Bi-directional channel analysis

Information

  • Patent Grant
  • 6345057
  • Patent Number
    6,345,057
  • Date Filed
    Monday, December 13, 1999
    25 years ago
  • Date Issued
    Tuesday, February 5, 2002
    22 years ago
Abstract
A method for analyzing the channel using the preceding slot synchronization sequence is provided. The method of the invention is for operating a receiver receiving a signal frame in a dynamic channel wherein the signal frame includes a plurality of slots, each including a plurality of data bits. Each of the slots further includes a synchronization sequence wherein at least a predetermined one of the slots is assigned for the receiver. The preceding slot following the receiver assigned slot includes a varying synchronization sequence which is selected from a group of predetermined synchronization sequences postulates. The method includes the steps of calculating from the preceding slot synchronization sequence an estimated taps value for each of the synchronization sequence postulates, calculating from the preceding step synchronization sequence a log likelihood metric value C(y,h) for each of the synchronization sequence postulates and selecting the synchronization word postulate having the best metric value.
Description




FIELD OF THE INVENTION




The present invention relates to methods for signal detection in general and to methods for signal detection using known preambles in particular.




BACKGROUND OF THE INVENTION




Methods for detecting a signal and evaluating a channel using a known preamble, are known in the art. Such methods are used in timed framed communication methods such as TDMA communication standard, CDMA communication standard, and the like.




Reference is made to

FIG. 1

which is a schematic illustration of a timed framed TDMA sequence, referenced


1


, known in the art. Frame sequence


1


includes a plurality of slots


2


,


4


,


6


,


8


and


10


. Each of these slots includes bits of data, lasting a predetermined period of time.




In TDMA, several users may use a predetermined communication channel, each at predetermined intervals in time. In the present example, slot


2


is assigned to a first user, slot


4


is assigned to a second user, and so on.




According to common TDMA standards, such as IS-136, IS-54, RCR-27, the preamble (i.e. the first few bits of information) of each slot represents a known synchronization sequence, also known as a sync-word. Each of slots


2


,


4


,


6


,


8


and


10


has a sync-word


12


,


14


,


16


,


18


and


20


, respectively.




Sync-words are used to determine what the channel looks like with regard to several aspects such as amplitude, phase, timing, frequency offset, reflections which produce echoes, represented by channel taps, distortions, interference and the like.




Multiple channel taps cause inter-symbol interference. For example, the value of a sample si sampled at the output of the multi-path channel, is given by







s
i

=




n
=

-

L
1




L
2





h
n



a

i
-
n














wherein the a


i


are the transmitted samples (−∞<i<∞); and




h


n


are the gains of the channel taps (−L


1


≦n≦L


2


). L


1


and L


2


define the length of channel memory which, in turn, defines the number of neighboring symbols which affect each sample.




Conventional methods use the sync-word of each slot to determine the appropriate synchronization to this slot. Thus, the receiver of the first user, receiving slot


2


, will analyze sync-word


12


(S


1


), determine the channel characteristics and proceed analyzing the rest of slot


2


, accordingly.




It will be appreciated that a communication channel may develop in time, which affects the form of a received slot. Thus, an analysis, based on a sync-word at the beginning of a slot, might not be accurate for the last part of the slot.




Accordingly, conventional receivers execute dynamic tracking procedures, which track the channel development in time, while decoding the data contained therein. Temporary fading of a channel may cause considerable degradation in such channel tracking procedures.




Another method known in the art analyzes the channel of a received slot according to the sync-word of the slot and the sync-word of the next adjacent slot. For example, the receiver of the first user, receives slot


2


as well as the sync-word


14


of slot


4


and analyzes the channel from sync-word


12


(S


1


) and


14


(S


2


).




Analyzing the channel for slot


2


using sync-word


12


(S


1


), combined with forward in time channel tracking, is also called forward analysis. Analyzing the channel for slot


2


using sync-word


14


(S


2


), combined with backward in time channel tracking, is also called backwards analysis. According to prior art methods, this can be performed only when S


1


and S


2


are known, fixed sequences.




