BIAS-STARVING CIRCUIT WITH PRECISION MONITORING LOOP FOR VOLTAGE REGULATORS WITH ENHANCED STABILITY

Information

  • Patent Application
  • 20110309808
  • Publication Number
    20110309808
  • Date Filed
    June 16, 2010
    14 years ago
  • Date Published
    December 22, 2011
    13 years ago
Abstract
A regulator circuit includes a voltage regulator having a stability control input and an output for providing a regulated output voltage, an amplifier circuit having an input for receiving an error voltage of the voltage regulator, and an output, and a control circuit having an input coupled to the output of the amplifier and an output coupled to the stability control input of the voltage regulator, such that the regulator stability is maximized while the error voltage is minimized. The voltage regulator includes an LDO voltage regulator, the amplifier circuit includes an operational amplifier circuit, and the control circuit includes a load-sensing or load-replicating circuit.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


The present invention relates, in general, to voltage regulation circuits and, more particularly, to a bias-starving circuit for improving the stability of an LDO (Low-Drop Out) voltage regulator driving a switched capacitive load.


2. Relevant Background


Voltage regulation circuits are used to modify, tune, and stabilize off-chip voltages towards usage for on-chip supply rails. Besides the elimination, or substantial reduction, of RLC (Resistor, Inductor, Capacitor) package-induced voltage disturbances, regulators allow designs for a single supply voltage level without having to cover the ±5% to ±10% external supply variations. Such regulation circuits are often implemented with a topology comprised of an error amplifier OTA (Operational Transconductance Amplifier) and a driver device, and their output feeds a storage, or decoupling, capacitor Cout. The size of the driver device allows minimization of the ΔV between the externally provided supply rail V+ and the regulated voltage Vout, which justifies the name LDO's (Low Drop Out) used for such circuits.


A typical LDO regulation circuit 100 is shown in FIG. 1, and includes an operational amplifier 102 having a negative input for receiving an external VREF reference voltage, and a positive input having a VREFL reference voltage. The VREFL reference voltage is substantially equal to the VREF reference voltage due to the feedback circuitry described in further detail below. The output of amplifier 102 drives the gate of the P-channel driver transistor 104. The source of driver transistor 104 is coupled to the V+ supply voltage. The drain of driver transistor 104 is the output of the regulator, providing the VOUT output voltage. A feedback resistor RF is coupled between the VOUT output terminal and the positive input of amplifier 102. A trimmable resistor RS coupled between the positive input of amplifier 102 and ground allows adjustment of the Vout voltage level. The controlling signal for setting the resistance of RS is often a digital word. The output of the regulator circuit 100 drives a load Z(s), as well as a storage, or decoupling, capacitance COUT. As is known by those skilled in the art, the regulated output voltage VOUT=VREF*(RF/RS+1), and is substantially immune from variations in the V+ power supply voltage.


The impedance nature of the load Z(s) determines by and large the AC, i.e., the stability, characteristic of the regulation loop. LDO's feeding analog circuits often drive a








Z


(
s
)


=

R
+

1

s
·
C




,




due to a part of the load drawing a continuous DC current and a part drawing a frequency-dependent current, usually associated with a capacitive load. The usually large (hundreds of milliAmps) currents drawn into the driver device guarantee a predictable bias current, and therefore, gm, of the driver device (or circuit).


However, the LDO can be used to regulate an internal supply rail that feeds, e.g., only digital logic. In this case, if the logic is of the ECL (bipolar) type, its current consumption is also predictable; but in the CMOS case, the Z(s) load is exclusively of the capacitive kind, i.e.








Z


(
s
)


=

1

s
·
C



,




which is entirely frequency-dependent. The gm of the second stage, or driver, of the LDO, is therefore substantially changing with the switching frequency of the digital circuitry, since the DC current drawn by the switching capacitive loads is ILOAD(f)=Cload·VDD·f.


The load-dependent nature of the ILOAD, and therefore of the gm, of the driver stage of the LDO leads to stability issues of the regulator loop. It has been observed in the prior art that an increase in gm of the driver stage requires a compensating decrease in gm, and slow-down of the poles, of the error amplifier in front of it. A technique of current-starving of the OTA controlling the driver performs a dominant-pole compensation of the loop, when the stabilizing effect of the R-C zero added to the Miller compensation scheme is diminished due to gm increase. In fact, two approaches can be followed for the regulator loop.


