The disclosed embodiments relate generally to memory systems, and in particular, to biasing for wear leveling for a storage medium in a storage system.
Semiconductor memory devices, including flash memory, typically utilize memory cells to store data as an electrical value, such as an electrical charge or voltage. A flash memory cell, for example, includes a single transistor with a floating gate that is used to store a charge representative of a data value. Flash memory is a non-volatile data storage device that can be electrically erased and reprogrammed. More generally, non-volatile memory (e.g., flash memory, as well as other types of non-volatile memory implemented using any of a variety of technologies) retains stored information even when not powered, as opposed to volatile memory, which requires power to maintain the stored information.
Historically, wear leveling has been defined as a technique used to distribute program-erase cycles as evenly as possible across units of a memory device. For example, for a flash memory device, if a particular block of memory is programmed and erased repeatedly without writing to any other blocks, the one block of memory would wear out before all the other blocks, prematurely ending the life of the memory device. Ideally, wear leveling would enable every block to be used to its maximum life. However, even with uniform workloads, simply distributing program-erase cycles as evenly as possible across all the units of a memory device may not maximize the life of the memory device. Since different units of a memory device may have different wear characteristics, it is important to utilize a wear leveling scheme that accounts for different wear characteristics.
Various implementations of systems, methods and devices within the scope of the appended claims each have several aspects, no single one of which is solely responsible for the attributes described herein. Without limiting the scope of the appended claims, after considering this disclosure, and particularly after considering the section entitled “Detailed Description” one will understand how the aspects of various implementations are used to enable biasing for wear leveling in storage systems. In one aspect, garbage collection is performed in accordance with garbage collection control metrics of a plurality of erase units, each garbage collection control metric biased in accordance with an age metric of a respective erase unit in relation to the representative age metric of the plurality of erase units.
So that the present disclosure can be understood in greater detail, a more particular description may be had by reference to the features of various implementations, some of which are illustrated in the appended drawings. The appended drawings, however, merely illustrate the more pertinent features of the present disclosure and are therefore not to be considered limiting, for the description may admit to other effective features.
In accordance with common practice the various features illustrated in the drawings may not be drawn to scale. Accordingly, the dimensions of the various features may be arbitrarily expanded or reduced for clarity. In addition, some of the drawings may not depict all of the components of a given system, method or device. Finally, like reference numerals may be used to denote like features throughout the specification and figures.
The various implementations described herein include systems, methods and/or devices used to enable biasing for wear leveling for a storage medium in a storage system. Some implementations include systems, methods and/or devices to perform garbage collection in accordance with garbage collection control metrics of a plurality of erase units, each garbage collection control metric biased in accordance with an age metric of a respective erase unit in relation to the representative age metric of the plurality of erase units.
More specifically, some implementations include a method of wear leveling for a storage medium in a storage system. In some implementations, the method includes (1) determining, for each erase unit of a plurality of erase units in the storage medium, an age metric, (2) determining a representative age metric of the plurality of erase units, (3) for each respective erase unit of the plurality of erase units, biasing a respective garbage collection control metric for the respective erase unit in accordance with the age metric of the respective erase unit in relation to the representative age metric of the plurality of erase units to generate an adjusted garbage collection control metric for the respective erase unit, and (4) performing garbage collection for the storage medium in accordance with the adjusted garbage collection control metrics of the plurality of erase units.
In some embodiments, the garbage collection control metric is a valid-page count, and biasing the respective valid-page count for the respective erase unit includes (1) determining the respective valid-page count, wherein the respective valid-page count is a count of valid pages in the respective erase unit, (2) calculating a bias value for the respective erase unit in accordance with the age metric of the respective erase unit in relation to the representative age metric of the plurality of erase units, (3) in accordance with a first determination, the first determination including a determination that the age metric of the respective erase unit is greater than the representative age metric of the plurality of erase units, adding the bias value to the respective valid-page count for the respective erase unit to generate the adjusted valid-page count for the respective erase unit, and (4) in accordance with a second determination, the second determination including a determination that the age metric of the respective erase unit is less than the representative age metric of the plurality of erase units, subtracting the bias value from the respective valid-page count for the respective erase unit to generate the adjusted valid-page count for the respective erase unit.
In some embodiments, calculating the bias value for the respective erase unit includes (1) calculating a difference between the age metric of the respective erase unit and the representative age metric of the plurality of erase units, (2) calculating a first value, the first value determined by multiplying the absolute value of the calculated difference by a predefined number of valid pages, wherein the first value is limited to a predefined maximum, and (3) setting the bias value equal to the first value.
In some embodiments, performing garbage collection for the storage medium includes selecting an erase unit with the lowest adjusted valid-page count for garbage collection.
In some embodiments, performing garbage collection for the storage medium includes performing garbage collection on a first erase unit with a first adjusted valid-page count prior to performing garbage collection on a second erase unit with a second adjusted valid-page count, wherein the first adjusted valid-page count is less than the second adjusted valid-page count.
In some embodiments, biasing the respective garbage collection control metric for the respective erase unit includes (1) determining the respective garbage collection control metric, (2) calculating a bias value for the respective erase unit in accordance with the age metric of the respective erase unit in relation to the representative age metric of the plurality of erase units, including limiting a range of the bias value to a predefined range, and (3) mathematically adjusting the respective garbage collection control metric for the respective erase unit with the calculated bias value to generate the adjusted garbage collection control metric for the respective erase unit.
In some embodiments, the age metric for each erase unit is determined in accordance with a metric corresponding to an estimated remaining life of each erase unit.
In some embodiments, the erase unit is a single erase block.
In some embodiments, the erase unit is a super block, wherein the super block includes a plurality of erase blocks.
In some embodiments, the storage medium comprises one or more flash memory devices.
In some embodiments, determining, for each erase unit of a plurality of erase units in the storage medium, the age metric includes determining, for each storage unit of a plurality of storage units in the storage medium, an age metric for a respective storage unit, wherein each storage unit comprises a plurality of the erase units.
In another aspect, any of the methods described above are performed by a device operable to perform wear leveling for a storage medium, the device including (1) a storage medium interface for coupling the device to the storage medium, and (2) one or more modules, including a memory management module that includes one or more processors and memory storing one or more programs configured for execution by the one or more processors, the one or more modules coupled to the storage medium interface and configured to perform any of the methods described above.
In yet another aspect, any of the methods described above are performed by a device operable to perform wear leveling for a storage medium. In some embodiments, the device includes (1) a storage medium interface for coupling the device to the storage medium, (2) means for determining, for each erase unit of a plurality of erase units in the storage medium, an age metric, (3) means for determining a representative age metric of the plurality of erase units, (4) means for biasing, for each respective erase unit of the plurality of erase units, a respective garbage collection control metric for the respective erase unit in accordance with the age metric of the respective erase unit in relation to the representative age metric of the plurality of erase units to generate an adjusted garbage collection control metric for the respective erase unit, and (5) means for performing garbage collection for the storage medium in accordance with the adjusted garbage collection control metrics of the plurality of erase units.
In yet another aspect, any of the methods described above are performed by a storage system comprising (1) a storage medium (e.g., comprising one or more non-volatile storage devices, such as flash memory devices) (2) one or more processors, and (3) memory storing one or more programs, which when executed by the one or more processors cause the storage system to perform or control performance of any of the methods described above.
In yet another aspect, a non-transitory computer readable storage medium stores one or more programs configured for execution by a device coupled to a storage medium, the one or more programs comprising instructions for causing the device and/or storage medium to perform any of the methods described above.