It will be appreciated that in some communication standards, such as TDMA IS-54, IS-136, RCR-27 and the like, the sync-word of the next slot is not a fixed predetermined sequence, which make the above prior art methods inefficient.




These TDMA standards define a frame which includes six slots. A TDMA standard also defines two modes of channel usage. A first mode is called half-rate, in which a user is assigned one slot (i.e. every sixth frame is reserved for his use). A second mode is called full-rate, in which a user is assigned two slots in a frame (i.e., every third slot).




Reference is now made to

FIG. 2

which is a schematic illustration of a combined full-rate half-rate frame TDMA sequence, generally referenced


48


. Frame


48


includes a plurality of data slots,


50


,


52


,


54


,


56


,


58


,


60


and


62


, each having a preamble


70


,


72


,


74


,


76


,


78


,


80


and


82


, respectively.




The first six slots define a frame, operative for a number of users, which will be repeated further sync-words. This frame is assigned to two half-rate users and two full-rate users.




Slots


54


and


60


are assigned to the first and second half-rate users, respectively. Slots


50


and


56


are assigned to the first full-rate user and slots


52


and


58


are assigned to the second full-rate user.




In the present example, preambles


70


and


76


of slots


50


and


56


which are both assigned to the first full-rate user, have the same sync-word S


1


. Preambles


72


and


78


of slots


52


and


58


which are both assigned to the second full-rate user, have the same sync-word S


2


. Preambles


74


and


80


of slots


54


and


60


, each assigned to a different half-rate user, have different sync-words S


3


and S


6


, respectively.




Accordingly, S


1


is followed by S


2


, while S


2


is followed by either S


3


or S


6


.




Yow-Jong Liu, “Bi-Directional Equalization Technique for TDMA Communication systems over Land Mobile Radio Channels”,


GLOBECOM


1991 IEEE, p 1458-1462, describes a method for using the sync-word of the next slot which decodes the data of a slot according to its sync-word (forward analysis) and according to the sync-word of the next slot (backward analysis). When the sync-word of the next slot may have more than one option, then the data of the current slot is backward analyzed according to each of these options, thereby providing a plurality of data hypotheses. Finally, the most likely hypothesis is selected.




It will be appreciated that an analysis according to this method requires a considerable amount of computing resources and power, which can be critical for mobile communication devices having limited power resources.











BRIEF DESCRIPTION OF THE DRAWINGS




The present invention will be understood and appreciated more fully from the following detailed description taken in conjunction with the drawings in which:





FIG. 1

is a schematic illustration of a TDMA frame, known in the art;





FIG. 2

is a schematic illustration of a combined full-rate half-rate TDMA frame, known in the art;





FIG. 3

is a schematic illustration of a system for analyzing a TDMA signal slot according to multiple sync-words, constructed and operative in accordance with a preferred embodiment of the present invention;





FIG. 4

is a schematic illustration of a method for operating the system of

FIG. 3

, so as to analyze and select between the two postulates available for the next slot sync-word, operative in accordance with another embodiment of the present invention; and





FIG. 5

is a schematic illustration in detail of a portion of the method of FIG.


4


.











DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS




The present invention provides a method which overcomes the disadvantages of the prior art by determining each next slot sync-word as a postulate, analyzing each of these postulates, selecting the most likely one and then analyzing the data of the current slot forward according to its sync-word, and backward according to the selected next slot sync-word.




References are made to

FIG. 3

, which is a schematic illustration of a system for analyzing a TDMA signal slot according to multiple sync-words, generally referenced


100


, constructed and operative in accordance with an embodiment of the present invention.




System


100


includes a front end receiver unit


102


, a current slot sync-word analysis unit


104


, a current slot data buffer


106


, a next slot first sync-word analysis unit


108


and a next slot second sync-word analysis unit


110


, all of which are connected to the front end receiver unit


102


.