Firstly, a broad-band approach with fast poles in the amplifier requires cascading a number of low-gain stages, that adds a number of singularities in the Bode plot and can lead to lower precision of the loop (i.e. lower GLOOP values).


Secondly, a high-gain approach with a high-impedance OTA entails the presence of two poles (the main Cout and Rout, and the OTA output impedance into the gate capacitance of the driver device), both quite slow, that is usually stabilized by way of a Left-Half Plane LHP zero, found at






Z
=

1


C
COMP

·

(


1

g
m


-

R
COMP


)







Some prior art techniques sense the changing load on the regulator by paralleling a second device to the main driver and feeding back its own current, to either modify a pole/zero compensation network or adaptively vary the driver current and/or the OTA current. These techniques inherently slave the loop bias to the desired output voltage, which however can be varied independent of the load's switching frequency.


While these known techniques provide some benefit for stabilizing an LDO regulator circuit, they all suffer from potential under or over correction. What is desired is a circuit and method of stabilizing an LDO regulator while monitoring the final precision of the regulated voltage against the desired set-up point, with even greater precision and control than is possible given the current state of the art.


SUMMARY OF THE INVENTION

A regulator circuit includes a voltage regulator having a stability control input and an output for providing a regulated output voltage, an amplifier circuit having an input for receiving an error voltage of the voltage regulator, and an output, and a control circuit having an input coupled to the output of the amplifier and an output coupled to the stability control input of the voltage regulator, such that the regulator stability is maximized while the error voltage is minimized. In a preferred embodiment, the voltage regulator includes an LDO voltage regulator, the amplifier circuit includes an operational amplifier circuit, and the control circuit includes a frequency-to-current converter.





BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing and other features, utilities and advantages of the invention will be apparent from the following more particular description of an embodiment of the invention as illustrated in the accompanying drawings, in which:



FIG. 1 is a schematic diagram of a prior art LDO regulator having a P-channel driver transistor for driving a capacitive load;



FIG. 2 is a schematic diagram of a prior art F-to-I (Frequency to Current) converter for providing an output current in response to the switching frequency of a capacitive load;



FIG. 3 is a schematic diagram of a prior art bias-starving circuit including an LDO regulator and a F-to-I converter for improving stability;



FIG. 4 is a schematic diagram of a first embodiment of a bias-starving circuit including a precision monitoring loop according to the present invention;



FIG. 5 is a schematic diagram of a second embodiment of a bias-starving circuit including a precision monitoring loop according to the present invention; and



FIGS. 6-13 are simulation graphs illustrating the stability, speed, and precision improvements realized with the circuit of the present invention.





DETAILED DESCRIPTION

In order to isolate the current variations in the load due to frequency variations of a switching capacitor network from other exogenous causes of the same variations, the proposed circuit employs a replica loop with a fixed reference voltage, known as a F-to-I (Frequency to Current) converter as is shown in FIG. 2.


Converter 200 includes an operational amplifier 202, whose positive input is coupled to a VREF input reference voltage. The output of operational amplifier is coupled to the gate of N-channel driver transistor 204. The source of transistor 204 is coupled to a reference capacitor CREF through a switch 212. The source of transistor 204 is also coupled to a fixed bias current source, if desired. The reference capacitor is shunted by switch 214. Switches 212 and 214 are controlled through the action of inverter 210, which receives a clock signal at node 216. The output current IOUT of converter 200 can either be taken directly at the drain of transistor 204, or optionally through a current mirror including diode-connected transistor 206 and output transistor 208.


Since Iout=Cref·Vref·fs once the loop is settled, this circuit mimics the Iload requested to the LDO, but without any dependence on the Vout level as set for the LDO; and especially, without being affected by any line disturbances affecting the output of the LDO, that would be injected into the loop bias as in the prior art. The adoption of a complementary device with regards to the one used in the LDO driver is here useful (a diode can read Iout on the drain), but not essential.


Referring now to FIG. 3, the Iout ∝ f can now be subtracted from the operational amplifier 302 (OTA) bias current IBIAS of the main LDO loop, as shown in circuit 300. Circuit 300 includes an operational amplifier 302 coupled to a P-channel driver transistor 304, gain-setting resistors RS and RF, compensation elements RCOMP and CCOMP, as well as load Z(s) and storage, or decoupling, capacitor COUT coupled to the output terminal VOUT. The converter 306 receives the same reference voltage VREF that is coupled to the negative input of operational amplifier 302, as well as the input clock signal. The IOUT current is subtracted from the IBIAS current. Different Vref values can be employed for the LDO and F-to-I converter, provided they are constant. An additional NMOSFET mirror applied to Iout in FIG. 2 can be used to implement the F-to-I block in the diagram of FIG. 3.