Numerous details are described herein in order to provide a thorough understanding of the example implementations illustrated in the accompanying drawings. However, some embodiments may be practiced without many of the specific details, and the scope of the claims is only limited by those features and aspects specifically recited in the claims. Furthermore, well-known methods, components, and circuits have not been described in exhaustive detail so as not to unnecessarily obscure more pertinent aspects of the implementations described herein.
Computer system 110 is coupled to memory controller 120 through data connections 101. However, in some implementations computer system 110 includes memory controller 120 as a component and/or a sub-system. Computer system 110 may be any suitable computer device, such as a computer, a laptop computer, a tablet device, a netbook, an internet kiosk, a personal digital assistant, a mobile phone, a smart phone, a gaming device, a computer server, or any other computing device. Computer system 110 is sometimes called a host or host system. In some implementations, computer system 110 includes one or more processors, one or more types of memory, a display and/or other user interface components such as a keyboard, a touch screen display, a mouse, a track-pad, a digital camera and/or any number of supplemental devices to add functionality.
Storage medium 130 is coupled to memory controller 120 through connections 103. Connections 103 are sometimes called data connections, but typically convey commands in addition to data, and optionally convey metadata, error correction information and/or other information in addition to data values to be stored in storage medium 130 and data values read from storage medium 130. In some implementations, however, memory controller 120 and storage medium 130 are included in the same device as components thereof. Furthermore, in some implementations memory controller 120 and storage medium 130 are embedded in a host device, such as a mobile device, tablet, other computer or computer controlled device, and the methods described herein are performed by the embedded memory controller. Storage medium 130 may include any number (i.e., one or more) of memory devices including, without limitation, non-volatile semiconductor memory devices, such as flash memory. For example, flash memory devices can be configured for enterprise storage suitable for applications such as cloud computing, or for caching data stored (or to be stored) in secondary storage, such as hard disk drives. Additionally and/or alternatively, flash memory can also be configured for relatively smaller-scale applications such as personal flash drives or hard-disk replacements for personal, laptop and tablet computers.
Storage medium 130 is divided into a number of addressable and individually selectable blocks, such as selectable portion 131. In some implementations, the individually selectable blocks are the minimum size erasable units in a flash memory device. In other words, each block contains the minimum number of memory cells that can be erased simultaneously. Each block is usually further divided into a plurality of pages and/or word lines, where each page or word line is typically an instance of the smallest individually accessible (readable) portion in a block. In some implementations (e.g., using some types of flash memory), the smallest individually accessible unit of a data set, however, is a sector, which is a subunit of a page. That is, a block includes a plurality of pages, each page contains a plurality of sectors, and each sector is the minimum unit of data for reading data from the flash memory device.
For example, one block comprises any number of pages, for example, 64 pages, 128 pages, 256 pages or another suitable number of pages. Blocks are typically grouped into a plurality of zones. Each block zone can be independently managed to some extent, which increases the degree of parallelism for parallel operations and simplifies management of storage medium 130.
In some implementations, memory controller 120 includes a management module 121, a host interface 129, a storage medium interface (I/O) 128, and additional module(s) 125. Memory controller 120 may include various additional features that have not been illustrated for the sake of brevity and so as not to obscure more pertinent features of the example implementations disclosed herein, and a different arrangement of features may be possible. Host interface 129 provides an interface to computer system 110 through data connections 101. Similarly, storage medium I/O 128 provides an interface to storage medium 130 though connections 103. In some implementations, storage medium I/O 128 includes read and write circuitry, including circuitry capable of providing reading signals to storage medium 130 (e.g., reading threshold voltages for NAND-type flash memory).
In some implementations, management module 121 includes one or more processing units (CPUs, also sometimes called processors) 122 configured to execute instructions in one or more programs (e.g., in management module 121). In some implementations, the one or more CPUs 122 are shared by one or more components within, and in some cases, beyond the function of memory controller 120. Management module 121 is coupled to host interface 129, additional module(s) 125 and storage medium I/O 128 in order to coordinate the operation of these components.
Additional module(s) 125 are coupled to storage medium I/O 128, host interface 129, and management module 121. As an example, additional module(s) 125 may include an error control module to limit the number of uncorrectable errors inadvertently introduced into data during writes to memory or reads from memory. In some embodiments, additional module(s) 125 are executed in software by the one or more CPUs 122 of management module 121, and, in other embodiments, additional module(s) 125 are implemented in whole or in part using special purpose circuitry (e.g., to perform encoding and decoding functions).
During a write operation, host interface 129 receives data to be stored in storage medium 130 from computer system 110. The data held in host interface 129 is made available to an encoder (e.g., in additional module(s) 125), which encodes the data to produce one or more codewords. The one or more codewords are made available to storage medium I/O 128, which transfers the one or more codewords to storage medium 130 in a manner dependent on the type of storage medium being utilized.
A read operation is initiated when computer system (host) 110 sends one or more host read commands on control line 111 to memory controller 120 requesting data from storage medium 130. Memory controller 120 sends one or more read access commands to storage medium 130, via storage medium I/O 128, to obtain raw read data in accordance with memory locations (addresses) specified by the one or more host read commands. Storage medium I/O 128 provides the raw read data (e.g., comprising one or more codewords) to a decoder (e.g., in additional module(s) 125). If the decoding is successful, the decoded data is provided to host interface 129, where the decoded data is made available to computer system 110. In some implementations, if the decoding is not successful, memory controller 120 may resort to a number of remedial actions or provide an indication of an irresolvable error condition.
Flash memory devices utilize memory cells to store data as electrical values, such as electrical charges or voltages. Each flash memory cell typically includes a single transistor with a floating gate that is used to store a charge, which modifies the threshold voltage of the transistor (i.e., the voltage needed to turn the transistor on). The magnitude of the charge, and the corresponding threshold voltage the charge creates, is used to represent one or more data values. In some implementations, during a read operation, a reading threshold voltage is applied to the control gate of the transistor and the resulting sensed current or voltage is mapped to a data value.
The terms “cell voltage” and “memory cell voltage,” in the context of flash memory cells, means the threshold voltage of the memory cell, which is the minimum voltage that needs to be applied to the gate of the memory cell's transistor in order for the transistor to conduct current. Similarly, reading threshold voltages (sometimes also called reading signals and reading voltages) applied to a flash memory cells are gate voltages applied to the gates of the flash memory cells to determine whether the memory cells conduct current at that gate voltage. In some implementations, when a flash memory cell's transistor conducts current at a given reading threshold voltage, indicating that the cell voltage is less than the reading threshold voltage, the raw data value for that read operation is a “1,” and otherwise the raw data value is a “0.”
As explained above, a storage medium (e.g., storage medium 130) is divided into a number of addressable and individually selectable blocks and each block is optionally (but typically) further divided into a plurality of pages and/or word lines and/or sectors. While erasure of a storage medium is performed on a block basis, in many embodiments, reading and programming of the storage medium is performed on a smaller subunit of a block (e.g., on a page basis, word line basis, or sector basis). In some embodiments, the smaller subunit of a block consists of multiple memory cells (e.g., single-level cells or multi-level cells). In some embodiments, programming is performed on an entire page.
As an example, if data is written to a storage medium in pages, but the storage medium is erased in blocks, pages in the storage medium may contain invalid (e.g., stale) data, but those pages cannot be overwritten until the whole block containing those pages is erased. In order to write to the pages with invalid data, the pages with valid data in that block are read and re-written to a new block and the old block is erased (or put on a queue for erasing). This process is called garbage collection. After garbage collection, the new block contains pages with valid data and free pages that are available for new data to be written, and the old block that was erased is also available for new data to be written. Since flash memory can only be programmed and erased a limited number of times, the efficiency of the algorithm used to pick the next block(s) to re-write and erase has a significant impact on the lifetime and reliability of flash-based storage systems.
