Bias circuit for maintaining a constant value of transconductance divided by load capacitance

Information

  • Patent Grant
  • 6407623
  • Patent Number
    6,407,623
  • Date Filed
    Wednesday, January 31, 2001
    24 years ago
  • Date Issued
    Tuesday, June 18, 2002
    22 years ago
Abstract
A bias circuit is described for use in biasing an operational amplifier to maintain a constant transconductance divided by load capacitance (i.e. a constant gm/CL) despite temperature and process variations and despite body effects. In one example, the bias circuit includes a pair of current source devices and a switched capacitor (SC) equivalent resistor circuit for developing an equivalent resistance between the current source devices. The equivalent resistor circuit includes a sampling capacitor. First and second clock inputs are connected to the capacitor providing non-overlapping clock signals at a predetermined sampling frequency to establish a resistance equivalent. By providing an SC equivalent resistor circuit clocked by non-overlapping fixed clock signals, the gm/CL of the bias circuit is maintained substantially constant. Hence, a fixed bandwidth is maintained within the operational amplifier being biased. When employed in connection with operational amplifiers of an SC circuit, the constant bandwidth enables the SC circuit to operate at a constant switching speed despite temp and process variations. Furthermore, by positioning the resistance equivalent circuit between the current source devices of the bias circuit, voltage differentials between the sources are eliminated thereby removing any threshold voltage mismatch and thus compensating for body effect variations. Other bias circuit examples are also described including a stray insensitive bias circuit and a bias circuit employing three mutually non-overlapping clock signals.
Description




BACKGROUND OF THE INVENTION




1. Field of the Invention




The invention generally relates to integrated circuits and in particular to CMOS bias circuits for biasing operational amplifiers of switched capacitor (SC) circuits or other devices employing NMOS or PMOS differential pairs.




2. Description of the Related Art




Operational amplifiers containing differential pairs are commonly employed within integrated circuits as components of, for example, SC analog signal processing circuits. Bias circuits are employed in connection with the differential pairs of the operational amplifiers to ensure that certain characteristics of the operational amplifier remain substantially constant despite temperature changes or process variations. Examples include bias circuits for maintaining a constant current or a constant transconductance (g


m


) within the differential pair of the operational amplifier. A constant g


m


is more efficient than constant current. For operational amplifiers used in SC circuits, the operational speed of the SC circuit is limited primarily by the unity gain bandwidth of the operational amplifiers. More specifically, the settling time of the SC circuit is a strong function of the unity gain bandwidth of the operational amplifiers wherein the unity gain bandwidth is given by








ω
0

=


g
m


C
L



,










where g


m


is the transconductance of the operational amplifier and C


L


is the effective load capacitance.




Hence, bias circuits providing only a constant g


m


do not necessarily yield improved performance speed for SC circuits. Rather, a bias circuit providing a constant g


m


/C


L


is preferred. In the following, various conventional bias circuits for use with operational amplifiers are described and unity gain bandwidth issues arising with respect to the bias circuits are discussed.





FIG. 1

illustrates an exemplary operational amplifier


10


appropriate for use in a SC circuit. Operational amplifier


10


includes a differential pair of NMOS devices


12


and


14


and a differential pair of PMOS current mirror devices


13


and


15


. The four devices are interconnected, as shown, between a positive voltage source V


DD


and a node A. The pair of NMOS devices have gates connected to a pair of voltage input lines


16


and


18


, respectively. An output line


20


is connected to a node interconnecting NMOS device


14


and PMOS device


15


as shown. A capacitor


21


, providing a load capacitance of C


L


, couples the output signal to an external load


22


. To ensure that certain circuit characteristics such as current or g


m


remain constant despite temperature or process variations, the operational amplifier is biased by a bias signal provided along. a bias line


25


and applied to the gate of an additional NMOS device


24


connected between node A and ground.





FIG. 2

illustrates operational amplifier


10


of

FIG. 1

in combination with a bias circuit


26


for maintaining constant current despite temperature changes and process variations. Bias circuit


26


includes a current source


27


in combination with a single NMOS device


29


configured to operate as a current mirror. With this arrangement, the operational amplifier is biased to maintain constant current proportional to the current provided by current source


27


, independent of temperature changes and process variations.




However, the g


m


of the operational amplifier is not maintained as a constant. Rather the g


m


of the operational amplifier of

FIG. 2

is given by:








g
m

=


2


I
0




v
GS

-

V
T




,










where, I


0


is the bias current, V


GS


is the gate to source voltage of device


12


, and V


T


is the threshold of device


12


. V


T


changes with temperature and process variations. Thus g


m


varies due to temperature and process fluctuations. Moreover, for most applications, the load capacitance (C


L


) also changes due to process variations by about ±10%. Therefore, the unity gain bandwidth of an operational amplifier biased with a constant current source can change significantly due to g


m


and C


L


variations caused by temperature changes and process fluctuations. Hence, the speed performance of an SC circuit employing the operational amplifier is degraded.





