The invention concerns a BI-CMOS process for manufacturing integrated circuits. BI-CMOS refers to a single integrated circuit containing the following structures: (a) bipolar junction transistors, (b) N-channel MOSFETs, and (c) P-channel MOSFETs.
In general, bipolar junction transistors (BJTs) and field-effect transistors (FETs) are constructed using different fabrication steps. When both BJTs and FETs are to be fabricated on the same integrated circuit (IC), the fabrication process is generally referred to as BI-CMOS. (The term BI-CMOS is sometimes specifically restricted to a particular combination of BJTs and FETs, namely, BJTs and CMOS-type FETs. CMOS is an acronym for Complementary Metal Oxide Semiconductor).
In theory, the fabrication of BI-CMOS devices is straightforward. However, in practice, if one merely adds a BJT sequence of steps to an FET sequence, the resulting sequence contains a large number of total steps, many of which are redundant.
In IC fabrication generally, it is desirable to reduce the total number of processing steps.
It is an object of the invention to provide an improved sequence of processing steps for integrated circuits.
It is a further object to provide an improved BI-CMOS processing sequence.
In one form of the invention, a single processing step is used to fabricate structures for both FETs and BJTs in a BICMOS structure. For example, a single layer of polysilicon is used to form both emitters for BJTs and gates for FETs. As another example, a single drive-in step is used to (a) complete drive-in of N- and P-wells for FETs and (b) perform drive-in of a collector plug for a BJT.
FIGS. 36 and 36-1 illustrate a Lightly Doped Drain (LDD).
FIGS. 37 and 37-1 illustrate conventional drain doping.
Two N+ layers are formed upon a P− silicon substrate, as shown in FIG. 1. Then, an epitaxial N− layer is applied, as shown. The N+ layers become buried layers by virtue of the epitaxial layer.
Implants are undertaken to provide dopants which later diffuse (or are “driven in”) to form the N- and P-wells shown in FIG. 2. The implant parameters are the following:
Field oxide regions 3 are then grown, as indicated in FIG. 2. Since the oxide growth is a high-temperature process, the dopants implanted for the P-wells and N-wells begin to diffuse during the oxide growth, forming the precursor wells shown in FIG. 2.
After the field oxide growth, an implantation in region C in
After this collector implant, heat treatment drives the two N-wells into contact with the buried layers, as shown in
At this time, three types of well can be defined:
The collector structure 6 is sometimes termed a “collector plug.” The atoms implanted into region C in
The implanting of the collector plug dopants could have been undertaken prior to growth of the field oxide 3 in FIG. 2. In such a case, the drive-in for (a) the three types of well and (b) the collector could have been undertaken simultaneously. However, in this case, the collector plug 6 would have diffused laterally, and the resulting plug would resemble the dashed plug 6A in FIG. 3.
Dashed plug 6A is wider than plug 6. The excess width is not desirable, because the plug now occupies greater space. Space on an integrated circuit is a valuable commodity.
Therefore, under the invention, the implant for the collector plug 6 is undertaken AFTER field oxide growth, but PRIOR TO full drive-in of the three types of wells. Restated, the heat treatment which grows the field oxide is interrupted for the collector plug implant, and then heat treatment is resumed.
Consequently, the collector plug dopants are allowed to diffuse for a shorter time than the dopants in the three wells. Nevertheless, the collector dopants still reach the buried N+ layers, as do the dopants forming the BJT-well and the FET-N-well. There are three important aspects to this shorter diffusion time.
Silicon dioxide (labeled OXIDE in
Then, in
A masking step creates a photoresist mask 5, as indicated in
Channeling effect refers to the “channels” which crystals present to incoming implant atoms. That is, since crystals are constructed of periodic arrays of atoms, there exist parallel planes of atoms which, combined with other parallel planes, define corridors or “channels” for the incoming atoms to follow.
For example,
The channeling allows the dopant atom to reach a deeper position than it would if channeling were absent. The plot of
The polysilicon film of
The plot of
The oxide layer (first shown in
The POLYSILICON film in
The polysilicon scattering layer in
A step junction (or shallow base dopant profile) improves the speed of the transistor. Reliability is improved because the high-field region has been pushed away from the LDD spacer. The region beneath the spacer oxide can contain defects which act as traps for electrons or holes, which degrade the performance of the bipolar transistor.
One set of implant parameters is the following:
Under these conditions, a doping profile between the two profiles shown in
After the scattered-implant, which creates the P− base layer shown in
The photoresist prevents the thin polysilicon located over the FET-wells from being etched away while the oxide over the BJT is removed.