System


100


optionally includes additional next slot N sync-word analysis units represented by a next slot last sync-word analysis unit


109


and dotted lines connecting it to the next slot second sync-word analysis unit


110


, the decision controller


112


and the front end receiver


102


.




System


100


further includes a decision controller


112


connected to units


108


and


110


, a forward analysis unit


114


connected to units


104


and


106


, a backward analysis unit connected


116


to buffer


106


and the decision controller


112


and a decoder


118


connected to the forward analysis unit


114


and to the backward analysis unit


116


.




The front end receiver unit


102


receives and samples a TDMA slot as well as the sync-word of the next slot. The front end receiver unit


102


then provides the sync-word of the current slot to the current slot sync-word analysis unit


104


, the data of the current slot to the current slot data buffer


106


and the sync-word of the next slot to the next slot sync-word analysis units


108


and


110


.




The current slot sync-word analysis unit


104


analyzes the sync-word so as to determine the appropriate channel according to which the data stored in the current slot data buffer


106


is to be forward analyzed.




The next slot sync-word analysis unit


108


analyzes the sync-word of the next slot according to a first sync-word postulate, which is optional for the next slot sync-word, thereby producing a respective likelihood value. The next slot second sync-word unit analysis


110


analyzes the sync-word of the next slot according to a second postulate, which is also optional for the next slot sync-word, thereby producing a respective likelihood value. Each of units


108


and


110


also produces a channel analysis according to each of the postulates, respectively.




Units


108


and


110


then provide the results of their analysis to the decision controller


112


, which in turn, determines and selects the postulates which has a better likelihood value.




Then, the decision controller


112


provides the selected sync-word postulate to the backward analysis unit


116


, as the next slot sync-word. At the same time, the current slot data buffer


106


provides the data to the backward analysis unit


116


. Then, the backward analysis unit


116


analyzes the data according to the selected sync-word of the next slot.




At the same time the current slots sync-word analysis unit


104


provides an analysis of the channel according to the current sync-word and provides it to the forward analysis unit


114


. The current slot data buffer


106


also provides the current slot data to the forward analysis unit


114


.




The forward analysis unit


114


analyzes the current slot data according to the channel analysis provided by the current slot sync-word analysis unit


104


.




The forward analysis unit


114


and the backward analysis unit


116


provide the analysis of the data to the decoder


118


which, in turn, decodes the data according to forward and backward data analysis.




Reference is now made to

FIG. 4

which is a schematic illustration of a method for operating system


100


, so as to analyze and select between the two postulates available for the next slot sync-word, operative in accordance with another embodiment of the present invention.




In step


200


, units


108


and


110


calculate an estimated taps value for each of the sync-word postulates.




In step


202


, units


108


and


110


calculate a log likelihood metric for each of the next slot sync-word postulates.




In step


204


, the decision controller


112


selects the sync-word postulate with the best metric and proceeds to step


206


. An example for such a log likelihood calculation is given by the expression:







C


(


y
_

,

h
_


)


=





m
=
K


N
s





&LeftBracketingBar;


y
m

-




k
=
1

K




h
k

·

s

m
-
k





&RightBracketingBar;

2


=




m
=
K


N
s





&LeftBracketingBar;


y
m

-



h
_

m

·


s
_

m



&RightBracketingBar;

2













wherein y represents the signal samples, h represents the channel taps, which relate to channel reflections, s represents the sync-word postulates and m is a time index. This expression represents the Euclidean distance between the received samples and the samples which were estimated, assuming a determined next frame sync-word.




The expression









k
=
1

K




h
k

·

s

m
-
k













represents, generally, a convolution of the channel and the sync-word.




h can be calculated according to a least squares estimation:








h
_

opt

=



(




l
=
K


N
s






s
_

l
*




s
_

l
t



)


-
1







l
=
K


N
s






s
_

l
*



y
l














or a simple correlation:








h
_

opt

=


1


N
s

-
K







l
=
K


N
s






s
_

l
*



y
l














wherein N


s


is the number of symbols in the sync-word and K is the assumed number of channel taps.