The circuit 300 shown in FIG. 3 provides stability when driving capacitive loads and prevents locked states that are possible in the prior art. However, circuit 300 suffers from potential current source and current mirror mismatches. In fact, to achieve stability at high fs, a large fraction of IBIAS has to be absorbed by the F-to-I block 306. Therefore, errors of mirroring, or parasitic capacitors Cpar that add to the ideal capacitor Cref, could alter the current starving circuit generating an over-correction and could potentially shut down the entire LDO.


A solution according to the present invention is proposed against such risk that monitors the precision of the LDO feedback node tracking of Vref and detects potential DC errors by re-biasing the OTA within the loop in case of long-term errors. One embodiment of such correction block is implemented in voltage mode as shown in FIG. 4.


Circuit 400 includes an LDO regulator circuit with an operational amplifier 402. Operational amplifier 402 is coupled to a P-channel driver transistor 404, gain-setting resistors RS and RF, compensation elements RCOMP and CCOMP, as well as load Z(s) and COUT coupled to the output terminal VOUT. The reference voltage VREF is coupled to the negative input of operational amplifier 402, as well as to the input of an additional voltage amplifier circuit 410 including operational amplifier 412 and further including gain-setting resistors R1 and R2. The negative input of amplifier 412 is coupled to the VREF reference voltage through resistor R1. The positive input of amplifier 412 is coupled to the positive input of amplifier 402. The output of operational amplifier 412 provides a VREF′ reference voltage. F-to-I converter 414 receives the VREF′ reference voltage, the input clock signal, and generates an output current as shown. The IOUT current is then subtracted from the IBIAS current.


In circuit 400, the feedback error ε=Vrefl−Vref is sensed; is recognized as due to a bias error starving the OTA; is amplified, and used to modulate the Iout value until a correct bias is established that allows the OTA to make ε→0. In FIG. 4:







V
ref


=




V
refl

·

(

1
+


R
2


R
1



)


-


V
ref

·


R
2


R
1




=


V
refl

+



R
2


R
1


·
ɛ







can be used to diminish Vref′, and consequently Iout=Cref·Vref′·fs, when Vrefl is too low, i.e. when the loop gain is insufficient. R2/R1 ratios of 100 or so can be used in this respect. An ideal integrated configuration can be used to drive to zero the long-term error. Notice that this servo-loop can both decrease or increase the Ibias depending on the sign of ε, but—while excess of Ibias will compromise stability, but not drive ε>0—the lack of Ibias will drive ε<0 and steer the loop in the direction of ε→0.


An implementation of the stabilization loop according to the present invention has been devised in the current domain and is shown as circuit 500 in FIG. 5. LDO circuit including operational amplifier 502, driver transistor 504, compensation resistor 506, and compensation capacitor 508 are substantially the same as have been described with respect to FIG. 4. The loads and the converter circuit 514 are substantially the same as have been previously described as well. Note, however, that the voltage amplifier circuit 410 shown in FIG. 4 has been replaced by a current-mode circuit 510. Current-mode circuit 510 includes transistors 512 and 516, and current sources IC and IC/2. The gate of transistor 512 is coupled to the positive input of amplifier 502, and the gate of transistor 516 is coupled to the negative input of amplifier 502.


In FIG. 5, the matched current sources IC and IC/2 provide a current correction range of (−Ic/2, +Ic/2) which can be provided back to the LDO bias in case a starvation due to current mismatch is detected. The value of IC can be chosen small enough to cover the possible mismatch percentage of the main bias current (10, or 20% of Ibias is usually largely adequate), with low consumption and low impact of the bias monitor loop on the LDO stability. Again, the loop can provide an increase or decrease in the bias current, but the long-term starvation of the regulation loop drives ε→0. This additional loop is for long-term monitoring of the Ibias of the LDO and can be therefore heavily lowpass filtered, in such a way as to not interact with the faster dynamic of the LDO, which has been separately optimized by controlling the Ibias of the OTA in the loop. Depending on the polarity of a faster error (e.g. the one detected during settling), the additional bias monitor loop can actually speed up and help the LDO output transient.


