The present invention relates to the field of intraluminal devices, and more particularly to perfusion catheters for delivery of fluid to a patient's vascular system.
Peripheral arterial cannulation is used during many cardiac surgeries, and is often performed via the femoral artery. Such cannulation is very effective in circulatory support scenarios for cardiorespiratory support, e.g., pulmonary bypass, for patients undergoing various surgical procedures. The cannulation supports a retrograde flow from the femoral artery into the heart, but regular (antegrade) flow is often compromised. The lack of regular antegrade flow results in compromised blood flow to the lower limb (e.g., the leg below the site at which the cannula is inserted into the artery). Such compromised blood flow to the lower limb is often acceptable for the relatively short times involved in many procedures, but in some circumstances it is desirable to provide some blood flow to the lower extremity during the procedure.
To provide increased blood flow to the lower extremity, the cannula may be provided with bi-directional fluid flow capability. Various bi-directional perfusion cannulas have been proposed. One approach has been to use a perfusion cannula with a diameter significantly smaller than the blood vessel lumen diameter in order to permit some blood to flow back over the perfusion cannula, but such systems must be carefully designed and positioned in order to assure appropriate blood flow in the retrograde and antegrade direction. Another approach has been to include an additional perfusion cannula, positioned away from the primary perfusion cannula, to provide antegrade blood flow to the lower extremity. This approach requires the extra cannula as well as an extra perfusion line, as well as associated extra hardware and monitoring. Additional surgeon time is required, as well as an additional puncture in the blood vessel and possible additional incisions in the patient.
Some have included a perfusion port at an antegrade side of the cannula through which blood may flow to the lower extremity. Examples include US Patent Publication 2012/0259273 to Moshinsky et al.; European Patent Application EP 0619745 to Fonger DLP; and U.S. Pat. No. 6,626,872 to Navia. However, such ports must be carefully positioned and constructed to provide proper perfusion flow and to permit easy retraction of the cannula from the artery after the procedure is completed. Sometimes the arterial wall can collapse or constrict against the perfusion port, or a perfusion port extension may interfere with deployment and/or withdrawal of the cannula from the patient.
What has been needed is a perfusion cannula that can selectively provide bi-directional perfusion flow without obstruction of the perfusion ports while also providing for easy deployment and withdrawal of the cannula. The present invention meets these needs.
The present invention provides a system, device, and method for providing selective bi-directional perfusion to a blood vessel.
For purposes of this application, the term “antegrade” refers to the natural direction of blood flow within the patient's blood vessels, i.e., the direction of blood flow without introduction of any flow-diverting devices. “Retrograde” refers to the direction which is opposite to the natural direction of blood flow.
An embodiment of the invention is a perfusion cannula comprising a substantially tubular member for insertion into a patient's body lumen, the substantially tubular member comprising a proximal end, a distal end, a tubular member inner lumen extending from the proximal end to the distal end, a first opening at the distal end, the first opening configured to provide fluid flow from the tubular member inner lumen to the body lumen in a first flow direction, an elbow (which may be pre-formed or selectively formed by a user via controls or simple mechanical bending) positioned along the substantially tubular member proximal of the distal end, a second opening formed at the elbow, and a substantially tubular extension having a deployed configuration and a stowed configuration. In the deployed configuration the substantially tubular extension extends at least partially out of the second opening, and in the stowed configuration the substantially tubular extension does not extend out of the second opening. The substantially tubular extension comprises a tubular extension inner lumen, a tubular extension distal opening, and a tubular extension proximal opening, wherein in the deployed configuration the tubular extension inner lumen provides a fluid flow path from the tubular member inner lumen to the body lumen in a second flow direction, wherein the second flow direction is opposite to the first flow direction.
The second opening may comprise a valve which has an open and a closed configuration, wherein in the open configuration fluid may flow from the inner lumen to the body lumen via the second opening, and in the closed configuration fluid is prevented from flowing from the inner lumen to the body lumen via the second opening. The valve may be biased toward the closed configuration. The tubular extension when extended out of the second opening may hold the valve in the open configuration. The elbow, which may be pre-formed or manually formed by a user (e.g., using controls or application of direct bending moment), may be positioned on the cannula between 1 cm and 8 cm proximal of the cannula distal end. The second opening may be positioned adjacent the elbow, and may be positioned on the cannula between 1 cm and 8 cm proximal of the distal end.
The construction and dimensions of the substantially tubular extension should be selected to fit the particular application. For example, a tubular extension for femoral artery perfusion may be tapered for ease of insertion out of the main cannula and into the femoral artery. Such a tubular extension may have an inner lumen diameter of between 1 mm and 4 mm, an overall length of between 0.5 cm to 5 cm (or 1 mm to 10 cm), and/or in the deployed configuration may extend out of the secondary opening a distance of between 0.5 cm to 3 cm (or 0.5 mm to 10 cm). The substantially tubular extension may have a distal opening, a proximal opening, and/or one or more side openings through which perfusion fluid may easily flow.