Write amplification is a phenomenon where the actual amount of physical data written to a storage medium (e.g., storage medium 130) is a multiple of the logical amount of data intended to be written by a host (e.g., computer system 110, sometimes called a host). As discussed above, when a storage medium must be erased before it can be re-written, the garbage collection process to perform these operations results in re-writing data one or more times. This multiplying effect increases the number of writes required over the life of a storage medium, which shortens the time it can reliably operate. The formula to calculate the write amplification of a storage system is given by equation (1):
Generally, garbage collection is performed on erase blocks with the fewest number of valid pages for best performance and best write amplification. However, since different erase blocks have different wear characteristics, it is important to use erase blocks based on how much life a respective erase block has left, rather than simply the number of program-erase cycles performed on the respective erase block thus far. As described below, in some implementations, garbage collection that is performed based on characteristics of erase blocks (e.g., an age metric) helps to improve wear leveling, thus extending the life of the memory device.
In some embodiments, the garbage collection module 224 optionally includes the following modules or sub-modules, or a subset thereof:
In some embodiments, the wear leveling module 234 optionally includes the following modules or sub-modules, or a subset thereof:
Each of the above identified elements may be stored in one or more of the previously mentioned memory devices, and corresponds to a set of instructions for performing a function described above. The above identified modules or programs (i.e., sets of instructions) need not be implemented as separate software programs, procedures or modules, and thus various subsets of these modules may be combined or otherwise re-arranged in various embodiments. In some embodiments, memory 206 may store a subset of the modules and data structures identified above. Furthermore, memory 206 may store additional modules and data structures not described above. In some embodiments, the programs, modules, and data structures stored in memory 206, or the computer readable storage medium of memory 206, provide instructions for implementing any of the methods described below with reference to
Although
In the embodiments described next, the age metric for each erase unit is inversely related to the estimated remaining life of the erase unit. Thus, weaker or older erase units are erase units having less estimated remaining life than the average erase units in the storage medium, and these weaker or older erase units have greater (i.e., higher) age metrics than erase units that have more estimated remaining life. Similarly, stronger or younger erase units are erase units having more estimated remaining life than the average erase units in the storage medium, and these stronger or younger erase units have lower age metrics than erase units that have less estimated remaining life.
In the example of
For example, if the predefined number of valid pages is 256 pages, and erase unit B 304 (age 11) is 4 age units older than the representative age of 7, the bias added to the valid-page count for erase unit B 304 is 1,024 pages (i.e., 256 pages*4 age units). As another example, if the predefined number of valid pages is 256 pages, and erase unit C 306 (age 5) is 2 age units younger than the representative age of 7, the bias subtracted from the valid-page count for erase unit C 306 is 512 pages (i.e., 256 pages*2 age units). As yet another example, since erase unit A 302 (age 7) and erase unit D 308 (age 7) are the same age as the representative age of erase units in the storage medium, the valid-page counts for erase unit A 302 and erase unit D 308 are not biased for garbage collection purposes. In some implementations, if the maximum bias limit is, say, 6 times the predefined number of valid pages, even if an erase unit is 7 or more age units older or younger than the representative age, the bias added or subtracted from the valid-page count is limited to 6 times the predefined number of valid pages. For example, say erase unit E (not pictured) is age 14, which is 7 age units older than the representative age of 7, and the predefined number of valid pages is 256, the bias to be added to the valid-page count for erase unit E would be 1,792 pages. However, if the bias value is limited to a predefined maximum of 1,536 pages, only 1,536 pages would be added to the valid-page count for erase unit E.
Although valid-page count is used as an example for the description of
At least in some implementations, method 400 is performed by a storage system (e.g., data storage system 100,
A storage system (e.g., data storage system 100,
In some embodiments, the erase unit is (404) a single erase block. For example, for a flash memory device, the erase unit is a single erase block, the minimum size erasable unit in a flash memory device.
In some embodiments, the erase unit is (406) a super block, wherein the super block includes a plurality of erase blocks. For example, in some implementations, a super block includes 16 erase blocks.
In some embodiments, the storage medium comprises (408) one or more non-volatile storage devices, such as flash memory devices. In some implementations, the non-volatile storage medium (e.g., storage medium 130,
In some embodiments, the age metric for each erase unit is (410) determined in accordance with a metric corresponding to estimated remaining life of each erase unit. In some embodiments, some erase units can withstand more program-erase cycles than other erase units, and the age metric for each erase unit is determined in accordance with a metric corresponding to estimated remaining life of each erase unit (as opposed to simply the number of program-erase cycles completed for each erase unit). For example, if an erase unit can withstand more program-erase cycles than the average erase unit (e.g., with an age equal to the representative age metric of the plurality of erase units), then that erase unit has more estimated remaining life and is considered “younger” than the average erase unit. As another example, if an erase unit can withstand less program-erase cycles than the average erase unit, then that erase unit has less estimated remaining life and is considered “older” than the average erase unit. In some embodiments, the age metric is determined periodically (e.g., an updated age metric for an erase unit is determined every 100 program-erase cycles of the erase unit).
In some embodiments, determining (402), for each erase unit of a plurality of erase units in the storage medium, the age metric comprises determining (412), for each storage unit of a plurality of storage units in the storage medium, an age metric for a respective storage unit, wherein each storage unit comprises a plurality of the erase units. In some embodiments, the age metric for an erase unit comprises the age metric determined for the corresponding storage unit. In some implementations, the age metric for the storage unit is the worst (e.g., “oldest”) age metric for any of the erase units in the storage unit. In some implementations, the age metric for the storage unit is the average age metric of the erase units in the storage unit. In some implementations, the age metric for the storage unit is the median age metric of the erase units in the storage unit. In some implementations, an age module (e.g., age module 236,
Next, the storage system determines (414) a representative age metric of the plurality of erase units. In some embodiments, the representative age metric of the plurality of erase units is an average age metric of the plurality of erase units. In some embodiments, the representative age metric of the plurality of erase units is a median age metric of the plurality of erase units. For example, if a storage medium (e.g., storage medium 130,
Next, the storage system, for each respective erase unit of the plurality of erase units, biases (416) a respective garbage collection control metric for the respective erase unit in accordance with the age metric of the respective erase unit in relation to the representative age metric of the plurality of erase units to generate an adjusted garbage collection control metric for the respective erase unit. In some implementations, a bias module (e.g., bias module 238,
In some embodiments, the garbage collection control metric is (418) a valid-page count and biasing the respective valid-page count for the respective erase unit includes determining (420) the respective valid-page count, wherein the respective valid-page count is a count of valid pages in the respective erase unit. For example, if an erase unit has 10,240 pages, 2,500 of which are valid and 7,740 of which are invalid, the valid-page count is 2,500. In some implementations, a respective valid-page count is updated when data on the respective erase unit is written to another location (e.g., the host system rewrote the logical location for that data), since at that time, the respective erase unit has an invalid (e.g., stale) version of that data. In some implementations, the valid-page count is tracked loosely while in other implementations, the valid-page count is tracked precisely. In some implementations, a bias module (e.g., bias module 238,
Next, biasing the respective valid-page count for the respective erase unit includes calculating (422) a bias value for the respective erase unit in accordance with the age metric of the respective erase unit in relation to the representative age metric of the plurality of erase units. For example, if a first erase unit (e.g., erase unit B 304,
In some embodiments, calculating (422) the bias value for the respective erase unit includes calculating (424) a difference between the age metric of the respective erase unit and the representative age metric of the plurality of erase units. For example, if the age metric of the respective erase unit is age 5 and the representative age metric of the plurality of erase units is age 7, the difference between the age metric of the respective erase unit and the representative age metric is 2 age units. In some implementations, a bias module (e.g., bias module 238,