FIG. 3

illustrates operational amplifier


10


of

FIG. 1

in combination with a bias circuit


30


for maintaining a constant g


m


despite temperature changes and process variations. Briefly, the bias circuit includes a pair of NMOS devices


32


and


34


connected between a pair of nodes B and C and ground, respectively. A pair of PMOS devices


33


and


35


are connected, respectively, between nodes B and C and a positive voltage source. Gates of NMOS devices


32


and


34


are connected to node B. Gates of PMOS devices


33


and


35


are connected to node C. A g


m


-setting resistor


36


is connected between the source of NMOS device


34


and ground. Resistor


36


is typically located off-chip to permit the resistance to be set after chip fabrication. In use, bias circuit


30


operates as a current mirror to generate a bias current that sets the g


m


's of NMOS devices


12


and


14


of the operational amplifier to an amount inversely proportional to the resistance of g


m


-setting resistor


36


. The bias circuit is, in effect, an MOS version of a self-biasing Widlar current source, well known in the art.




Thus, the bias circuit of

FIG. 3

substantially guarantees that the g


m


of the operational amplifier does not vary due to process and temperature variations, at least to the first order. More specifically, the Kirchoff voltage levels for the circuit are given by:






I


0


R+ν


GS2





GS1


.






Assuming a quadratic equation for the drain saturation current:








v
GS

-

v
T


=




(
Id
)

/

(


1
2


μ






C
OX



W
L


)



.











If threshold voltages of devices


32


and


34


of the bias circuit are assumed to be equal (ignoring body effects) then:






ν


GS1


−V


T


=2(ν


GS


−V


T


)






Hence:






I


0


R=½(V


GS1


−V


T


)






and thus,







g
m

=



2


I
0




v
GS1

-

V
T



=


1
R

.












Thus, disregarding body effects, the g


m


's of the devices of the operational amplifier are merely proportional to the resistance of g


m


-setting resistor


36


. Unfortunately, in practical integrated circuits, body effects can pose a significant problem. Briefly, body effects relate to a modification of the threshold voltage V


T


caused by a voltage difference between source and substrate. The change in voltage threshold is proportional to the square root of the voltage between the source and the substrate.




In the circuit of

FIG. 3

, the change in threshold voltage results in two separate problems. The first problem occurs from the variations in source voltage between NMOS devices


32


and


34


of the bias circuitry. Since the source of NMOS device


34


is at a different voltage from that of device


32


, the g


m


is not merely proportional to the resistance of resistor


36


but is instead given by the following equation:







g
m

=


1
+


1
+

2
·
B
·
R
·
vterr





2

R












where






B
=


μ
n


Cox



W
L

.












This formula for g


m


may be derived from the following set of equations:






ν


gs1





gs2


+I·R−ν


terr








and since






vgs
=



2
·

I
B



-

v
T0












with






B
=


μ
n


Cox



W
L

.












then








2
·

I
B



=



1
2




2
·

I
B




+

I
·
R

-

vterr
.












solving for







I

=



1


2
·
B



+



2
B

+

R
·
vterr





2

R












yields






g


m


={square root over (2+L ·B·I)}






and finally







g
m

=



1
+


1
+

2
·
B
·
R
·
vterr





2

R


.











The second body effect problem occurs as a result of absolute differences between devices


32


and


34


of the bias circuitry and devices


12


and


14


of the operational amplifier. The absolute current generated in the bias circuit is proportional to the threshold voltage, and therefore any variances between the source voltages will result in a different g


m


value. Since the input common mode voltage to the operational amplifier is fixed, the source voltage of devices


12


and


14


will vary with process causing a non-tracking g


m


. As a result, temperature changes and process variations are not fully compensated for by the CMOS bias circuitry of

FIG. 1

resulting in variations in the g


m


of the operational amplifier. Hence, the unity gain bandwidth is again affected.




Co-pending U.S. patent application Ser. No. 09/283090, filed Mar. 31, 1999 describes an improved constant g


m


bias circuit which compensates for variations caused by body effects in addition to variations caused by temperature or process to provide a constant g


m


. The co-pending application is entitled “Constant Transconductance Bias Circuit having Body Effect Cancellation Circuitry” of Jeremy Goldblatt and Seyfi Bazarjani. The co-pending application is incorporated by reference herein. However, as noted above, the speed performance of an SC circuit incorporating operational amplifiers is limited by the unity gain bandwidth of the operational amplifiers. Even with a bias circuit that provides constant g


m


, the unity gain bandwidth may still vary as a result of changes in the load capacitance (C


L


) of the bias circuit. Hence, it would be highly desirable to provide an improved bias circuit for use with operational amplifiers, or other devices employing an NMOS differential pair, that maintains a substantially constant g


m


/C


L


despite temperature and process variations and also despite body effects and it is to that end that aspects of the invention are primarily directed.




