1. Field of the Invention
The present invention relates to a bi-directional optical subassembly, in particular, the invention relates to a bi-directional optical subassembly (hereafter denoted as BOSA) that installs a semiconductor laser diode (hereafter denoted as LD) and a semiconductor photodiode (hereafter denoted as PD) in a common coaxial CAN package and also installs a wavelength division multiplexing (hereafter denoted as WDM) filter in the CAN package.
2. Related Prior Art
Recent optical access network represented by the fiber to the home (FTTH) has aggressively introduced the passive optical network (PON) system because the PON system may realize a higher speed and a larger capacity communication with a reasonable cost. The PON system uses a bi-directional communication on a single fiber, which may decrease a number of fibers to be installed in the system, and shares the single fiber with a plurality of subscribers. Thus, the PON system may reduce the cost of the communication system as that using the metal cables. According to the PON system, two or three optical signals each having wavelengths of 1.31 μm, 1.49 μm and/or 1.55 μm, respectively, propagate within the signal fiber.
A BOSA practically installed within the PON system is necessary to couple the light emitted from the LD optically with the fiber and also to couple the other light provided from the single optical fiber with the PD. One type of the BOSA installs the LD and the PD within a coaxial CAN package in addition to a WDM filter that reflects the light coming from the LD toward the optical fiber, while transmits the other light provided from the optical fiber to the PD. Thus, the WDM filter in the primary surface thereof is set by 45° with respect to the primary surface of the package where the LD and the PD are mounted thereon. Various techniques to mount the WDM filter by the angle 45° have been proposed in prior arts.
For instance, a Japanese Patent Application published as JP-2004-271921A has disclosed an arrangement shown in
The prior application mentioned above has also disclosed another arrangement within the package shown in
Even in respective arrangements shown in
An aspect of the present invention relates to an arrangement of a bi-directional optical subassembly that optically couples with an external optical fiber and comprises an LD, a PD, a WDM filter and a coaxial CAN package including a cap and a stem. The LD emits first light with a first wavelength toward an external fiber. The PD receives second light with a second wavelength different from the first wavelength provided from the external fiber. The WDM filter reflect the first light coming from the LD toward the external fiber; while, transmits the second light coming from the external fiber toward the PD. The LD, the PD, and the WDM filter are mounted on the primary surface of the stem and air-tightly sealed within a space formed by the cap and the stem. A feature of the present arrangement is that the WDM filter is attached to the cap with a preset angle to the primary surface of the stem. The cap of the present invention may have a hollow with a slant surface inclined with the preset angle to the primary surface of the stem, in which the WDM filter is attached to the slant surface of the hollow.
Another aspect of the present invention relates to a method to assemble the bi-directional optical subassembly. The method includes steps of: (a) mounting the LD and the PD on the stem, (b) attaching the WDM filter to the cap, where the stem and the cap constitute a coaxial CAN package, (c) optically aligning the cap with the stem, and (d) fixing the cap to the stem. A feature of the invention is that the optical alignment of the cap includes steps of (c1) viewing an image of an active layer of the LD through the WDM filter, (c2) viewing an image of an sensitive are of the PD through the WDM filter, and (c3) positioning the cap on the stem such that the image of the active layer of the LD overlaps with the image of the sensitive area of the PD on the WDM filter.
The foregoing and other purposes, aspects and advantages will be better understood from the following detailed description of a preferred embodiment of the invention with reference to the drawings, in which:
The BOSA according to the present embodiment shown in
The WDM filter 4 reflects the light coming from the LD 2 toward the external optical fiber; while, at the same time, the other light provided from the external optical fiber transmits toward the PD 3. This WDM filter 4 is set within the CAN package 5 so as to make a preset angle to the primary surface 6a of the stem 6. In a conventional BOSA as shown in
The CAN package of the present embodiment includes the stem 6 with the primary surface 6a on which the LD 2 and the PD 3 are mounted and the lens cap 7 provided with a condenser lens 7a. The lens cap 7 is assembled with the stem 6 to seal the devices; the LD 2, the PD 3, the WDM filter 4 and so on, air-tightly on the primary surface 6a. The LD 2 is mounted on the heat sink 2a, and the heat sink 2c is set on the mesa 6c that protrudes from the primary surface 6a. Although not explicitly illustrated in
The stem 6 also provides a plurality of lead pins 8. These lead pins 8 pass the through holes 6d as filling the gap with seal glass. One of lead pins 8a mounts the monitor PD 9 on a surface 8a in a top portion thereof. The monitor PD 9 monitors light emitted from the back facet of the LD 2. In order to prevent the light reflected by the surface of the monitor PD 9 from returning the LD 2, the surface 8a where the monitor PD 9 is mounted thereon is slightly tilted, by about 5° to 10°, with respect to the optical axis of the LD 2.
The lens cap 7, as illustrated in
The ceiling of the shell 7b provides a hollow 7d with a slant surface 7e to attach the WDM filter 4 thereto. The slant surface 7e has an angle of 45° to the primary surface 6a when the lens cap 7a is assembled with the stem 6. Thus, the WDM filter 4 in the surface 4a thereof may have the preset angle with respect to the optical axis of the LD 2, that of the PD 3 and also that X of the lens 7a as it is attached to the slant surface 7e. The WDM filter 5 may be attached on the slant surface 7e with a low-melting glass or an ultraviolet curable resin after the lens 7a is set in the aperture 7c with a seal glass.
A BOSA with a WDM filter generally sets the WDM filter first and then aligns the LD such that the light emitted from the LD enters the optical fiber through the condenser lens. That is, two steps of optical alignments are necessary in the conventional BOSA. While, in the BOSA according to the present embodiment, because the WDM filter is attached to the shell 7b and this shell 7b is to be assembled with the stem 6, the optical alignment of the LD 2 is necessary only to align the shell 7b on the stem 6, which may effectively reduce a process time for the optical alignment. Specifically, the optical alignment for the LD 2 according to the present arrangement of the BOSA may be carried out by aligning the shell 7b so as to overlap the light-emitting layer of the LD 2 and the light-sensitive area of the PD 3 each viewed through the WDM filter 4 at the position where the lens is to be set.
Thus, the BOSA 1 according to the present embodiment may decrease the process time to align the devices optically, which may effectively reduce the cost of the BOSA 1. In the conventional BOSA shown in
While there has been illustrated and described what are presently considered to be example embodiments of the present invention, it will be understood by those skilled in the art that various other modifications may be made, and equivalents may be substituted, without departing from the true scope of the invention. Additionally, many modifications may be made to adapt a particular situation to the teachings of the present invention without departing from the central inventive concept described herein. Therefore, it is intended that the present invention not be limited to the particular embodiments disclosed, but that the invention include all embodiments falling within the scope of the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
2009-007643 | Jan 2009 | JP | national |
The present application is related to the following commonly-assigned U.S. patent applications: U.S. Ser. No. 12/430,520, entitled: BI-DIRECTIONAL OPTICAL MODULE INSTALLING LIGHT-EMITTING DEVICE AND LIGHT-RECEIVING DEVICE IN SIGNAL PACKAGE; and U.S. Ser. No. 11/905,505, entitled: BI-DIRECTIONAL OPTICAL MODULE WITH A POLARIZATION INDEPENDENT OPTICAL ISOLATOR; which are hereby incorporated by reference in their entirety.