Next, calculating (422) the bias value for the respective erase unit includes calculating (426) a first value, the first value determined by multiplying the absolute value of the calculated difference by a predefined number of valid pages, wherein the first value is limited to a predefined maximum. For example, if the calculated difference is 2 age units and the predefined number of valid pages is 256 pages, the first value is 512 pages (i.e., 2*256 pages), assuming the predefined maximum is greater than 512 pages. As another example, if the predefined maximum is 1,280 pages and the calculated difference is 8 age units and the predefined number of valid pages is 256 pages, the first value would have been 2,048 pages (i.e., 8*256 pages), but since the predefined maximum is 1,280 pages, the first value is limited to 1,280 pages. In some implementations, a bias module (e.g., bias module 238,
Next, calculating (422) the bias value for the respective erase unit includes setting (428) the bias value equal to the first value. For example, if the first value is calculated to be 512 pages, the bias value is set to be 512 pages. In some implementations, a bias module (e.g., bias module 238,
After calculating (422) the bias value for the respective erase unit, the storage system, in accordance with a first determination that the age metric of the respective erase unit corresponds to a shorter estimated remaining life than erase units having the representative age metric of the plurality of erase units, adds (430) the bias value to the respective valid-page count for the respective erase unit to generate the adjusted valid-page count for the respective erase unit. As explained above, an erase unit with an age metric greater than the representative age metric is weaker, or has a shorter estimated remaining life, than an erase unit with an age metric equal to the representative age metric. For example, if the age metric of the respective erase unit is greater than the representative age metric of the plurality of erase units (e.g., the age metric of the respective erase unit is age 9 and the representative age metric is age 7) and the respective erase unit has a valid-page count of 2,500 pages and the bias value was calculated to be 512 pages, the storage system adds 512 pages to 2,500 pages to generate the adjusted valid-page count of 3,012 pages. In some implementations, a bias module (e.g., bias module 238,
Further, after calculating (422) the bias value for the respective erase unit, the storage system, in accordance with a second determination that the age metric of the respective erase unit corresponds to a longer estimated remaining life than erase units having the representative age metric of the plurality of erase units, subtracts (432) the bias value from the respective valid-page count for the respective erase unit to generate the adjusted valid-page count for the respective erase unit. For example, if the age metric of the respective erase unit is less than the representative age metric of the plurality of erase units (e.g., the age metric of the respective erase unit is age 5 and the representative age metric is age 7) and the respective erase unit has a valid-page count of 2,500 pages and the bias value was calculated to be 512 pages, the storage system subtracts 512 pages from 2,500 pages to generate the adjusted valid-page count of 1,988 pages. In some implementations, a bias module (e.g., bias module 238,
In some embodiments, biasing (416) the respective garbage collection control metric for the respective erase unit includes determining (434) the respective garbage collection control metric. Optionally, the respective garbage collection control metric is a count of a metric for prioritizing garbage collection in the respective erase unit. In some embodiments, the garbage collection control metric is a valid-page count and determining the respective garbage collection control metric includes determining the respective valid-page count, wherein the respective valid-page count is a count of valid pages in the respective erase unit. In other embodiments, the garbage collection control metric is an invalid-page count and determining the respective garbage collection control metric includes determining the respective invalid-page count, wherein the respective invalid-page count is a count of invalid (e.g., dirty or “freeable”) pages in the respective erase unit. In yet other embodiments, the garbage collection control metric is a count of some other metric for prioritizing garbage collection. In some implementations, a bias module (e.g., bias module 238,
Next, biasing (416) the respective garbage collection control metric for the respective erase unit includes calculating (436) a bias value for the respective erase unit in accordance with the age metric of the respective erase unit in relation to the representative age metric of the plurality of erase units, including limiting a range of the bias value to a predefined range. For example, if a first erase unit (e.g., erase unit B 304,
Next, biasing (416) the respective garbage collection control metric for the respective erase unit includes mathematically adjusting (438) the respective garbage collection control metric for the respective erase unit with the calculated bias value to generate the adjusted garbage collection control metric for the respective erase unit. For example, if the garbage collection control metric is a valid-page count, the storage system mathematically adjusts the respective garbage collection control metric by adding or subtracting the calculated bias value as described in operations 430 and 432. As another example, if the garbage collection control metric is an invalid-page count, the storage system mathematically adjusts the respective garbage collection control metric by subtracting the calculated bias values for “older” erase units and adding the calculated bias values for “younger” erase units. In some implementations, a bias module (e.g., bias module 238,
After biasing (416), for each respective erase unit of the plurality of erase units, a respective garbage collection control metric for the respective erase unit to generate an adjusted garbage collection control metric for the respective erase unit, the storage system performs (440) garbage collection for the storage medium in accordance with the adjusted garbage collection control metrics of the plurality of erase units. For example, in some embodiments (e.g., in which the garbage collection control metric is a valid-page count), the storage system performs garbage collection, giving priority to the erase units with the lowest adjusted garbage collection control metric. As another example, in some embodiments (e.g., in which the garbage collection control metric is an invalid-page count), the storage system performs garbage collection, giving priority to the erase units with the highest adjusted garbage collection control metric. In some implementations, a garbage collection module (e.g., garbage collection module 224,
In some embodiments, the garbage collection control metric is (418) a valid-page count and performing (440) garbage collection for the storage medium in accordance with the adjusted garbage collection control metrics of the plurality of erase units includes selecting (442) an erase unit with the lowest adjusted valid-page count for garbage collection. As described above, in other embodiments, the garbage collection control metric is an invalid-page count and performing garbage collection for the storage medium in accordance with the adjusted garbage collection control metrics of the plurality of erase units includes selecting an erase unit with the highest adjusted invalid-page count for garbage collection. In some implementations, a selection module (e.g., selection module 232,
In some embodiments, garbage collection control metric is (418) a valid-page count and performing (440) garbage collection for the storage medium in accordance with the adjusted garbage collection control metrics of the plurality of erase units includes performing (444) garbage collection on a first erase unit with a first adjusted valid-page count prior to performing garbage collection on a second erase unit with a second adjusted valid-page count, wherein the first adjusted valid-page count is less than the second adjusted valid-page count. For example, if a first erase unit has a first adjusted valid-page count of 280 pages and a second erase unit has a second adjusted valid-page count of 500 pages, the storage system performs garbage collection on the first erase unit (with a first adjusted valid-page count of 280) prior to performing garbage collection on the second erase unit (with a second adjusted valid-page count of 500 pages). In some implementations, a garbage collection module (e.g., garbage collection module 224,
In some implementations, with respect to any of the methods described above, the storage medium is a single flash memory device, while in other implementations, the storage medium includes a plurality of flash memory devices.
In some implementations, any of the methods described above are performed by a device operable to perform wear leveling for a storage medium, the device including (1) a storage medium interface for coupling the device to the storage medium, and (2) one or more modules, including a memory management module that includes one or more processors and memory storing one or more programs configured for execution by the one or more processors, the one or more modules coupled to the storage medium interface and configured to perform or control performance of any of the methods described above.
It will be understood that, although the terms “first,” “second,” etc. may be used herein to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish one element from another. For example, a first contact could be termed a second contact, and, similarly, a second contact could be termed a first contact, which changing the meaning of the description, so long as all occurrences of the “first contact” are renamed consistently and all occurrences of the second contact are renamed consistently. The first contact and the second contact are both contacts, but they are not the same contact.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the claims. As used in the description of the embodiments and the appended claims, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will also be understood that the term “and/or” as used herein refers to and encompasses any and all possible combinations of one or more of the associated listed items. It will be further understood that the terms “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.