SUMMARY OF THE INVENTION




In accordance with a first aspect of the invention, a bias circuit is provided for use in biasing a differential pair, such as an NMOS differential pair of an operational amplifier, to maintain a constant g


m


/C


L


despite temperature and process variations. The bias circuit includes a pair of current source devices and a resistance equivalent circuit for developing an equivalent resistance between the current source devices. The resistance equivalent circuit includes a sampling capacitor connected between a sampling node connecting the pair of current source devices and a ground. A first clock input is connected between the sampling node and a first current source device and a second clock input is connected between the sampling node and a second current source device. The first and second clock inputs provide non-overlapping clock signals at a predetermined sampling frequency to establish a resistance equivalent. Voltage-setting circuitry is connected to the resistance equivalent circuit for applying a voltage across the circuit to cause the bias circuit to generate a bias signal. A bias line transmits the bias signal to the differential pair being biased.




By providing the bias circuit as described with a resistance equivalent circuit with non-overlapping clock signals at a predetermined frequency, the g


m


/C


L


of the bias circuit is maintained substantially constant to thereby maintain a fixed bandwidth within the differential pair being biased. When employed in connection with operational amplifiers of an SC circuit, the constant bandwidth enables the SC circuit to operate at a constant switching speed in independent of temperature and process variations.




Furthermore, by positioning the resistance equivalent circuit between the current source devices of the bias circuit, voltage differentials between the source-drain of MOSFETs are eliminated thereby removing any threshold voltage mismatch. Hence, body effect variations that will affect the threshold voltage do not cause a significant change in the g


m


/C


L


of the bias circuit. Source follower circuitry may also be provided to substantially eliminate any absolute differences between the source terminals of the current source devices of the bias circuit and sources of the differential pair thereby further reducing variations in g


m


/C


L


caused by body effects.




In accordance with a second aspect of the invention, a stray insensitive bias circuit for use in biasing a differential pair is provided wherein a substantially constant g


m


/C


L


is maintained and a bandwidth center frequency of the bias circuit does not drift. The bias circuit includes a pair of current source devices and a resistance equivalent circuit for developing an equivalent resistance between the current source devices. The equivalent circuit includes a capacitor connected between gates of first and second current source devices. A first clock input is connected between a first terminal of the capacitor and the gate of the first current source device and is also connected between a second terminal of the capacitor and the gate of the second current source device. A second clock input is connected between the first terminal of the capacitor and a ground and also connected between the second terminal of the capacitor and the ground. The first and second clock inputs provide non-overlapping clock signals at a predetermined sampling frequency to establish a resistance equivalent.




By providing two sets of clock signal inputs connected to the capacitor as described, a constant g


m


/C


L


is maintained without significant drift. Voltage differentials between the source terminals of the current sources are also eliminated to thereby compensate for body effect variations. As with the first aspect of the invention, a pair of resistance equivalent circuits may be employed in parallel instead of just one to help eliminate parasitic capacitance effects that might otherwise affect the constant g


m


/C


L


bias. Source follower circuitry may also be provided to substantially eliminate any absolute differences between the sources of the current source devices of the bias circuit and sources of the differential pair thereby further reducing variations in g


m


/C


L


caused by body effects.




In accordance with a third aspect of the invention, another bias circuit for use in biasing a differential pair is provided to maintain a substantially constant g


m


/C


L


. The bias circuit includes a pair of current source devices and a capacitor. A first clock input is connected between a first terminal of the capacitor and a current output line output from the differential pair being biased. The first clock input is also connected between a second terminal of the capacitor and a common mode voltage input line. A second clock input is connected between the first terminal of the capacitor and a positive voltage reference line and is also connected between the second terminal of said capacitor and a negative voltage reference line. A third clock input is connected between the first terminal of said capacitor and a ground and also connected between the second terminal of said capacitor and said ground. The first, second and third clock inputs provide mutually non-overlapping clock signals at a predetermined sampling frequency to establish a resistance equivalent.




By providing three sets of clock signal inputs connected to the switching capacitor as described, a constant g


m


/C


L


is maintained without significant drift and variations that might otherwise be caused by parasitic capacitances are substantially avoided. Source follower circuitry may also be provided to substantially eliminate any absolute differences between the sources of the current source devices of the bias circuit and sources of the differential pair thereby further reducing variations in g


m


/C


L


caused by body effects.




Method and apparatus embodiments of the invention are provided.











BRIEF DESCRIPTION OF THE DRAWINGS




The features, objects, and advantages of the invention will become more apparent from the detailed description set forth below when taken in conjunction with the drawings in which like reference characters identify correspondingly throughout and wherein:





FIG. 1

illustrates a conventional operational amplifier adapted for use in an SC circuit.





FIG. 2

illustrates the operational amplifier of

FIG. 1

along with a constant current bias circuit.





FIG. 3

illustrates the operational amplifier of

FIG. 1

along with a constant g


m


bias circuit.