Deployment and/or retraction of the tubular extension may be performed via a control such as a line secured to the substantially tubular member and passing along the cannula to the proximal end thereof, wherein movement of the line effectuates movement of the substantially tubular member from the stowed configuration to the deployed configuration. The substantially tubular member is biased to the stowed configuration.
The cannula may have a dedicated secondary lumen in fluid communication with the tubular extension. The dedicated secondary lumen may provide fluid from a dedicated secondary fluid source.
A system according to the invention may include the device discussed above, and also have a primary perfusion fluid source in controlled fluid communication with the primary lumen of the cannula. Where the cannula has a dedicated secondary lumen, a dedicated secondary perfusion fluid source may provide perfusion fluid to the secondary lumen. The dedicated secondary perfusion fluid source may provide perfusion fluid which is different from the perfusion fluid provided by the primary perfusion fluid source.
Methods according to the invention may include providing perfusion to a limb of a patient during peripheral artery cannulization, which may include: forming an incision in the patient from the patient's skin and into a selected blood vessel; advancing a perfusion catheter into the selected blood vessel via the incision, the perfusion catheter comprising a proximal end, a distal end, an inner lumen extending from the proximal end to the distal end. a first opening at the distal end, the first opening configured to provide fluid flow from the inner lumen to the body lumen in a first direction, an elbow positioned along the substantially tubular member proximal of the distal end, a second opening formed at the elbow and configured for providing fluid flow form the inner lumen to the body lumen in a second direction, wherein the second direction is opposite to the first direction, and a substantially tubular extension having a deployed configuration and a stowed configuration, wherein in the deployed configuration the substantially tubular extension extends at least partially out of the second opening, and in the stowed configuration the substantially tubular extension does not extend out of the second opening. The methods may further include positioning the perfusion catheter with the distal end and elbow within the blood vessel; providing blood flow to the inner lumen and out of the first opening; selectively providing blood flow to the inner lumen and out of the second opening by selectively advancing the tubular extension out of the second opening. The method may also include, prior to selectively advancing the tubular extension out of the second opening, monitoring the time of the bypass procedure and/or patient parameters such as oxygenation, blood pressure, pulse, etc.
Other objects and further features of the present invention will become apparent from the following description when read in conjunction with the attached drawings.
Disclosed herein are descriptions of various illustrated embodiments of the invention. The descriptions are not to be taken in a limiting sense, but are made merely for the purpose of illustrating the general principles of the invention. The section titles and overall organization of the present description are for the purpose of convenience only and are not intended to limit the present invention.
The devices, systems, and methods of the present invention are generally applicable to medical procedures. The device and method disclosed herein are of particular value during cardiac procedures where bi-directional perfusion is desired. The device has particular relevance to circulatory support scenarios for cardiorespiratory support, e.g., pulmonary bypass, for patients undergoing various surgical procedures. Those skilled in the art will appreciate, however, that the device and method are relevant to a variety of procedures.
Referring to
A primary perfusion fluid lumen 22 extends through the elongated body 16 from the proximal fluid opening 24 (e.g., proximal access port) to a distal opening 26. The proximal fluid opening 24 may include a connector (not shown), such as screw-type connector, for securing the proximal opening 24 to the perfusion fluid source 12. The distal opening 26 may be positioned at the distal end 20 of the elongated body 16. A secondary opening 28 is positioned on the cannula elongated body 16 just proximal of the distal opening 26, and adjacent and/or just proximal to a bend 44, which may be between 10 to 60 degrees, in the cannula body just proximal of the distal end 20.
The cannula 14 may include a second proximal access port 17 leading to a second branch lumen 19 which connects to the elongated body 16 via a Y-connection 21 or similar connection. The second proximal access port 17 and second branch lumen 19 may be used for providing access to the patient's vasculature for various applications, such as for advancing a catheter (such as a treatment catheter) into the vasculature of the patient, e.g., advanced into second proximal access port 17 and second branch lumen 19 and into the femoral artery and then into the aorta and into the heart for treatment therein. The second proximal access port 17 and second branch lumen 19 may also, or alternatively, be used to provide perfusion fluid to the secondary opening 28. Note that additional proximal ports/openings and branch lumens may also be present, depending on the particular application, and used for fluid and/or instrument advancement into the patient.
Controls may be positioned at the proximal end 18 of the device 12. The controls may be configured to control fluid flow through distal opening 26 and/or the secondary opening 28/tubular extension 42, and may control the movement of cannula components such as the substantially tubular extension 42 (e.g., via a control line 60 such as that depicted in
As shown in
The secondary opening 28 may be positioned just adjacent and proximal to the bend 44. The secondary opening 28 may comprise a valve 46 or friction/leakless fitting having an open position that permits fluid flow therethrough and a closed position wherein fluid flow therethrough is prevented. The valve 46 may be biased toward the closed position. The cannula 14 may include a substantially tubular extension 42 (which may be tapered for ease of insertion) having a distal end 50 and a proximal end 52. A tubular extension lumen 54 extends from a tubular extension distal opening 56 to a tubular extension proximal opening 58. The tubular extension distal end 50 is sized and positioned to be selectively advanced out of and back into the cannula primary lumen 22 via the secondary opening 28. A control line 60 may selectively control movement of the tubular extension 42 to effectuate advancement and retraction of the tubular extension distal end 50 through the secondary opening 28.