As used herein, the term “if” may be construed to mean “when” or “upon” or “in response to determining” or “in accordance with a determination” or “in response to detecting,” that a stated condition precedent is true, depending on the context. Similarly, the phrase “if it is determined [that a stated condition precedent is true]” or “if [a stated condition precedent is true]” or “when [a stated condition precedent is true]” may be construed to mean “upon determining” or “in response to determining” or “in accordance with a determination” or “upon detecting” or “in response to detecting” that the stated condition precedent is true, depending on the context.
The foregoing description, for purpose of explanation, has been described with reference to specific implementations. However, the illustrative discussions above are not intended to be exhaustive or to limit the claims to the precise forms disclosed. Many modifications and variations are possible in view of the above teachings. The implementations were chosen and described in order to best explain principles of operation and practical applications, to thereby enable others skilled in the art.
This application claims priority to U.S. Provisional Patent Application Ser. No. 61/893,102, filed Oct. 18, 2013, entitled “Biasing for Wear Leveling in Storage Systems,” which is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
4173737 | Skerlos et al. | Nov 1979 | A |
4888750 | Kryder et al. | Dec 1989 | A |
4916652 | Schwarz et al. | Apr 1990 | A |
5129089 | Nielsen | Jul 1992 | A |
5270979 | Harari et al. | Dec 1993 | A |
5329491 | Brown et al. | Jul 1994 | A |
5381528 | Brunelle | Jan 1995 | A |
5519847 | Fandrich et al. | May 1996 | A |
5530705 | Malone, Sr. | Jun 1996 | A |
5537555 | Landry et al. | Jul 1996 | A |
5551003 | Mattson et al. | Aug 1996 | A |
5636342 | Jeffries | Jun 1997 | A |
5657332 | Auclair et al. | Aug 1997 | A |
5666114 | Brodie et al. | Sep 1997 | A |
5708849 | Coke et al. | Jan 1998 | A |
5765185 | Lambrache et al. | Jun 1998 | A |
5890193 | Chevallier | Mar 1999 | A |
5936884 | Hasbun et al. | Aug 1999 | A |
5943692 | Marberg et al. | Aug 1999 | A |
5982664 | Watanabe | Nov 1999 | A |
6000006 | Bruce et al. | Dec 1999 | A |
6006345 | Berry, Jr. | Dec 1999 | A |
6016560 | Wada et al. | Jan 2000 | A |
6018304 | Bessios | Jan 2000 | A |
6044472 | Crohas | Mar 2000 | A |
6070074 | Perahia et al. | May 2000 | A |
6119250 | Nishimura et al. | Sep 2000 | A |
6138261 | Wilcoxson et al. | Oct 2000 | A |
6182264 | Ott | Jan 2001 | B1 |
6192092 | Dizon et al. | Feb 2001 | B1 |
6295592 | Jeddeloh | Sep 2001 | B1 |
6311263 | Barlow et al. | Oct 2001 | B1 |
6408394 | Vander Kamp et al. | Jun 2002 | B1 |
6412042 | Paterson et al. | Jun 2002 | B1 |
6442076 | Roohparvar | Aug 2002 | B1 |
6449625 | Wang | Sep 2002 | B1 |
6484224 | Robins et al. | Nov 2002 | B1 |
6516437 | Van Stralen et al. | Feb 2003 | B1 |
6564285 | Mills et al. | May 2003 | B1 |
6678788 | O'Connell | Jan 2004 | B1 |
6757768 | Potter et al. | Jun 2004 | B1 |
6775792 | Ulrich et al. | Aug 2004 | B2 |
6810440 | Micalizzi, Jr. et al. | Oct 2004 | B2 |
6836808 | Bunce et al. | Dec 2004 | B2 |
6836815 | Purcell et al. | Dec 2004 | B1 |
6842436 | Moeller | Jan 2005 | B2 |
6865650 | Morley et al. | Mar 2005 | B1 |
6871257 | Conley et al. | Mar 2005 | B2 |
6895464 | Chow et al. | May 2005 | B2 |
6966006 | Pacheco et al. | Nov 2005 | B2 |
6978343 | Ichiriu | Dec 2005 | B1 |
6980985 | Amer-Yahia et al. | Dec 2005 | B1 |
6981205 | Fukushima et al. | Dec 2005 | B2 |
6988171 | Beardsley et al. | Jan 2006 | B2 |
7020017 | Chen et al. | Mar 2006 | B2 |
7028165 | Roth et al. | Apr 2006 | B2 |
7032123 | Kane et al. | Apr 2006 | B2 |
7043505 | Teague et al. | May 2006 | B1 |
7076598 | Wang | Jul 2006 | B2 |
7100002 | Shrader | Aug 2006 | B2 |
7102860 | Wenzel | Sep 2006 | B2 |
7111293 | Hersh et al. | Sep 2006 | B1 |
7126873 | See et al. | Oct 2006 | B2 |
7133282 | Sone | Nov 2006 | B2 |
7162678 | Saliba | Jan 2007 | B2 |
7173852 | Gorobets et al. | Feb 2007 | B2 |
7184446 | Rashid et al. | Feb 2007 | B2 |
7275170 | Suzuki | Sep 2007 | B2 |
7328377 | Lewis et al. | Feb 2008 | B1 |
7516292 | Kimura et al. | Apr 2009 | B2 |
7523157 | Aguilar, Jr. et al. | Apr 2009 | B2 |
7527466 | Simmons | May 2009 | B2 |
7529466 | Takahashi | May 2009 | B2 |
7533214 | Aasheim et al. | May 2009 | B2 |
7546478 | Kubo et al. | Jun 2009 | B2 |
7566987 | Black et al. | Jul 2009 | B2 |
7571277 | Mizushima | Aug 2009 | B2 |
7574554 | Tanaka et al. | Aug 2009 | B2 |
7596643 | Merry, Jr. et al. | Sep 2009 | B2 |
7681106 | Jarrar et al. | Mar 2010 | B2 |
7685494 | Varnica et al. | Mar 2010 | B1 |
7707481 | Kirschner et al. | Apr 2010 | B2 |
7761655 | Mizushima et al. | Jul 2010 | B2 |
7765454 | Passint | Jul 2010 | B2 |
7774390 | Shin | Aug 2010 | B2 |
7840762 | Oh et al. | Nov 2010 | B2 |
7870326 | Shin et al. | Jan 2011 | B2 |
7890818 | Kong et al. | Feb 2011 | B2 |
7913022 | Baxter | Mar 2011 | B1 |
7925960 | Ho et al. | Apr 2011 | B2 |
7934052 | Prins et al. | Apr 2011 | B2 |
7945825 | Cohen et al. | May 2011 | B2 |
7954041 | Hong et al. | May 2011 | B2 |
7971112 | Murata | Jun 2011 | B2 |
7974368 | Shieh et al. | Jul 2011 | B2 |
7978516 | Olbrich et al. | Jul 2011 | B2 |
7996642 | Smith | Aug 2011 | B1 |
8006161 | Lestable et al. | Aug 2011 | B2 |
8032724 | Smith | Oct 2011 | B1 |