The present implementation of a stabilized loop reduces ringing in response to a step settling test, and increases the phase margin φM of the LDO loop when the frequency fs is raised. For applications in which the frequency of the clock fs has to be variable, e.g., in ratios of 1 MSps (Mega Samples per second) to 200+ MSps, adoption of such bias control is instrumental to prevent ringing of the LDO response; especially when the current in the driver stage is almost exclusively due to capacitive charge/discharge, which takes the current from a few microamps to a few milliAmps.


The simulated time-domain diagrams of FIGS. 6-13 show the improvement in stability, speed, and precision realized by the circuit of the present invention.



FIG. 6 shows the unacceptable degradation in precision of the regulator output 300 depicted in FIG. 3, and nominally set to 2.95V, when the nominal bias current of 12 μA is affected by ˜30% error and the effective bias current IBIAS feeding the OTA 302 is down to 8 μA. The current starving output of 306 is assumed instead to be ˜9 μA at the frequency of interest, which after the bias control has settled leads to a complete de-biasing of the LDO, and as a consequence to an erroneous output of ˜2.47V against the 2.95V desired.



FIG. 7 shows the main advantage provided by the invention, i.e. the precision of the regulator output—as it is recovered due to the circuit 400 shown in FIG. 4, and nominally set to 2.95V, when the nominal bias current of 12 μA is affected by ˜30% error and the effective bias current IBIAS feeding the OTA 402 is down to 8 μA. The current starving output of 414 is assumed instead to be ˜9 μA at the frequency of interest, which forces the precision-monitoring error amplifier 410 to lower the bias starving output of 414, leaving the OTA 402 biased to a level sufficient to yield an output of 2.94375V, or very close to the target voltage. Even for a 50% error in IBIAS (6 μA as opposed to 12 μA) the loop can still correct the LDO output within 50 mV of the target output as proven in simulation.



FIG. 8 shows an example of the prior art regulator (100) output transient while being trimmed from maximum to minimum of the voltage regulation range. In FIG. 8, the LDO is biased with the nominal 12 μA, and the down-going transition shows some under-damped ringing around the final target of 2.45V.



FIG. 9 shows an example of the regulator (300) output transient while being trimmed from maximum to minimum of the range, showing the enhanced stability guaranteed by the current-starving approach. In FIG. 9, the LDO is biased with the nominal 12 μA, of which the bias starving circuit 306 draws ˜9 μA away from the OTA 302, slowing down the loop and providing a very over-damped down-going transition to the target of 2.45V.



FIG. 10 shows an example of the invention regulator with precision-monitoring servo loop (400) output transient while being trimmed from maximum to minimum of the range, to further highlight the enhanced stability guaranteed by the current-starving approach, along with the neutral effect provided by circuit 410 over a descending transient. In FIG. 10, the LDO is biased with the nominal 12 μA, of which the bias starving circuit 306 draws ˜9 μA away from the OTA 302. The output transient slowly falling to its target voltage is interpreted by the precision-monitoring loop as an accuracy error, prompting the loop to temporarily starve the bias level to less than 3 μA which however barely impacts the transient while maintaining a safely over-damped output transition. The trailing end of the simulation shows how the final bias level converges to the same 3 μA shown in FIG. 9.



FIG. 11 shows an example of the prior art regulator (100) output transient while being trimmed from minimum to maximum of the voltage regulation range. In FIG. 11, the LDO is biased with the nominal 12 μA, and the up-going transition shows some under-damped ringing around the target 2.95V.



FIG. 12 shows an example of the regulator (300) output transient while being trimmed from minimum to maximum of the range, showing the enhanced stability guaranteed by the current-starving approach. In FIG. 12, the LDO is biased with the nominal 12 μA, of which the bias starving circuit 306 draws ˜9 μA away from the OTA 302, slowing down the loop and providing a very over-damped up-going transition to the target 2.95V.



FIG. 13 shows an example of the invention regulator with precision-monitoring servo loop (400) output transient while being trimmed from minimum to maximum of the range, to further highlight the enhanced stability guaranteed by the current-starving approach, along with the speed-up provided by circuit 410 over an ascending transient. In FIG. 13, the LDO is biased with the nominal 12 μA, of which the bias starving circuit 306 draws ˜9 μA away from the OTA 302. However, the output transient slowly rising to its target voltage is interpreted by the precision-monitoring loop as an accuracy error, prompting the loop to temporarily restore the bias level to 6.5 μA which speeds up the transient while maintaining a safely over-damped output transition. The trailing end of the simulation shows how the final bias level converges to the same 3 μA shown in FIG. 12.