In step


206


, the decision controller


112


further calculates a reliability value for the selected next slot sync-word. This step will be further discussed in detail hereinbelow.




In step


208


, the decision controller


112


determines if the decision of selecting the selected next slot sync-word is to be regarded as reliable. If so, the decision controller


112


proceeds to step


212


where it provides the backward analysis unit


116


with a selected next slot sync-word. Otherwise, in step


210


the decision controller


112


provides a command to the backward analysis unit


116


to disregard the second sync-word and not perform any backward analysis for this slot.




Disregarding of the next slot sync-word may occur in a situation where this next slot sync-word is subject to deep fading of the channel. Thus the data of this next slot sync-word may be corrupt and therefore invalid.




Reference is now made to

FIG. 5

which is a schematic illustration in detail of step


206


of the method of FIG.


4


.




In step


220


, the decision controller


112


detects if the likelihood value of the selected sync-word is substantially greater than the likelihood value of the non-selected sync-word. If the likelihood values are too close, than one is not likely to be preferable over the other. In this case, the likelihood values are often a result of noise rather than distinctive values. In such a case, the decision controller


112


determines the selected sync-word non-reliable (step


226


). Otherwise, the decision controller


112


proceeds to step


222


.




In step


222


, the decision controller


112


detects if the selected next slot sync-word is logically correct, according to historical information stored therein and side information which originates from the standard. For example, referring back to

FIG. 2

, if the slot


70


(the current slot) is assigned to a first user (s


1


), then the next slot


72


can be assigned to the second user (s


2


) or the fifth user (s


5


). If the next slot is assigned to the fifth user (s


5


), then slot


78


which follows an s


1


slot


76


cannot be assigned to the fifth user. It has to be assigned to the second user (s


2


).




If the decision controller


112


determines that the selected next slot sync-word passes the logic test of step


222


, then it determines the selected next slot sync-word reliable (step


224


). Otherwise, decision controller


112


determines the selected next slot sync-word unreliable (step


226


).




It will be appreciated by persons skilled in the art that the present invention is not limited to what has been particularly shown and described hereinabove. Rather the scope of the present invention is defined only by the claims which follow.