FIG. 4

illustrates an operational amplifier with a constant g


m


/C


L


bias circuit configured in accordance with a first exemplary embodiment of the invention wherein a single resistance-equivalent circuit is employed along with a pair of non-overlapping clock signals.





FIG. 5

illustrates an operational amplifier with a constant g


m


/C


L


bias circuit configured in accordance with a second exemplary embodiment of the invention wherein a pair of symmetric resistance-equivalent circuits are employed along with a pair of non-overlapping clock signals.





FIG. 6

illustrates an operational amplifier with a constant g


m


/C


L


bias circuit configured in accordance with a third exemplary embodiment of the invention wherein a stray-insensitive resistance-equivalent circuit is employed along with a pair of non-overlapping clock signals.





FIG. 7

illustrates an operational amplifier with a constant g


m


/C


L


bias circuit configured in accordance with a fourth exemplary embodiment of the invention wherein a pair of symmetric stray-insensitive resistance-equivalent circuits are employed along with a pair of non-overlapping clock signals.





FIG. 8

illustrates an operational amplifier with a constant g


m


/C


L


bias circuit configured in accordance with a fifth exemplary embodiment of the invention wherein a resistance-equivalent circuit is employed along with three non-overlapping clock signals.











DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS




Referring to the remaining figures, exemplary embodiments of the invention will now be described. The embodiments will primarily be described with respect to bias circuits for biasing a single-ended or differential pair CMOS operational amplifier of a SC circuit. However, principles of the invention are applicable to other operational amplifier topologies such as telescopic, folded cascode, two-stage pole-splitting, and multi-stage operational amplifiers as well as to other devices employing differential pairs. Also, a specific embodiment is described herein involving an operational amplifier with an NMSO differential pair. Aspects of the invention are also applicable to devices employing PMOS differential pairs.





FIG. 4

illustrates a constant g


m


/C


L


bias circuit


126


for use with an operational amplifier


110


having an NMOS differential pair. Operational amplifier


110


includes a differential pair of NMOS devices


112


and


114


and a differential pair of PMOS devices


113


and


115


connected in parallel between a positive voltage source V


DD


and a node A. The pair of NMOS devices have gates connected to a pair of voltage input lines


116


and


118


, respectively. An output line


120


is connected to a node interconnecting device


114


and device


115


as shown. A capacitor


120


, providing an equivalent load capacitance of C


L


, couples the output signal to an external load


121


. The operational amplifier operates to amplify any voltage differences between signals received along lines


116


and


118


. An output signal representative of those differences is output along output line


120


. An additional NMOS device


124


is connected between sources of the differential NMOS pair and ground for receiving a bias signal to compensate for process, temperature and body effect variations while providing the constant g


m


/C


L


.




Bias circuit


126


operates as a current mirror to provide the bias signal for use by operational amplifier


110


. Bias circuit


126


includes a primary pair of NMOS devices


128


and


130


connected in parallel between nodes B and C and ground. The bias circuit also includes a pair of primary PMOS devices


132


and


134


connected in parallel between nodes B and C and the positive voltage source. Gates of the primary NMOS devices are cross-coupled to node B. Gates of the primary NMOS devices are cross-coupled to node C. A resistance-equivalence circuit


136


is connected between gates of primary NMOS devices


128


and


130


as shown. The resistance-equivalent circuit includes a sampling capacitor


137


and a pair of input clock signal switches


139


and


140


providing fixed frequency non-overlapping clock sampling signals ck


1


and ck


2


. The sampling clocks ck


1


and ck


2


are non-overlapping as shown in FIG.


4


.




To ensure that a bias signal is generated, a voltage drop across circuit


136


is necessary. Accordingly, voltage-setting circuitry is provided within bias circuit


126


. The voltage-setting circuitry includes a pair of secondary NMOS devices


141


and


142


having sources connected to ground and a pair of secondary PMOS devices


144


and


146


having sources connected to the positive voltage source. Gates of the secondary NMOS devices are connected together. Gates of the secondary PMOS devices are connected together and are connected to gates of the primary PMOS devices. A drain of secondary PMOS device


144


is connected to node B. A drain of secondary NMOS device


140


is connected to the gate of primary NMOS device


130


. Drains of secondary devices


142


and


146


are connected together. Finally, the gates of secondary NMOS devices


140


and


142


are cross-coupled to a node D interconnecting the drains of devices of


142


and


146


. With this configuration the various secondary NMOS devices and PMOS devices function as a current mirror for generating a voltage across the resistance equivalent circuit to thereby ensure a current through the SC resistor equivalent circuit.




Thus the bias circuit of

FIG. 4

includes a resistance-equivalent circuit driven by fixed frequency sampling clock signals rather than a simple resistor as found in some conventional bias circuits. Hence, a constant g


m


/C


L


is achieved rather than just a constant g


m


. More specifically, the value of the equivalent resistance provided by circuit


136


is:






R
=

1


f
s


C












where f


s


is sampling frequency of the two input clocks and C is capacitance of the sampling capacitor


137


. In this circuit, at steady state, the value of g


m


is 1/R and hence








g
m

=


1
R

=


f
s



C
L




,










or alternatively








g
m


C
L


=


w
0

=


f
s

.