While the invention has been particularly shown and described with reference to a preferred embodiment thereof, it will be understood by those skilled in the art that various other changes in the form and details may be made without departing from the spirit and scope of the invention. For example, while a “bias control circuit” that replicates the actions of a switched capacitive load has been shown as a frequency-to-current converter in FIGS. 4 and 5, it will be appreciated by those skilled in the art that any load-sensing circuit such as a load current shunt, or a load current mirroring circuit, or a load current attenuating or amplifying circuit; or any load-replicating circuit, such as an identical copy of the load circuit, or an approximate copy of the load current that captures the load variations against exogenous parameters such as temperature, supply, bias, trim code status, or switching frequency, can be used instead and the present invention is not limited to the frequency-to-current converter embodiment as shown. Also, while current and voltage error amplifier embodiments have been shown with respect to FIGS. 4 and 5, it will be appreciated by those skilled in the art that many such error amplifier embodiments are also possible. The present invention, therefore, is only limited by the following claims.

Claims
  • 1. A regulator circuit comprising: a voltage regulator for providing a regulated output voltage having a bias input for receiving a bias current;an amplifier circuit for receiving an error voltage of the voltage regulator; anda bias control circuit coupled between the amplifier circuit and a bias input of the voltage regulator.
  • 2. The regulator circuit of claim 1 wherein the voltage regulator comprises a Low-Drop Out (LDO) voltage regulator.
  • 3. The regulator circuit of claim 1 wherein the voltage regulator comprises an output driver circuit.
  • 4. The regulator circuit of claim 1 wherein the voltage regulator is coupled to a switched capacitive load.
  • 5. The regulator circuit of claim 1 wherein the voltage regulator is frequency compensated.
  • 6. The regulator circuit of claim 1 wherein the amplifier circuit comprises an operational amplifier circuit.
  • 7. The regulator circuit of claim 1 wherein the bias control circuit comprises a load-sensing circuit.
  • 8. The regulator circuit of claim 1 wherein the bias control circuit comprises a load-replicating circuit.
  • 9. The regulator circuit of claim 8 wherein the load-replicating circuit comprises a frequency-to-current converter.
  • 10. The regulator circuit of claim 9 wherein the frequency-to-current converter comprises a voltage input, a clock input, and a current output.
  • 11. The regulator circuit of claim 9 wherein the frequency-to-current converter comprises an LDO voltage regulator.
  • 12. The regulator circuit of claim 9 wherein the frequency-to-current converter comprises a switched capacitive load.
  • 13. A control circuit for a voltage regulator comprising: an amplifier circuit for receiving an error voltage of the voltage regulator; anda bias control circuit coupled between the amplifier circuit and a bias input of the voltage regulator.
  • 14. The control circuit of claim 13 wherein the amplifier circuit comprises an operational amplifier circuit.
  • 15. The control circuit of claim 13 wherein the bias control circuit comprises a load-sensing circuit.
  • 16. The control circuit of claim 13 wherein the bias control circuit comprises a load-replicating circuit.
  • 17. The control circuit of claim 16 wherein the load-replicating circuit comprises a frequency-to-current converter.
  • 18. The control circuit of claim 17 wherein the frequency-to-current converter comprises a voltage input, a clock input, and a current output.
  • 19. The control circuit of claim 17 wherein the frequency-to-current converter comprises an LDO voltage regulator.
  • 20. The control circuit of claim 17 wherein the frequency-to-current converter comprises a switched capacitive load.
  • 21. A regulator circuit comprising: a voltage regulator having a stability control input and an output for providing a regulated output voltage;an amplifier circuit having an input for receiving an error voltage of the voltage regulator, and an output; anda control circuit having an input coupled to the output of the amplifier and an output coupled to the stability control input of the voltage regulator, such that the regulator stability is maximized while the error voltage is minimized.
  • 22. The regulator circuit as in claim 21 wherein the voltage regulator comprises an LDO voltage regulator.
  • 23. The regulator circuit as in claim 21 wherein the amplifier circuit comprises an operational amplifier circuit.
  • 24. The regulator circuit as in claim 21 wherein the control circuit comprises a frequency-to-current converter.