These oxide layers over the FET-wells will form gate oxide for Field Effect Transistors (FETs), in later steps. These oxide regions were not subject to the implant. However, the region of the oxide layer which covered the BJT was subjected to the implant. This implant (shown in
Now, a thick POLYSILICON layer is formed, as shown in FIG. 15. This thick POLYSILICON layer is about 1500-4500 Å thick.
This thick POLYSILICON layer adheres to the POLYSILICON film (over the FET-wells) and to the P− base layer (at the surface of the BJT-well). Next, a mask step is undertaken, in which two types of polysilicon structures, shown in
One type is labeled POLY GATE. This type forms the gate electrodes for FETs. This type is formed upon the OXIDE layers located on the FET-wells. The other type is labeled POLY EMITTER. The POLY EMITTER forms the emitter structure of the BJT. The POLY EMITTER is formed directly upon the P− base: there is no intervening oxide.
An etching step is undertaken, which produces the shallow trenched base shown in FIG. 16. In this etching step, the POLY EMITTER acts as an etch stop. The base-emitter metallurgical junction is indicated in FIG. 17.
The cross-sectional area of this junction is determined by the cross-sectional area of the POLY EMITTER, which is, in turn, determined by the geometry of the mask (not shown) which created the photoresist structure (not shown) which defined the shape of the POLY EMITTER.
Accordingly, the area of the metallurgical, emitter-base junction in
Accurately controlling the base-emitter area is important, because this area partly determined the Gummel number which, in turn, determines the emitter-to-collector current gain. Controlling the area is important in controlling gain.
A significant feature of the shallow trenched base is illustrated in
That is, leakage current can flow from point G (located in the extrinsic base) to point H (located in the emitter). Points G and H are also shown in FIG. 30.
The shallow trench, partially shown in dashed circle 25 in
Restated, in the completed device, point G in
An alternate explanation of the benefits of the trenched base can be given with respect to
Trenching the base, as shown in
The emitter in
In order to reduce emitter resistance, a polycide layer, of thickness between 30 and 200 nanometers, can be deposited on the polysilicon. A suitable polycide is tungsten silane, WSi2.
After forming the shallow trenched base, a procedure known as LDD (Lightly Doped Drain) is undertaken. This procedure, together with a subsequent, heavier implant, produces the doping profiles shown in
For the FETs, the LDD procedure reduces the electric field, as indicated in
The Inventor points out that the LDD procedure for the P-channel FET is done simultaneously with the LDD procedure for the BJT base. (The term “LDD,” when applied to the BJT base, is technically a misnomer: there is no “drain” in the BJT. However, insofar as the term “LDD” refers to the structure shown in
Afterward, in another processing sequence, oxide spacers, shown in FIG. 26 and in
The added sidewall assists in inhibiting the base-emitter contacting shown in FIG. 32. In a strict sense, the sidewall is not necessary for the emitter; trenching, by itself, will prevent the contacting.
The Inventor points out that sidewall spacers are formed on both (a) the polysilicon gates of both types of FET and (b) the emitter of the BJT, as shown in FIG. 25. Further, all spacers are formed during the same processing steps.
The regions bordering the spacer oxide are doped P+, as indicated by arrows 30. These P+ ion implantation regions form the extrinsic part of the base of the NPN bipolar transistor, as labeled in the insert 31 in FIG. 22. The intrinsic part of the base is also labeled.
The terms “extrinsic” and “intrinsic,” in this context, do not refer to whether a semiconductor is (a) pure and undoped (ie, “intrinsic”) or (b) doped (ie, “extrinsic”). Rather, the terms in
This P+ ion implantation also forms sources and drains (hence the term “S/D doping”) in the FET-N-wells, as indicated by arrows 30.
In a second implantation, indicated by arrows 35 in
(Appropriate masking steps are taken between implants 30 and 35. Masking is not shown.)
After the source-drain implant, Boro-poly silicate glass (BPSG) is applied, and etched, to form the structure indicated in FIG. 27. Then, METAL 1 contacts are applied, as indicated in FIG. 28. From the structure shown in
1. Number of Heat Treatments. The fabrication sequence involves exposing the wafer to the following heat treatments:
A ramp-up in temperature is used in many steps, primarily to avoid subjecting the wafer to thermal shock, which can crack the wafer, or induce irregularities in the crystal structure, such as slip planes.