Claims
  • 1. A method for analyzing a dynamic channel, the method comprising:calculating from a synchronization sequence in a subsequent slot following an assigned slot of a signal frame received over said dynamic channel an estimated taps value for each of a group of predetermined synchronization sequence postulates; calculating from said synchronization sequence a log likelihood metric value C(y,h) for each of said synchronization sequence postulates wherein y represents the signal samples and h represents the channel taps; selecting one of said synchronization sequence postulates according to its calculated log likelihood metric value.
  • 2. The method according to claim 1 wherein said likelihood metric value C(y,h) is calculated from an expression ∑m=KNs⁢&LeftBracketingBar;ym-∑k=1K⁢hk·sm-k&RightBracketingBar;2,wherein s represents the synchronization sequence postulates, Ns is the number of symbols in the synchronization sequence, K is the assumed number of channel taps axed m is a time index.
  • 3. The method according to claim 2 wherein h is calculated from an expression selected from the group consisting of: (∑l=KNs⁢s_l*⁢s_lt)-1⁢∑l=KNs⁢s_l*⁢yl; ⁢and⁢ ⁢1Ns-K⁢∑l=KNs⁢s_l*⁢yl⁢
  • 4. The method according to claim 1 wherein said likelihood metric value C(y,h) is calculated from an expression ∑m=KNs⁢&LeftBracketingBar;ym-h_m·s_m&RightBracketingBar;2,wherein s represents the synchronization sequence postulates, Ns is the number of symbols in the synchronization sequence, K is the assumed number of channel taps and m is a time index.
  • 5. The method according to claim 4 wherein h is calculated from an expression selected from the group consisting of: (∑l=KNs⁢s_l*⁢s_lt)-1⁢∑l=KNs⁢s_l*⁢yl; ⁢and⁢ ⁢1Ns-K⁢∑l=KNs⁢s_l*⁢yl⁢
  • 6. The method according to claim 1 further comprising the steps of:calculating a reliability value; and determining that said selected synchronization sequence postulate reliable.
  • 7. The method according to claim 6 wherein said reliability value is calculated from the difference between the log likelihood value of the selected synchronization sequence postulate and the log likelihood values of the rest of said synchronization sequence postulates of said group of predetermined synchronization sequence postulates.
  • 8. The method according to claim 6 wherein said selected synchronization sequence postulate is determined reliable when said reliability value exceeds a predetermined threshold value.
  • 9. The method according to claim 6 wherein at least one synchronization sequence postulate of said group of predetermined synchronization postulates is assigned for said subsequent slot and excluded from at least another subsequent slot, wherein said reliability value is calculated by comparing said selected synchronization sequence postulate with said at least one synchronization sequence postulate.
  • 10. The method according to claim 1 further comprising analyzing said channel according to said selected synchronization sequence postulate.
  • 11. The method according to claim 1 further comprising analyzing said channel according to said selected synchronization sequence postulate and a synchronization sequence in said assigned slot.
  • 12. The method according to claim 10 further comprising decoding data in said assigned slot according to channel analysis produced by said analyzing.
  • 13. The method according to claim 11 further comprising decoding data in said assigned slot according to channel analysis produced by said analyzing.
Priority Claims (1)
Number Date Country Kind
120898 May 1997 IL
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of allowed U.S. patent application Ser. No. 08/997,603 filed Dec. 23, 1997, now U.S. Pat. No. 6,084,891 which is incorporated herein by reference.

US Referenced Citations (18)
Number Name Date Kind
4763339 Sutphin et al. Aug 1988 A
5007088 Ooi et al. Apr 1991 A
5101401 Suzuki et al. Mar 1992 A
5155742 Ariyavisltakul et al. Oct 1992 A
5241545 Kazecki et al. Aug 1993 A
5263026 Parr et al. Nov 1993 A
5276709 Kazawa et al. Jan 1994 A
5333148 Tsubaki et al. Jul 1994 A
5335250 Dent et al. Aug 1994 A
5363412 Love et al. Nov 1994 A
5408504 Ostman Apr 1995 A
5619507 Tsuda Apr 1997 A
5627864 Yoo May 1997 A
5677934 Ostman Oct 1997 A
5705314 Davis et al. Jan 1998 A
5740204 Nagashima Apr 1998 A
5757845 Fukawa et al. May 1998 A
5818876 Love Oct 1998 A
Non-Patent Literature Citations (4)
Entry
“Bi-Directional Equalization Technique for TDMA Communication Systems over Land Mobile Radio Channels”, Yow-Jong Liu, Globecom, 1991, IEEE, pp. 1458-1462.
“Equalization of a Hard—Limited Slowly—Fading Multipath Signal Using a Phase Equalizer with Time—Reversal Structure”, Sirikiat Ariyavisltakul, IEEE Journal on Selected Areas in Communications, vol. 10, No. 3, Apr. 1992, pp. 589-613.
“A Soft-Output Bidirectional Decision Feedback Equalization Technique for TDMA Cellular Radio”, Yow-Jong Liu, IEEE Journal on Selected Areas in Communications, vol. 11, No. 7, Sep. 1993, pp. 1034-1045.
“A Decision Feedback Equalizer with Time-Reversal Structure”, Sirikiat Ariyavisltakul, IEEE Journal on Selected Areas in Communications, vol. 10, No. 3, Apr. 1992, pp. 599-613.
Continuations (1)
Number Date Country
Parent 08/997603 Dec 1997 US
Child 09/459345 US