Not applicable.
The present invention relates generally to downhole drilling operations. More particularly, the invention relates to tools for drilling boreholes. Still more particularly, the invention relates to bi-center bits and eccentric reamers for enlarging boreholes during drilling.
An earth-boring drill bit is connected to the lower end of a drill string and is rotated by rotating the drill string from the surface, with a downhole motor, or by both means. With weight-on-bit (WOB) applied, the rotating drill bit engages the formation and proceeds to form a borehole along a predetermined path toward a target zone.
In drilling operations, costs are generally proportional to the length of time it takes to drill a quality borehole to the desired depth and location. The time required to drill the well, in turn, is greatly affected by the number of times downhole tools must be changed or added to the drill string in order to complete the borehole. This is the case because each time a tool is changed or added, the entire string of drill pipes, which may be miles long, must be retrieved from the borehole, section-by-section. Once the drill string has been retrieved and the tool changed or added, the drill string must be re-constructed section-by-section and lowered back into the borehole. This process, known as a “trip” of the drill string, requires considerable time, effort and expense. Because drilling costs are typically on the order of thousands of dollars per hour, it is desirable to reduce the number of times the drill string must be tripped.
While drilling, achieving good borehole quality is also desirable. However, achieving the desired quality when drilling long horizontal boreholes can be particularly challenging. In particular, to keep the borehole path as close as possible to horizontal, the driller may have to periodically change the direction of the borehole path because gravity has a tendency to cause the drill bit drop slightly below horizontal. For this reason and others, the driller must make corrections to put the drill bit back on the desired trajectory using a directional motor or rotary steerable assembly. Unfortunately, repeated corrections can result in the formation of ledges and/or sharp corners in the borehole that interfere with the passage of subsequent tools therethrough.
A reamer can be used to remove ledges and sharp corners in the borehole. For a non-expanding reamer, the size of the reamer is limited by the diameter of the casing in the borehole that the drill bit and reamer must pass through. If a concentric non-expanding reamer having the same or smaller diameter than the drill bit is used with the drill bit, the reamer will generally follow the path of the drill bit and may not be totally effective in removing the ledges and/or sharp corners. An eccentric reamer reams the borehole to a diameter that is larger than the diameter of the drill bit and is typically effective in removing ledges and sharp corners. Most conventional eccentric reamers have a plurality of circumferentially-spaced blades lined with cutter elements that engage and shear the borehole sidewall. The blades are non-uniformly distributed about the tool, and thus, they occupy less than the total circumference of the tool, thereby making the reamer eccentric.
While necessary for reaming purposes, the addition of reamer blades above the drill bit may have the effect of disrupting the hydraulics that are desirable for removing the drilled cuttings and efficiently conveying them to the surface. Disruptions to the preferred hydraulics caused by the size, number and placement of the reamer blades may have the detrimental effect of slowing removal of the drilled cuttings. Poor hydraulics may lead to “bit balling,” a phenomenon where drilled cuttings become compacted on bit features, such as on the cutter elements, or on bit blades. In turn, this can lead to a decreased rate of penetration and may require tripping the drill string prematurely, each of which can add significantly to the total cost of drilling the well.
Accordingly, there remains a need in the art for improved eccentric reamers for smoothing the profile of a borehole during drilling operations. Such reamers would be particularly well-received if they were provided with features so as to increase the speed of the evacuation of the drilled cuttings and decrease the chance of bit balling.
These and other needs in the art are addressed in varying degrees by embodiments of drilling tools that are disclosed herein. In an embodiment, a drilling tool includes a pilot bit portion coupled to an eccentric reamer, and a fluid passageway extending between the reamer and the pilot bit. The reamer includes a reaming side and a stabilizing side. At least one upwardly-directed fluid nozzle is positioned on the stabilizing side of the reamer. In one embodiment, the fluid nozzle is configured to direct fluid upwardly away from the pilot bit and at an acute angle with respect to the axis of the tool.
In another embodiment, a drilling tool includes a body having a central longitudinal axis and a fluid passageway therethrough. A pilot bit is disposed at a first end of the body and has a rotational axis aligned with the central axis of the body. A reamer portion is included on the body and is axially spaced apart from the pilot bit. The reamer portion comprises an outer surface, and a plurality of reamer blades angularly spaced apart and extending away from the outer surface a first distance measured radially from the central axis, the reamer blades being disposed within a first arcuate segment that is defined by the two most distant reaming blades. The reamer portion further includes one or more stabilization blades extending away from the outer surface a second distance measured radially from the central axis, wherein the second distance is less than the first distance, the one or more stabilization blades being disposed within a second arcuate segment that is defined by the two most distant reamer blades and that has the angular measure equal to 360 degrees minus the measure of the first arcuate segment. A nozzle is disposed in the second arcuate segment and is configured so as to direct fluid that is conveyed to the nozzle from the fluid passageway away from the pilot bit and in a direction that forms an acute angle as measured with respect to the central axis.