When the tubular extension 42 is advanced out of the secondary opening 28, e.g., via the control line 60, it assumes a deployed configuration as depicted in
As depicted in
Note that primary perfusion flow may be provided to the distal opening 26 regardless of whether secondary flow is provided to the secondary opening 28 and/or whether the tubular extension 42 is in the deployed or retracted position. For example, a surgeon may initially provide only primary perfusion flow, and only provide secondary perfusion flow (e.g., by deploying the tubular extension 42) if the procedure exceeds a determined timeframe and/or responsive to patient monitoring. In an embodiment where the blood vessel is a femoral artery, the primary perfusion flow is toward the heart, and the secondary perfusion flow is toward the lower extremity/leg.
To deploy the tubular extension 42, the surgeon or other user can selectively advance the tubular extension 42 out of the secondary opening 28, e.g., via the control line 60, until the tubular extension distal opening 56 is advanced well out of the secondary opening 28. With the tubular extension 42 deployed, as depicted in
When secondary perfusion flow is no longer desired (e.g., when the cardiac procedure is completed), the surgeon or other user can retract the tubular extension 42 back into the cannula elongated body 16 via the secondary opening 28, as depicted in
Another embodiment of the invention is depicted in
In the previously depicted embodiments of the invention, the secondary fluid flow via the tubular extension 42 is provided from the primary lumen 22 of the cannula 14. In another embodiment of the invention, depicted in
Note that the embodiments disclosed in the application may be combined into further embodiments without departing from the scope of the invention. For example, the secondary lumen 80 of
Note that the term “tubular” as used herein describes an elongated structure having an inner lumen therethrough, and is not meant to be limited to a specific cross-sectional form (e.g., circular, elliptical, rectangular, etc.) and/or to other specific structural limitations (such as constant radius/width along its length, varying radius/width along its length, etc.).
In closing it is understood that the embodiments of the invention disclosed herein are illustrative of the principles of the invention. Accordingly, the present invention is not limited to that precisely as shown and described in the present invention.
This application is a divisional of U.S. patent application Ser. No. 14/926,699, filed Oct. 29, 2015, now U.S. Pat. No. 9,981,119, which claims the benefit of U.S. Patent Application No. 62/072,257, filed Oct. 29, 2014, the entire disclosures of which are incorporated by reference in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
5312344 | Grinfeld et al. | May 1994 | A |
6099506 | Macoviak et al. | Aug 2000 | A |
6197014 | Samson et al. | Mar 2001 | B1 |
6533770 | Lepulu et al. | Mar 2003 | B1 |
6626872 | Navia et al. | Sep 2003 | B1 |
6669674 | Macoviak et al. | Dec 2003 | B1 |
8343091 | Schweikert | Jan 2013 | B2 |
8795227 | Condado | Aug 2014 | B2 |
20030004452 | Lenker | Jan 2003 | A1 |
20030149395 | Zawacki | Aug 2003 | A1 |
20030176830 | Scheule | Sep 2003 | A1 |
20050222532 | Bertolero et al. | Oct 2005 | A1 |
20060253088 | Chow | Nov 2006 | A1 |
20080009804 | Rosetti | Jan 2008 | A1 |
20080183128 | Morriss | Jul 2008 | A1 |
20090234291 | Saunders et al. | Sep 2009 | A1 |
20100241068 | Chen | Sep 2010 | A1 |
20110152741 | Banchieri et al. | Jun 2011 | A1 |
20120016408 | Barbut et al. | Jan 2012 | A1 |
20120259273 | Moshinsky et al. | Oct 2012 | A1 |
20120302953 | Don Michael | Nov 2012 | A1 |
20140135786 | Sadanandan | May 2014 | A1 |
20150202406 | Lim | Jul 2015 | A1 |
20160096000 | Mustapha | Apr 2016 | A1 |
Number | Date | Country |
---|---|---|
0619745 | Oct 1994 | EP |
9964099 | Dec 1999 | WO |
2006093273 | Sep 2006 | WO |
Entry |
---|
Int'l. Search Report for PCT/US2015/044003, dated Nov. 11, 2015. |
Int'l. Search Report for PCT/US2015/036005, dated Sep. 21, 2015. |
Number | Date | Country | |
---|---|---|---|
20180272116 A1 | Sep 2018 | US |
Number | Date | Country | |
---|---|---|---|
62072257 | Oct 2014 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14926699 | Oct 2015 | US |
Child | 15991979 | US |