A typical ramp-up is from 350 degrees C. to the stated temperature, at the rate of about 10 or 12 degrees per minute.
Ramp-down is done for the same reason, at the rate of about 3 to 6 degrees per minute.
One suitable RTP sequence is a ramp-up of 25-150 degrees C./sec., and a ramp-down of 10-50 degrees C./sec.
The Inventor points out that these heat treatment steps total six in number. The wafer is subjected to a heating event only six times, yet both BJTs and FETs are fabricated on the same wafer. This is a saving over the serial addition of BJT fabrication steps to FET fabrication steps.
For example, BJT wells are formed in the same processing steps as FET wells, as shown in FIG. 3.
As another example, the COLLECTOR PLUG shown in
The RTP may not constitute a heating event, because its duration is so short.
2. Reduced Number of Masking Steps. The invention reduces the number of masking steps required. A “masking step” consists of numerous individual procedures, such as
Of course, some masking steps may change the procedures, or materials used. For example, in field oxide growth, shown in
One definition of “masking step” is: a series of procedures which include (A) creating a pattern (such as a photoresist pattern) and (B) using the pattern to protect the surface from ambient agents.
As to (1), different types of protection occur. Examples are the following:
Another definition of masking is the use of a pattern, which covers some areas and leaves other areas exposed, to block modification of the surface at the covered areas, and allow modification of the surface at the exposed areas.
The invention reduces the number of masking steps required. The steps are:
3. Particular Combination of Unique Devices. The invention comprises the following devices on a single integrated circuit.
That is, the structure shown in
The trenching creates a structure which is sometimes called a butte-mounted emitter. The butte has two levels: a top level T in
4. Unique Intermediate Structure. The invention uses the intermediate structure shown in
Viewed another way, the structure of
Another intermediate structure is shown in FIG. 46. Polysilicon gates are positioned on oxide which coats the FET-wells. A polysilicon emitter is positioned on a P− base, with no oxide between the emitter and the base. The trenching has not yet been done.
Numerous substitutions and modifications can be undertaken without departing from the true spirit and scope of the invention. What is desired to be secured by Letters Patent is the Invention as defined in the following claims.
This application is a continuation of U.S. patent application Ser. No. 08/866,968, filed on Jun. 2, 1997 now U.S. Pat. No. 6,593,178; which is a continuation of U.S. patent application Ser. No. 08/477,056 filed on Jun. 7, 1995 now abandoned; which is a divisional of U.S. patent application Ser. No. 08/378,310, filed on Jan. 25, 1995 now abandoned; which is a continuation of U.S. patent application Ser. No. 08/082,694, filed on Jun. 28, 1993 now abandoned; which is a continuation-in-part of U.S. patent application Ser. No. 07/987,916, filed on Dec. 7, 1992 now abandoned.
Number | Name | Date | Kind |
---|---|---|---|
4800171 | Iranmanesh et al. | Jan 1989 | A |
4818720 | Iwasaki | Apr 1989 | A |
4868135 | Ogura et al. | Sep 1989 | A |
4897703 | Spratt et al. | Jan 1990 | A |
4929570 | Howell | May 1990 | A |
4960726 | Lechaton et al. | Oct 1990 | A |
4965216 | Scovell et al. | Oct 1990 | A |
5001081 | Tuntasood et al. | Mar 1991 | A |
5006476 | De Jong et al. | Apr 1991 | A |
5047357 | Eklund | Sep 1991 | A |
5059549 | Furuhata | Oct 1991 | A |
5082796 | El-Diwany et al. | Jan 1992 | A |
5100811 | Winnerl et al. | Mar 1992 | A |
5132234 | Kim et al. | Jul 1992 | A |
5179036 | Matsumoto | Jan 1993 | A |
5183777 | Doki et al. | Feb 1993 | A |
5196356 | Won et al. | Mar 1993 | A |
5516718 | Lee | May 1996 | A |
5661046 | Ilderem et al. | Aug 1997 | A |
6124180 | Chambers et al. | Sep 2000 | A |
6249030 | Lee | Jun 2001 | B1 |
Number | Date | Country | |
---|---|---|---|
20030203559 A1 | Oct 2003 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 08378310 | Jan 1995 | US |
Child | 08477056 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 08866968 | Jun 1997 | US |
Child | 10428592 | US | |
Parent | 08477056 | Jun 1995 | US |
Child | 08866968 | US | |
Parent | 08082694 | Jun 1993 | US |
Child | 08378310 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 07987916 | Dec 1992 | US |
Child | 08082694 | US |