In still another embodiment, a drilling tool comprises a pilot bit that is concentric to a central axis and is coupled to an eccentric reamer, the reamer including a reaming side with reamer blades and a stabilizing side with at least one stabilizer blade. A fluid passageway extends through the eccentric reamer, and at least one nozzle in the reamer is configured to direct fluid that is conveyed to the nozzle from the fluid passageway away from the pilot bit and in a direction that forms an acute angle as measured with respect to the central axis. The tool includes a buttress on the reamer configured to increase the wall thickness of the reamer at the position of the nozzle. The buttress may include a ramp surface that extends away from the body of the tool at a ramp angle configured so as to direct the fluid flow in a predetermined direction.
In some embodiments, a drilling tool includes a neck portion between a pilot bit and an eccentric reamer, wherein the neck portion includes a frustoconical outer surface that tapers from a first diameter adjacent the pilot bit to a second diameter adjacent the reamer, wherein the second diameter is greater than the first diameter.
Embodiments described herein comprise components, features and combinations thereof intended to address various shortcomings associated with certain prior devices, systems, and methods. The foregoing has outlined rather broadly the components and features of the disclosed embodiments in order that the detailed description that follows may be better understood. The various characteristics, components, devices and methods described above, as well as others, will be readily apparent to those skilled in the art upon reading the following detailed description, and by referring to the accompanying drawings.
For a detailed description of the disclosed exemplary embodiments, reference will now be made to the accompanying drawings in which:
The following discussion is directed to various exemplary embodiments. However, the examples disclosed herein have broad application, and that the discussion of any embodiment is meant only to be exemplary of that embodiment, and not intended to suggest that the scope of the disclosure, including the claims, is limited to that embodiment.
The drawing figures are not necessarily to scale. Certain features and components herein may be shown exaggerated in scale or in somewhat schematic form, and some details of conventional elements may not be shown in interest of clarity and conciseness.
In the following discussion and in the claims, the terms “including” and “comprising” are used in an open-ended fashion, and thus should be interpreted to mean “including, but not limited to . . . .” Also, the term “couple” or “couples” is intended to mean either an indirect or direct connection. Thus, if a first device couples to a second device, that connection may be through a direct connection, or through an indirect connection via other intermediate devices, components, and connections. In addition, as used herein, the terms “axial” and “axially” generally mean along or parallel to a given axis (e.g., central axis of a body or a port), while the terms “radial” and “radially” generally mean perpendicular to the given axis. For instance, an axial distance refers to a distance measured along or parallel to the central axis, and a radial distance means a distance measured perpendicular to the central axis. Any reference to up or down in the description and the claims is made for purposes of clarity, with “up”, “upper”, “upwardly”, “uphole”, or “upstream” meaning toward the surface of the borehole and with “down”, “lower”, “downwardly”, “downhole”, or “downstream” meaning toward the terminal end of the borehole, regardless of the borehole orientation.
Referring now to
In the embodiment depicted, drill bit 40 is rotated by rotation of drill string 30 from the surface. In particular, drill string 30 is rotated by a rotary table 22 that engages a kelly 23 coupled to uphole end 30a of drill string 30. Kelly 23, and hence drill string 30, is suspended from a hook 24 attached to a traveling block (not shown) with a rotary swivel 25 which permits rotation of drill string 30 relative to derrick 21. Although in this embodiment drill bit 40 is rotated from the surface with drill string 30, in general, the drill bit 40 can be rotated with a rotary table or a top drive, rotated by a downhole mud motor disposed in a bottom hole assembly (BHA) disposed in the drill string above the bit, or by combinations thereof (e.g., rotated by both rotary table via the drill string and the mud motor, rotated by a top drive and the mud motor, etc.). Thus, it is to be appreciated that the various aspects disclosed herein are adapted for employment in each of these drilling configurations and are not limited to the particular method employed to rotate the drill bit 40 or drill string 30.
During drilling operations, a mud pump 26 at the surface draws cleaned drilling fluid or mud from mud tanks 27 and pumps the drilling fluid down the interior of drill string 30 via a port in swivel 25. The drilling fluid exits drill string 30 through ports or nozzles in the face of drill bit 40 and through other nozzles that described in more detail below. The drilling fluid then circulates back to the surface through the annulus 13 that exists between drill string 30 and the sidewall of borehole 11. In addition to carrying drilled cuttings to the surface, the drilling fluid functions to maintain pressure in the well, as well has to lubricate and cool drill bit 40.
Drilling Tool
Referring now to
Pilot Hole Portion.
Referring to
Pilot bit portion 42 has a maximum or full gage diameter that is defined by the radially outermost reaches of blades 60 and their cutter elements 70. Referring momentarily to
Reamer Portion.