8041884 | Chang | Oct 2011 | B2 |
8042011 | Nicolaidis et al. | Oct 2011 | B2 |
8069390 | Lin | Nov 2011 | B2 |
8190967 | Hong et al. | May 2012 | B2 |
8250380 | Guyot | Aug 2012 | B2 |
8254181 | Hwang et al. | Aug 2012 | B2 |
8259506 | Sommer et al. | Sep 2012 | B1 |
8312349 | Reche et al. | Nov 2012 | B2 |
8412985 | Bowers et al. | Apr 2013 | B1 |
8429436 | Fillingim et al. | Apr 2013 | B2 |
8438459 | Cho et al. | May 2013 | B2 |
8453022 | Katz | May 2013 | B2 |
8627117 | Johnston | Jan 2014 | B2 |
8634248 | Sprouse et al. | Jan 2014 | B1 |
8694854 | Dar et al. | Apr 2014 | B1 |
8724789 | Altberg et al. | May 2014 | B2 |
8885434 | Kumar | Nov 2014 | B2 |
8898373 | Kang et al. | Nov 2014 | B1 |
8910030 | Goel | Dec 2014 | B2 |
8923066 | Subramanian et al. | Dec 2014 | B1 |
9128690 | Lotzenburger et al. | Sep 2015 | B2 |
20010050824 | Buch | Dec 2001 | A1 |
20020024846 | Kawahara et al. | Feb 2002 | A1 |
20020036515 | Eldridge et al. | Mar 2002 | A1 |
20020083299 | Van Huben et al. | Jun 2002 | A1 |
20020122334 | Lee et al. | Sep 2002 | A1 |
20020152305 | Jackson et al. | Oct 2002 | A1 |
20020162075 | Talagala et al. | Oct 2002 | A1 |
20020165896 | Kim | Nov 2002 | A1 |
20030041299 | Kanazawa et al. | Feb 2003 | A1 |
20030043829 | Rashid et al. | Mar 2003 | A1 |
20030079172 | Yamagishi et al. | Apr 2003 | A1 |
20030088805 | Majni et al. | May 2003 | A1 |
20030093628 | Matter et al. | May 2003 | A1 |
20030163594 | Aasheim et al. | Aug 2003 | A1 |
20030163629 | Conley et al. | Aug 2003 | A1 |
20030188045 | Jacobson | Oct 2003 | A1 |
20030189856 | Cho et al. | Oct 2003 | A1 |
20030198100 | Matsushita et al. | Oct 2003 | A1 |
20030204341 | Guliani et al. | Oct 2003 | A1 |
20030212719 | Yasuda et al. | Nov 2003 | A1 |
20040024957 | Lin et al. | Feb 2004 | A1 |
20040024963 | Talagala et al. | Feb 2004 | A1 |
20040057575 | Zhang et al. | Mar 2004 | A1 |
20040062157 | Kawabe | Apr 2004 | A1 |
20040073829 | Olarig | Apr 2004 | A1 |
20040114265 | Talbert | Jun 2004 | A1 |
20040143710 | Walmsley | Jul 2004 | A1 |
20040148561 | Shen et al. | Jul 2004 | A1 |
20040153902 | Machado et al. | Aug 2004 | A1 |
20040167898 | Margolus et al. | Aug 2004 | A1 |
20040181734 | Saliba | Sep 2004 | A1 |
20040199714 | Estakhri et al. | Oct 2004 | A1 |
20040237018 | Riley | Nov 2004 | A1 |
20050060456 | Shrader et al. | Mar 2005 | A1 |
20050060501 | Shrader et al. | Mar 2005 | A1 |
20050073884 | Gonzalez et al. | Apr 2005 | A1 |
20050108588 | Yuan | May 2005 | A1 |
20050114587 | Chou et al. | May 2005 | A1 |
20050172065 | Keays | Aug 2005 | A1 |
20050172207 | Radke et al. | Aug 2005 | A1 |
20050193161 | Lee et al. | Sep 2005 | A1 |
20050201148 | Chen et al. | Sep 2005 | A1 |
20050231765 | So et al. | Oct 2005 | A1 |
20050249013 | Janzen et al. | Nov 2005 | A1 |
20050251617 | Sinclair et al. | Nov 2005 | A1 |
20050257120 | Gorobets et al. | Nov 2005 | A1 |
20050273560 | Hulbert et al. | Dec 2005 | A1 |
20050289314 | Adusumilli et al. | Dec 2005 | A1 |
20060010174 | Nguyen et al. | Jan 2006 | A1 |
20060039196 | Gorobets et al. | Feb 2006 | A1 |
20060039227 | Lai et al. | Feb 2006 | A1 |
20060053246 | Lee | Mar 2006 | A1 |
20060069932 | Oshikawa et al. | Mar 2006 | A1 |
20060085671 | Majni et al. | Apr 2006 | A1 |
20060087893 | Nishihara et al. | Apr 2006 | A1 |
20060107181 | Dave et al. | May 2006 | A1 |
20060136570 | Pandya | Jun 2006 | A1 |
20060136681 | Jain et al. | Jun 2006 | A1 |
20060156177 | Kottapalli et al. | Jul 2006 | A1 |
20060195650 | Su et al. | Aug 2006 | A1 |
20060244049 | Yaoi et al. | Nov 2006 | A1 |
20060259528 | Dussud et al. | Nov 2006 | A1 |
20060291301 | Ziegelmayer | Dec 2006 | A1 |
20070011413 | Nonaka et al. | Jan 2007 | A1 |
20070058446 | Hwang et al. | Mar 2007 | A1 |
20070061597 | Holtzman et al. | Mar 2007 | A1 |
20070076479 | Kim et al. | Apr 2007 | A1 |
20070081408 | Kwon et al. | Apr 2007 | A1 |
20070083697 | Birrell et al. | Apr 2007 | A1 |
20070088716 | Brumme et al. | Apr 2007 | A1 |
20070091677 | Lasser et al. | Apr 2007 | A1 |
20070113019 | Beukema et al. | May 2007 | A1 |
20070133312 | Roohparvar | Jun 2007 | A1 |
20070147113 | Mokhlesi et al. | Jun 2007 | A1 |
20070150790 | Gross et al. | Jun 2007 | A1 |
20070156842 | Vermeulen et al. | Jul 2007 | A1 |
20070157064 | Falik et al. | Jul 2007 | A1 |
20070174579 | Shin | Jul 2007 | A1 |
20070180188 | Fujibayashi et al. | Aug 2007 | A1 |
20070180346 | Murin | Aug 2007 | A1 |
20070201274 | Yu et al. | Aug 2007 | A1 |
20070208901 | Purcell et al. | Sep 2007 | A1 |
20070234143 | Kim | Oct 2007 | A1 |
20070245061 | Harriman | Oct 2007 | A1 |
20070245099 | Gray et al. | Oct 2007 | A1 |
20070263442 | Cornwell et al. | Nov 2007 | A1 |
20070277036 | Chamberlain et al. | Nov 2007 | A1 |
20070279988 | Nguyen | Dec 2007 | A1 |
20070291556 | Kamei | Dec 2007 | A1 |
20070294496 | Goss et al. | Dec 2007 | A1 |
20070300130 | Gorobets | Dec 2007 | A1 |
20080013390 | Zipprich-Rasch | Jan 2008 | A1 |
20080019182 | Yanagidaira et al. | Jan 2008 | A1 |
20080022163 | Tanaka et al. | Jan 2008 | A1 |
20080028275 | Chen et al. | Jan 2008 | A1 |
20080043871 | Latouche et al. | Feb 2008 | A1 |
20080052446 | Lasser et al. | Feb 2008 | A1 |
20080056005 | Aritome | Mar 2008 | A1 |
20080071971 | Kim et al. | Mar 2008 | A1 |
20080077841 | Gonzalez et al. | Mar 2008 | A1 |
20080077937 | Shin et al. | Mar 2008 | A1 |
