section, where each the pilot and reamer section define a cutting face; the bit body defining a rotational axis “A” and a pass-through axis “B”; and a plurality of cutting elements situated on cutting blades disposed about the cutting face of the pilot and reamer sections, such that there is substantially complete cutter overlap when said bit is rotated about the rotational or pass-through axis.
  • 24. The bit of claim 23 where the cutting elements disposed proximate the pass-through gauge define a high effective backrake angle.
  • 25. An eccentric drilling tool comprising:a bit body defining a proximal end adapted for connection to a drill string a distal end and defining a pass-through gauge, where said distal end terminates in a primary bit face and a secondary bit face spaced proximally from said primary bit face where said primary bit face includes a primary upset and secondary upsets and where one or more cutting elements are disposed about said upsets; said tool defining a rotational axis “A” and a pass-through axis “B” and where the cutting elements define substantially complete cutter overlap when said tool is rotated about the rotational or pass-through axes.
  • 26. The eccentric tool of claim 25 where both of said axes “A” and “B” are disposed about the primary upset.
  • 27. The eccentric tool of claim 25 where the cutting elements disposed proximate the pass-through gauge define a high effective backrake angle.
  • 28. The eccentric tool of claim 25 where cutting elements disposed along said primary upset between said axis “A” and axis “B” define cutting faces where most of said cutter faces are brought into at least partial contact with the material to be drilled when either the tool is rotated about said pass-through axis “B” or rotational axis “A.”
  • 29. A multi-bit center bit comprising:a bit body adapted to consecutively be used to cut through casing equipment and the underlying formation without being removed from the borehole and defining a proximal end adapted for connection to a drill string and a distal end, where the distal end defines a pilot bit and an intermediate reamer section, where each the pilot and reamer section define a cutting face which include one or more cutting elements; the bit body defining a rotational axis and at least a second axis; and where said bit when in use defines two distinct bottom hole patterns when rotated about the rotational and the second axis.
  • 30. The bit of claim 29 where the bit defines a pass-through gauge and where cutting elements disposed proximate said gauge define a high effective backrake angle.
  • 31. The bit of claim 29 further including one or more stabilizing elements disposed opposite the reamer section such that the proximal most portion of said stabilizing elements do not extend beyond the most proximately disposed elements on the reamer section.
  • 32. The bit of claim 29 which is adapted to rotate in casing about an axis separate from the rotational axis so as to not pierce said casing.
  • 33. A multi-center bit comprising:a bit body defining a proximal end adapted for connection to a drill string and a distal end, where the distal end defines a first and a second cutting section, where each said first and second sections define a cutting face; the bit body defining a first and second axis; a plurality of cutting elements situated on cutting blades disposed about the cutting face of the first and second sections; and said bit adapted to consecutively without removal rotate about said axis first within casing without cutting said casing and rotating about second axis within a borehole formed in formation.
  • 34. The bit of claim 33 where the rotation of the bit about the first or the second axes defines substantially complete cutter overlap.
  • 35. The bit of claim 33 where the rotation of the bit about the first and the second axes creates at least two distinct bottom hole patterns.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application depends from and incorporates the subject matter of provisional application Serial No. 60/118,518 as filed on Feb. 3, 1999.

US Referenced Citations (4)
Number Name Date Kind
5678644 Fielder Oct 1997 A
5957223 Doster et al. Sep 1999 A
5992548 Silva et al. Nov 1999 A
6039131 Beaton Mar 2000 A
Provisional Applications (1)
Number Date Country
60/118518 Feb 1999 US