Referring again to
In this embodiment, two long reamer blades 80 extend upward in the axial direction from neck 46 to a position below pin 48 and are generally parallel to one another. In other embodiments, the reamer blades 80 need not be parallel and may be configured in an angular or spiral arrangement. Two short reamer blades 82 extend in the axial direction from neck 46 and terminate at a position approximately ⅓ to ½ of the height of the long reamer blades 80. In this exemplary embodiment, long and short reamer blades 80, 82, respectively, extend outwardly from tool body 41 the same distance (i. e. same radius) as measured from rotational axis 54; however, they need not be equal length in all applications
As best shown in
Still referring to
In the exemplary embodiment described, stabilization blades extend from outer surface 50 of tool body 41 the same distance (i. e. same radius) as one another and as measured from rotational axis 54, however, they do not extend as far as reamer blades 80, 82. Given this arrangement, reamer portion 44 of bi-center bit 40 is an eccentric reamer, and when bit 40 is rotated about rotational axis 54, the hole cut by reamer portion 44, as viewed in a cross section taken perpendicular to rotational axis 54, is the circle R shown in
Because the reamer portion 44 of the bi-center bit 40 is eccentric, it includes a maximum dimension DR (
Stabilizer-Side Nozzle
Referring to
In this particular embodiment, a single stabilizer-side nozzle 96 is positioned in the arcuate section 95, in between the two stabilizer blades 90. However, where in the stabilizing side of the bit the stabilizer-side nozzle 96 is placed is incidental to the number and placement of stabilizer blades 90. Instead, positioning of the stabilizer-side nozzles 96 is placed more with reference to the number and placement of reamer blades 80, 82. In the case of stabilizer-side nozzle 96 shown in the exemplary embodiment shown in
In some embodiments, more than a single stabilizer-side nozzle 96 may be employed. Referring now to
Even given that stabilizer-side nozzles 96 are not positioned to direct fluid flow on or across cutter elements or cutter-carrying blades, providing nozzles 96 in the stabilizing side of a reamer is believed to increase the speed of the upward flow of drilling fluid in the annulus 13. Further, providing one or more stabilizer-side nozzle 96 it is believed to reduce undesirable recirculation of fluid in the portion of the annulus 13 adjacent to the stabilization side, prevent back flow towards the pilot bit, and potentially decrease the chance of bit balling.
Nozzle Buttress
In some embodiments, bi-center bit 40 includes nozzle buttresses 100, best shown in
In more detail, buttress 100 extends from the body 41 and spans an axially extending region that includes portions of reamer portion 44 and neck portion 46. In the embodiment shown, buttress 100 includes a generally gage-facing ramped surface 102 and side surfaces 104 that meet at intersections 106. Ramped surface 102 extends upwardly away from outer surface 50 of the tool body 41 at what is referred to herein as a ramp angle 110, terminating at top surface 108. In the embodiment shown, top surface 108 extends generally perpendicularly to bit axis 54; however surface 108 may be angled differently so as to present a ramped surface that extends downwardly from surface 50 to the intersection with surface 102. Dimensional requirements compete with the designed goal of providing additional structural material needed to support the nozzle and allow it to be upwardly-directed as desired. In particular, ramp angle 110 and the length of ramped surface 102 are selected such that the buttress 100 does not extend radially so far as to prevent the bi-center bit 40 from passing through the pass through circle PT described above with respect to
A nozzle bore 112 is formed through the upper end of buttress 100 and into reamer body portion 44 and is in fluid communication with internal fluid passageway 52. A nozzle, such as a reaming side nozzle 86 is fixed in bore 112. In this embodiment, buttress 100 is aligned with the centerline of nozzle 86 such that buttress 100 extends laterally equal distance on either side of nozzle bore 112. As shown in
Neck Ramp
Referring to
While exemplary embodiments have been shown and described, modifications thereof can be made by one skilled in the art without departing from the scope or teachings herein. The embodiments described herein are exemplary only and are not limiting. Many variations and modifications of the systems, apparatus, and processes described herein are possible and are within the scope of the invention that is set out in the claims below. Accordingly, the scope of protection is not limited to the embodiments described herein, but is only limited by the claims that follow, the scope of which shall include all equivalents of the subject matter of the claims. Unless expressly stated otherwise, the steps in a method claim may be performed in any order.
This application claims benefit of U.S. provisional patent application Ser. No. 62/459,359 filed Feb. 15, 2017, and entitled “Bi-Center Bit and Drilling Tools with Enhanced Hydraulics,” which is hereby incorporated herein by reference in its entirety for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
4245708 | Cholet | Jan 1981 | A |
4618010 | Falgout, Sr. | Oct 1986 | A |
6298929 | Cobos Rojas | Oct 2001 | B1 |
6340064 | Fielder | Jan 2002 | B2 |
20020166703 | Presley | Nov 2002 | A1 |
20040238225 | Larsen | Dec 2004 | A1 |
20120175106 | Rankin | Jul 2012 | A1 |
Number | Date | Country |
---|---|---|
1085167 | Mar 2001 | EP |
2373522 | Sep 2002 | GB |
Entry |
---|
PCT/US2018/017589 International Search Report and Written Opinion dated May 4, 2018 (4 p.) (3314-42702). |
Number | Date | Country | |
---|---|---|---|
20180230753 A1 | Aug 2018 | US |
Number | Date | Country | |
---|---|---|---|
62459359 | Feb 2017 | US |