The unity gain bandwidth of the operational amplifier is thus established by the sampling clock frequency, which is typically a very stable quantity. By fixing the unity gain bandwidth, the settling time of the operational amplifier is made constant. Also, w


0


is fixed thus, no need for margin and extra power consumption associated with it. Both g


m


and the sampling capacitor C


L


in the bias generator are preferably chosen to be a scaled version of g


m


of the operational amplifier and the load respectively to save power. Also, note that the bias circuit does not require an off chip resistor or other off-chip component and can be easily made programmable by using a simple digital frequency divider.




Moreover, with the equivalent resistance developed between the gates of the primary NMOS devices rather than between one of the NMOS devices and ground, the threshold voltages for the two primary NMOS devices are therefore substantially equalized. Hence the aforementioned body effect variations which might otherwise cause variations in g


m


/C


L


as a result of differences in threshold voltage do not occur. Thus the g


m


/C


L


of the circuit is substantially immune to body effect variations based upon threshold voltage differences in addition to temperature and process variations.




To further reduce variations in g


m


/C


L


due to body effects, source follower circuitry is also provided. The source follower circuitry helps reduce variations that might otherwise be caused as a result of differences between the source voltages of the primary NMOS devices of the bias circuit and the NMOS devices of the operational amplifier. The source follower circuitry includes a pair of secondary NMOS devices


150


and


152


having sources connected to ground and a single secondary PMOS device


154


connected between device


152


and the positive voltage source. The source follower circuitry additionally includes another NMOS device


156


connected, as shown, between the positive voltage source and the drain of NMOS device


150


. A gate of device


156


is connected to a common mode voltage input line


158


for receiving the common mode voltage associated with the signals provided to the operational amplifier along lines


116


and


118


.




With this configuration, the source follower circuitry operates to equalize source voltages of the primary NMOS devices of the bias circuitry to that of the NMOS devices of the operational amplifier. Hence, a bias current signal generated by the bias circuitry is substantially unaffected by process and temperature variations as well as body effects that may result in source voltage mismatches. A bias current line


138


interconnects the gates of secondary NMOS devices


150


and


152


to the gate of bias device


114


of the operational amplifier for coupling a bias current into the operational amplifier.




Thus

FIG. 4

illustrates a bias circuit which not only provides a substantially constant g


m


/C


L


despite process and temperature variations but also compensates for body effects as well. In one specific example, primary NMOS device


128


and primary PMOS devices


132


and


134


all have width to length ratios of W/L with primary NMOS device


130


having a width to length ratio of 4W/L. Secondary NMOS devices also have width to length ratios of 4W/L. Secondary PMOS devices have width to length ratios of W/L. Devices


152


and


154


have width to length ratios of W/L. Device


150


has a width to length ratio of 5W/L and device


156


has a width to length ratio of 2W/L.




As noted, the bias circuit of

FIG. 4

includes a single resistance-equivalence circuit.

FIG. 5

illustrates an alternative embodiment


126


′ wherein a pair of resistance-equivalent circuits are provided in parallel to help reduce parasitic capacitance effects. The bias circuit of

FIG. 5

is similar to that of FIG.


4


and only pertinent differences will be described in detail.




The bias circuit of

FIG. 5

includes a pair of resistance equivalent circuits


136




1


and


136




2


. The resistance-equivalent circuits respectively include a sampling capacitor


137




1


and


137




2


and both have a pair of input clock signal switches


139




1


and


139




2


and


140




1


and


140




2


. Input clock switches


139




1


and


139




2


receive fixed frequency non-overlapping clock sampling signals ck


1


and ck


2


, respectively. Input clock signal switches


141




1


and


141




2


receive fixed frequency non-overlapping clock sampling signals ck


2


and ck


1


, respectively. Thus, the bias circuit of

FIG. 5

includes a pair of resistance equivalent circuits having sampling clocks ck


1


and ck


2


reversed from one another. With this configuration, the switching capacitor of the first resistance equivalent circuit will be loading while the switching capacitor of the other circuit is discharging and vice a versa.





FIGS. 6 and 7

illustrate two embodiments of a stray insensitive bias circuit for use with operational amplifiers of SC circuits or for use with any other devices containing NMOS differential pairs. The bias circuits of

FIGS. 6 and 7

are similar to those of

FIGS. 4 and 5

and only pertinent differences will be described in detail. Like elements are represented using like reference numerals incremented by


100


.




Stray insensitive bias circuit


226


of

FIG. 6

includes a single resistance equivalent circuit


236


provided with two ck


1


signal inputs and two ck


2


signal inputs in combination with a single switching capacitor. More specifically, resistance equivalent circuit


236


includes a switching capacitor


237


connected between a pair of ck


1


clock signal inputs


239


A and


239


B which are, in turn, connected to respective gates of primary NMOS devices


228


and


230


. Circuit


236


additionally includes a pair of ck


2


signal inputs


240


A and


240


B connecting opposing terminals of capacitor


237


to a node E which, as shown, is connected to sources of the primary NMOS devices.