20080086677 | Yang et al. | Apr 2008 | A1 |
20080112226 | Mokhlesi | May 2008 | A1 |
20080141043 | Flynn et al. | Jun 2008 | A1 |
20080144371 | Yeh et al. | Jun 2008 | A1 |
20080147714 | Breternitz et al. | Jun 2008 | A1 |
20080147964 | Chow et al. | Jun 2008 | A1 |
20080147998 | Jeong | Jun 2008 | A1 |
20080148124 | Zhang et al. | Jun 2008 | A1 |
20080163030 | Lee | Jul 2008 | A1 |
20080168191 | Biran et al. | Jul 2008 | A1 |
20080168319 | Lee et al. | Jul 2008 | A1 |
20080170460 | Oh et al. | Jul 2008 | A1 |
20080229000 | Kim | Sep 2008 | A1 |
20080229003 | Mizushima et al. | Sep 2008 | A1 |
20080229176 | Arnez et al. | Sep 2008 | A1 |
20080270680 | Chang | Oct 2008 | A1 |
20080282128 | Lee et al. | Nov 2008 | A1 |
20080285351 | Shlick et al. | Nov 2008 | A1 |
20080313132 | Hao et al. | Dec 2008 | A1 |
20090003058 | Kang | Jan 2009 | A1 |
20090019216 | Yamada et al. | Jan 2009 | A1 |
20090031083 | Willis et al. | Jan 2009 | A1 |
20090037652 | Yu et al. | Feb 2009 | A1 |
20090070608 | Kobayashi | Mar 2009 | A1 |
20090116283 | Ha et al. | May 2009 | A1 |
20090125671 | Flynn et al. | May 2009 | A1 |
20090144598 | Yoon et al. | Jun 2009 | A1 |
20090168525 | Olbrich et al. | Jul 2009 | A1 |
20090172258 | Olbrich et al. | Jul 2009 | A1 |
20090172259 | Prins et al. | Jul 2009 | A1 |
20090172260 | Olbrich et al. | Jul 2009 | A1 |
20090172261 | Prins et al. | Jul 2009 | A1 |
20090172262 | Olbrich et al. | Jul 2009 | A1 |
20090172308 | Prins et al. | Jul 2009 | A1 |
20090172335 | Kulkarni et al. | Jul 2009 | A1 |
20090172499 | Olbrich et al. | Jul 2009 | A1 |
20090193058 | Reid | Jul 2009 | A1 |
20090204823 | Giordano et al. | Aug 2009 | A1 |
20090207660 | Hwang et al. | Aug 2009 | A1 |
20090213649 | Takahashi et al. | Aug 2009 | A1 |
20090222708 | Yamaga | Sep 2009 | A1 |
20090228761 | Perlmutter et al. | Sep 2009 | A1 |
20090249160 | Gao et al. | Oct 2009 | A1 |
20090268521 | Ueno et al. | Oct 2009 | A1 |
20090292972 | Seol et al. | Nov 2009 | A1 |
20090296466 | Kim et al. | Dec 2009 | A1 |
20090296486 | Kim et al. | Dec 2009 | A1 |
20090310422 | Edahiro et al. | Dec 2009 | A1 |
20090319864 | Shrader | Dec 2009 | A1 |
20100002506 | Cho et al. | Jan 2010 | A1 |
20100008175 | Sweere et al. | Jan 2010 | A1 |
20100011261 | Cagno et al. | Jan 2010 | A1 |
20100020620 | Kim et al. | Jan 2010 | A1 |
20100037012 | Yano et al. | Feb 2010 | A1 |
20100061151 | Miwa et al. | Mar 2010 | A1 |
20100091535 | Sommer et al. | Apr 2010 | A1 |
20100103737 | Park | Apr 2010 | A1 |
20100110798 | Hoei et al. | May 2010 | A1 |
20100118608 | Song et al. | May 2010 | A1 |
20100138592 | Cheon | Jun 2010 | A1 |
20100153616 | Garratt | Jun 2010 | A1 |
20100161936 | Royer et al. | Jun 2010 | A1 |
20100174959 | No et al. | Jul 2010 | A1 |
20100199125 | Reche | Aug 2010 | A1 |
20100199138 | Rho | Aug 2010 | A1 |
20100202196 | Lee et al. | Aug 2010 | A1 |
20100202239 | Moshayedi et al. | Aug 2010 | A1 |
20100208521 | Kim et al. | Aug 2010 | A1 |
20100262889 | Bains | Oct 2010 | A1 |
20100281207 | Miller et al. | Nov 2010 | A1 |
20100281342 | Chang et al. | Nov 2010 | A1 |
20100332858 | Trantham et al. | Dec 2010 | A1 |
20110010514 | Benhase et al. | Jan 2011 | A1 |
20110051513 | Shen et al. | Mar 2011 | A1 |
20110066597 | Mashtizadeh et al. | Mar 2011 | A1 |
20110072302 | Sartore | Mar 2011 | A1 |
20110078407 | Lewis | Mar 2011 | A1 |
20110083060 | Sakurada et al. | Apr 2011 | A1 |
20110099460 | Dusija et al. | Apr 2011 | A1 |
20110113281 | Zhang et al. | May 2011 | A1 |
20110122691 | Sprouse | May 2011 | A1 |
20110131444 | Buch et al. | Jun 2011 | A1 |
20110138260 | Savin | Jun 2011 | A1 |
20110173378 | Filor et al. | Jul 2011 | A1 |
20110179249 | Hsiao | Jul 2011 | A1 |
20110199825 | Han et al. | Aug 2011 | A1 |
20110205823 | Hemink et al. | Aug 2011 | A1 |
20110213920 | Frost et al. | Sep 2011 | A1 |
20110222342 | Yoon et al. | Sep 2011 | A1 |
20110225346 | Goss et al. | Sep 2011 | A1 |
20110228601 | Olbrich et al. | Sep 2011 | A1 |
20110231600 | Tanaka et al. | Sep 2011 | A1 |
20110239077 | Bai et al. | Sep 2011 | A1 |
20110264843 | Haines et al. | Oct 2011 | A1 |
20110271040 | Kamizono | Nov 2011 | A1 |
20110283119 | Szu et al. | Nov 2011 | A1 |
20110289125 | Guthery | Nov 2011 | A1 |
20120011393 | Roberts et al. | Jan 2012 | A1 |
20120017053 | Yang et al. | Jan 2012 | A1 |
20120023144 | Rub | Jan 2012 | A1 |
20120054414 | Tsai et al. | Mar 2012 | A1 |
20120063234 | Shiga et al. | Mar 2012 | A1 |
20120072639 | Goss et al. | Mar 2012 | A1 |
20120096217 | Son et al. | Apr 2012 | A1 |
20120110250 | Sabbag et al. | May 2012 | A1 |
20120117317 | Sheffler | May 2012 | A1 |
20120151124 | Baek et al. | Jun 2012 | A1 |
20120151253 | Horn | Jun 2012 | A1 |
20120151294 | Yoo et al. | Jun 2012 | A1 |
20120173797 | Shen | Jul 2012 | A1 |
20120173826 | Takaku | Jul 2012 | A1 |
20120185750 | Hayami | Jul 2012 | A1 |
20120195126 | Roohparvar | Aug 2012 | A1 |
20120203951 | Wood et al. | Aug 2012 | A1 |
20120210095 | Nellans et al. | Aug 2012 | A1 |
20120216079 | Fai et al. | Aug 2012 | A1 |
20120233391 | Frost et al. | Sep 2012 | A1 |
20120236658 | Byom et al. | Sep 2012 | A1 |
20120239858 | Melik-Martirosian | Sep 2012 | A1 |
20120239868 | Ryan et al. | Sep 2012 | A1 |
20120239976 | Cometti et al. | Sep 2012 | A1 |
20120259863 | Bodwin et al. | Oct 2012 | A1 |
20120275466 | Bhadra et al. | Nov 2012 | A1 |