With this configuration, while ck


1


is active, switching capacitor


237


is coupled to the gates of the primary NMOS devices. However, while clock signal ck


2


is active, the switching capacitor is coupled to the sources of primary-NMOS devices. Hence, a symmetric configuration is provided and variations in the clock signals will not result in any net variation in the bias signal generated by the bias circuit. Hence, the bias circuit is substantially insensitive to stray.





FIG. 7

illustrates a stay insensitive bias circuit


226


′ similar to that of

FIG. 6

but wherein a pair of resistance equivalent circuits are provided to reduce parasitic capacitance effects. Briefly, a pair of equivalent resistance circuits


236




1


and


236




2


are connected in parallel. Equivalent resistance circuit


236




1


includes a single switched capacitor


237




1


in combination with a pair of ck


1


clock input switches


239


A


1


and


239


B


1


and a pair of ck


2


clock switches


240


A


1


and


240


B


1


configured as shown. Resistance equivalent circuit


237




2


includes a single switched capacitor


237




2


in combination with a pair of ck


2


clock input switches


239


A


2


and


239


B


2


and a pair of ck


1


clock input switches


240


A


2


and


240


B


2


configured as shown. Switches


239


A


1


and


239


B


1


of circuit


236




1


receive the ck


1


clock signal whereas the switches


239


A


2


and


239


B


2


of circuit


236




2


receive the ck


2


clock signals. Likewise, switches


240


A


1


and


240


B


1


of circuit


236




1


receive the ck


2


clock signals whereas switches


240


A


2


and


240


B


2


of circuit


236




2


receive the ck


1


clock signal.




Hence, the bias circuit of

FIG. 7

provides a pair of symmetric resistance equivalent circuits having reversed clock inputs to thereby substantially eliminate any effects that might otherwise be caused by parasitic capacitance.




What has thus far been described are various embodiments of constant g


m


/C


L


bias circuits employing a pair of fixed non-overlapping input clock signals for use in switching capacitors to establish as equivalent resistance. In the following, an embodiment will be described with reference to

FIG. 8

wherein three mutually non-overlapping input clock signals ck


1


, ck


2


and ck


3


are employed. The bias circuit of

FIG. 8

is otherwise similar to those of

FIGS. 4-7

and only pertinent differences will be described. Again, like elements are identified with like reference numerals incremented by


100


.





FIG. 8

illustrates a bias circuit


326


for use with an operational amplifier


310


wherein the bias circuit includes a single resistance equivalent circuit


336


having a single switching capacitor


337


. However, unlike the foregoing embodiments wherein the resistance equivalent circuit and the switching capacitor are directly coupled between the gates of the primary NMOS devices of the bias circuit, the resistance equivalent circuit of the bias circuit of

FIG. 8

may be separate. More specifically, switching capacitor


337


is connected between a pair of ck


1


clock signal input switches


339


A and


339


B, a pair of ck


2


clock input switches


341


A and


341


B and a pair of ck


3


clock input switches


343


A and


343


B. The output of the operational amplifier, provided along line


320


, is connected to ck


1


switch


339


A. The common mode voltage signal input to NMOS device


358


is also connected to ck


1


switch


339


B. The positive voltage reference signal provided along line


336


to the operational amplifier is also connected to ck


2


clock signal input


341


A. The negative voltage reference signal provided along line


338


is also connected to ck


2


clocks switch


341


B. ck


3


clock switches


343


A and


343


B are both connected to ground. Finally, the positive and negative voltage reference signals provided along lines


316


and


318


are also connected to the gates of primary NMOS devices


328


and


330


, respectively.




With this configuration, the unity gain bandwidth operational amplifier is determined by a sampling clock frequency, a very stable quantity. Both g


m


and the sampling capacitor C


L


in the bias generator can be chosen to be a scaled version of the operational amplifier g


m


and the load, respectively, to save power. Thus, the foregoing analysis establishes, at least for the steady state, that constant g


m


/C


L


is achieved. Depending upon the implementation, non-linear effects may occur before the steady state is achieved. However, these non-linear effects do not substantially influence the g


m


/C


L


bias that is ultimately established.




Thus, various improvements have been described in constant g


m


/C


L


bias circuits for use with operational amplifiers or other devices employing differential pairs. The improvements have been primarily described with respect to devices employing differential NMOS pairs. The improvements operate to substantially eliminate variations that might otherwise be caused by temperature changes, process variations or body effects. Other features and advantages of the circuit may be provided as well. The improvements may also be exploited within the devices employing differential PMOS pairs. In this regard, within the various circuits described above, NMOS devices may be replaced with PMOS devices and vice versa. The specific device sizes, operating voltages, and the like, however, will likely be different for a differential PMOS implementation.




The exemplary embodiments have been primarily described with reference to schematic diagrams illustrating pertinent features of the embodiments. It should be appreciated that not all components of a complete implementation of a practical system are necessarily illustrated or described in detail. Rather, only those components necessary for a thorough understanding of the invention have been illustrated and described. Actual implementations may contain more components or, depending upon the implementation, fewer components. The description of the exemplary embodiments is provided to enable any person skilled in the art to make or use the present invention. Various modifications to these embodiments will be readily apparent to those skilled in the art and the generic principles defined herein may be applied to other embodiments without the use of the inventive faculty. Thus, the invention is not intended to be limited to the embodiments shown herein but is to be accorded the widest scope consistent with the principles and novel features disclosed herein.



Claims
  • 1. A bias circuit for use in biasing a differential pair, said bias circuit comprising:means for generating a source current including a pair transistor devices having interconnected gates; means for developing an equivalent resistance between the gates of said pair of transistor devices, said means for developing an equivalent resistance including means for providing capacitance and means for selectively coupling the means for providing capacitance to said gates of said pair of transistor devices at a fixed predetermined sampling frequency to establish a equivalent resistance; means for applying a voltage across said means for developing equivalent resistance to cause said means for generating a source current to also generate a biasing current in proportion to the resistance developed by said means for developing resistance; and means for applying the biasing current to the differential pair.
  • 2. The bias circuit of claim 1 wherein the transistor devices are NMOS devices.
  • 3. The bias circuit of claim 2 wherein said means for generating a source current comprises:first and second NMOS devices connected in parallel between first and second nodes, respectively, and ground; and first and second PMOS devices connected in parallel between the first and second nodes, respectively and a positive voltage source; with gates of said first and second NMOS devices connected together and further connected to the first node; and with gates of said first and second PMOS devices connected together and further connected to the second node.
  • 4. The bias circuit of claim 3 wherein said means for developing equivalent resistance comprises:a capacitor connected between a sampling node connecting gates of said first and second NMOS devices and a ground; and a first clock input connected between the sampling node and said gate of said first NMOS device and a second clock input connected between the sampling node and said gate of the first NMOS device; with said first and second clock inputs providing non-overlapping clock signals at the predetermined sampling frequency.
  • 5. The bias circuit of claim 3 wherein said means for developing resistance comprises:a first capacitor connected between a first sampling node connecting gates of said first and second NMOS devices and a ground; and a first clock input connected between the first sampling node and the gate of said first NMOS device and a second clock input connected between the first sampling node and said gate of said first NMOS device; a second capacitor connected between a second sampling node connecting gates of said first and second NMOS devices and a ground; and a third clock input connected between the second sampling node and said gate of said first NMOS device and a fourth clock input connected between the second sampling node and said gate of said first NMOS device, with said first and second clock inputs providing non-overlapping clock signals at the predetermined sampling frequency and with said third and fourth clock inputs providing non-overlapping clock signals at the predetermined sampling frequency.
  • 6. The bias circuit of claim 3 wherein said means for developing resistance comprises:a capacitor connected between gates of said first and second NMOS devices; and a first clock input connected between a first terminal of said capacitor and said gate of said first NMOS device and also connected between a second terminal of said capacitor and said gate of said second NMOS device; a second clock input connected between the first terminal of said capacitor and a ground and also connected between the second terminal of said capacitor and said ground, with said first and second clock inputs providing non-overlapping clock signals at the predetermined sampling frequency.
  • 7. The bias circuit of claim 3 wherein said means for developing resistance comprises:a first capacitor connected between gates of said first and second NMOS devices; and a first clock input connected between a first terminal of said first capacitor and said gate of said first NMOS device and also connected between a second terminal of said first capacitor and said gate of said second NMOS device; a second clock input connected between the first terminal of said first capacitor and a ground and also connected between the second terminal of said first capacitor and said ground; a second capacitor connected between gates of said first and second NMOS devices; a third clock input connected between a first terminal of said second capacitor and said gate of said first NMOS device and also connected between a second terminal of said second capacitor and said gate of said second NMOS device; a fourth clock input connected between the first terminal of said second capacitor and a ground and also connected between the second terminal of said second capacitor and said ground; with said first and second clock inputs providing non-overlapping clock signals at the predetermined sampling frequency and with said third and fourth clock inputs providing non-overlapping clock signals at the predetermined sampling frequency.
  • 8. The bias circuit of claim 3 wherein said means for applying a voltage across said means for developing resistance comprises:a third NMOS device connected between the gate of said first NMOS device and ground; a fourth NMOS device connected between a third node and ground; a third PMOS device connected between the first node and the positive voltage source; and a fourth PMOS device connected between the third node and the positive voltage source; with gates of the third and fourth NMOS device are connected together and further connected to the second node.
  • 9. The bias circuit of claim 1 wherein said means for applying the biasing voltage to the differential pair comprises:a bias line connecting sources of the pair of current source devices to the differential pair.
  • 10. A bias circuit for use in biasing a differential pair, said bias circuit comprising:a pair of current source devices having interconnected gates; a resistance equivalent circuit for developing an equivalent resistance between the gates of said pair of current source devices, and resistance equivalent circuit including a sampling capacitor and switching circuitry for coupling the sampling capacitor to gates of the pair of current source devices at a fixed predetermined sampling frequency to establish the equivalent resistance; voltage-setting circuitry connected to said resistance equivalent circuit for applying a voltage across said resistance equivalent circuit; and a bias line connecting a voltage output from the pair of current source devices to the differential pair.
  • 11. The bias circuit of claim 10 wherein the resistance equivalent circuit comprises:a capacitor connected between a sampling node connecting said pair of current source devices and a ground; and a first clock input connected between the sampling node and said first current source device and a second clock input connected between the sampling node and said second current source device, with said first and second clock inputs providing non-overlapping clock signals at the predetermined sampling frequency.
  • 12. The bias circuit of claim 10 wherein said resistance equivalent circuit comprises:a capacitor connected between gates of said first and second current source devices; a first clock input connected between a first terminal of said capacitor and said gate of said first current source device and also connected between a second terminal of said capacitor and said gate of said second current source device; a second clock input connected between the first terminal of said capacitor and a ground and also connected between the second terminal of said capacitor and said ground; with said first and second clock inputs providing non-overlapping clock signals at the predetermined sampling frequency.
  • 13. The bias circuit of claim 10 wherein said pair of current source devices comprise first and second NMOS devices.
  • 14. The bias circuit of claim 13 wherein the resistance equivalent circuit comprises:a first capacitor connected between gates of said first and second NMOS devices; and a first clock input connected between a first terminal of said first capacitor and said gate of said first NMOS device and also connected between a second terminal of said first capacitor and said gate of said second NMOS device; a second clock input connected between the first terminal of said first capacitor and a ground and also connected between the second terminal of said first capacitor and said ground; a second capacitor connected between gates of said first and second NMOS devices; a third clock input connected between a first terminal of said second capacitor and said gate of said first NMOS device and also connected between a second terminal of said second capacitor and said gate of said second NMOS device; a fourth clock input connected between the first terminal of said second capacitor and a ground and also connected between the second terminal of said second capacitor and said ground; with said first and second clock inputs providing non-overlapping clock signals at the predetermined sampling frequency and with said third and fourth clock inputs providing non-overlapping clock signals at the predetermined sampling frequency.
  • 15. The bias circuit of claim 13wherein said pair of current source devices comprises first and second NMOS devices connected in parallel between first and second nodes, respectively, and ground; and wherein said bias circuit further includes first and second PMOS devices connected in parallel between the first and second nodes, respectively and a positive voltage source; with gates of said first and second NMOS devices connected together and further connected to the first node; and with gates of said first and second PMOS devices connected together and further connected to the second node.
  • 16. The bias circuit of claim 15 wherein said voltage setting circuitry comprises:a third NMOS device connected between the gate of said first NMOS device and ground; a fourth NMOS device connected between a third node and ground; a third PMOS device connected between the first node and the positive voltage source; and a fourth PMOS device connected between the third node and the positive voltage source; with gates of the third and fourth NMOS device connect together and further connected to the third node; and gates of the third and fourth PMOS devices connected together and further connected to the second node.
  • 17. The bias circuit of claim 16 wherein said differential pair comprises:fifth and sixth NMOS devices connected in parallel between a fourth node and a positive voltage source, with gates of the fifth and sixth NMOS devices connected to first and second input lines, respectively; and a seventh NMOS device connected between the fourth node and ground, with a gate of the seventh NMOS device connected to the bias circuit via the bias line.
  • 18. The bias circuit of claim 15 wherein the bias line is connected to a fifth node connected between the first and second NMOS devices and ground.
  • 19. The bias circuit of claim 13 further including source follower circuitry connected to sources of the first and second NMOS devices, wherein the source follower circuitry has a gate voltage set to input a common mode voltage of the differential pair.
  • 20. The bias circuit of claim 19 wherein the source follower circuitry comprises:an eight NMOS device connected between the positive voltage source and sources of the first and second NMOS devices, and having a gate connected to a common mode voltage input line; a ninth NMOS device connected between the sources of the first and second NMOS devices and ground; a tenth NMOS device and a fifth pull-dup device connected in series between the positive voltage source and the ground; with gates of the ninth and tenth NMOS devices connected together and also connected to a sixth node between the fifth PMOS device and the tenth NMOS device; and a drain of the ninth NMOS device connecting to sources of the third and fourth NMOS devices.
US Referenced Citations (3)
Number Name Date Kind
4864217 Bird Sep 1989 A
6232725 Derra et al. May 2001 B1
6300805 Daffron et al. Oct 2001 B1