20120278564 | Goss et al. | Nov 2012 | A1 |
20120284574 | Avila et al. | Nov 2012 | A1 |
20120284587 | Yu et al. | Nov 2012 | A1 |
20130007073 | Varma | Jan 2013 | A1 |
20130007343 | Rub et al. | Jan 2013 | A1 |
20130007543 | Goss et al. | Jan 2013 | A1 |
20130024735 | Chung et al. | Jan 2013 | A1 |
20130031438 | Hu et al. | Jan 2013 | A1 |
20130036418 | Yadappanavar et al. | Feb 2013 | A1 |
20130038380 | Cordero et al. | Feb 2013 | A1 |
20130047045 | Hu et al. | Feb 2013 | A1 |
20130073924 | D'Abreu et al. | Mar 2013 | A1 |
20130079942 | Smola et al. | Mar 2013 | A1 |
20130086131 | Hunt et al. | Apr 2013 | A1 |
20130086132 | Hunt et al. | Apr 2013 | A1 |
20130094288 | Patapoutian et al. | Apr 2013 | A1 |
20130111279 | Jeon et al. | May 2013 | A1 |
20130111298 | Seroff et al. | May 2013 | A1 |
20130117606 | Anholt et al. | May 2013 | A1 |
20130121084 | Jeon et al. | May 2013 | A1 |
20130124888 | Tanaka et al. | May 2013 | A1 |
20130128666 | Avila et al. | May 2013 | A1 |
20130132652 | Wood et al. | May 2013 | A1 |
20130176784 | Cometti et al. | Jul 2013 | A1 |
20130179646 | Okubo et al. | Jul 2013 | A1 |
20130191601 | Peterson et al. | Jul 2013 | A1 |
20130194865 | Bandic et al. | Aug 2013 | A1 |
20130194874 | Mu et al. | Aug 2013 | A1 |
20130232289 | Zhong et al. | Sep 2013 | A1 |
20130254507 | Islam et al. | Sep 2013 | A1 |
20130258738 | Barkon et al. | Oct 2013 | A1 |
20130265838 | Li | Oct 2013 | A1 |
20130282955 | Parker et al. | Oct 2013 | A1 |
20130290611 | Biederman et al. | Oct 2013 | A1 |
20130301373 | Tam | Nov 2013 | A1 |
20130304980 | Nachimuthu et al. | Nov 2013 | A1 |
20130343131 | Wu et al. | Dec 2013 | A1 |
20140013188 | Wu et al. | Jan 2014 | A1 |
20140063905 | Ahn et al. | Mar 2014 | A1 |
20140075133 | Li et al. | Mar 2014 | A1 |
20140082261 | Cohen et al. | Mar 2014 | A1 |
20140082456 | Liu | Mar 2014 | A1 |
20140095775 | Talagala et al. | Apr 2014 | A1 |
20140122818 | Hayasaka et al. | May 2014 | A1 |
20140122907 | Johnston | May 2014 | A1 |
20140136883 | Cohen | May 2014 | A1 |
20140136927 | Li et al. | May 2014 | A1 |
20140143505 | Sim et al. | May 2014 | A1 |
20140201596 | Baum et al. | Jul 2014 | A1 |
20140223084 | Lee et al. | Aug 2014 | A1 |
20140258755 | Stenfort | Sep 2014 | A1 |
20140269090 | Flynn et al. | Sep 2014 | A1 |
20140310494 | Higgins et al. | Oct 2014 | A1 |
20140359381 | Takeuchi et al. | Dec 2014 | A1 |
20150023097 | Khoueir et al. | Jan 2015 | A1 |
20150153799 | Lucas et al. | Jun 2015 | A1 |
Number | Date | Country |
---|---|---|
1 299 800 | Apr 2003 | EP |
1465203 | Oct 2004 | EP |
1 990 921 | Nov 2008 | EP |
2 386 958 | Nov 2011 | EP |
2 620 946 | Jul 2013 | EP |
2002-532806 | Oct 2002 | JP |
WO 2007036834 | Apr 2007 | WO |
WO 2007080586 | Jul 2007 | WO |
WO 2008075292 | Jun 2008 | WO |
WO 2008121553 | Oct 2008 | WO |
WO 2008121577 | Oct 2008 | WO |
WO 2009028281 | Mar 2009 | WO |
WO 2009032945 | Mar 2009 | WO |
WO 2009058140 | May 2009 | WO |
WO 2009084724 | Jul 2009 | WO |
WO 2009134576 | Nov 2009 | WO |
WO 2011024015 | Mar 2011 | WO |
Entry |
---|
Bayer, “Prefix B-Trees”, IP.COM Journal, IP.COM Inc., West Henrietta, NY, Mar. 30, 2007, 29 pages. |
Bhattacharjee et al., “Efficient Index Compression in DB2 LUW”, IBM Research Report, Jun. 23, 2009, http://domino.research.ibm.com/library/cyberdig.nsf/papers/40B2C45876D0D747852575E100620CE7/$File/rc24815.pdf, 13 pages. |
Oracle, “Oracle9i: Database Concepts”, Jul. 2001, http://docs.oracle.com/cd/A91202—01/901 doc/server.901/a88856.pdf, 49 pages. |
International Search Report and Written Opinion dated Jun. 8, 2015, received in International Patent Application No. PCT/US2015/018252, which corresponds to U.S. Appl. No. 14/339,072, 9 pages (Busch). |
International Search Report and Written Opinion dated Jun. 2, 2015, received in International Patent Application No. PCT/US2015/018255, which corresponds to U.S. Appl. No. 14/336,967, 14 pages (Chander). |
International Search Report and Written Opinion dated Jun. 30, 2015, received in International Patent Application No. PCT/US2015/023927, which corresponds to U.S. Appl. No. 14/454,687, 11 pages (Kadayam). |
International Search Report and Written Opinion dated Jul. 23, 2015, received in International Patent Application No. PCT/US2015/030850, which corresponds to U.S. Appl. No. 14/298,843, 12 pages (Ellis). |
Barr, Introduction to Watchdog Timers, Oct. 2001, 3 pgs. |
Canim, Buffered Bloom ilters on Solid State Storage, ADMS*10, Singapore, Sep. 13-17, 2010, 8 pgs. |
Kang, A Multi-Channel Architecture for High-Performance NAND Flash-Based Storage System, J. Syst. Archit., 53, 9, Sep. 2007, 15 pgs. |
Kim, A Space-Efficient Flash Translation Layer for CompactFlash Systems, May 2002, 10 pgs. |
Lu, A Forest-structured Bloom Filter with Flash Memory, MSST 2011, Denver, CO, May 23-27, 2011, article, 6 pgs. |
Lu, A Forest-structured Bloom Filter with Flash Memory, MSST 2011, Denver, CO, May 23-27, 2011, presentation slides, 25 pgs. |
McLean, Information Technology-AT Attachment with Packet Interface Extension, Aug. 19, 1998, 339 pgs. |
Park, A High Performance Controller for NAND Flash-Based Solid State Disk (NSSD), Feb. 12-16, 2006, 4 pgs. |
Pliant Technology, International Search Report / Written Opinion, PCT/US08/88133, Mar. 19, 2009, 7 pgs. |
Pliant Technology, International Search Report / Written Opinion, PCT/US08/88136, Mar. 19, 2009, 7 pgs. |
Pliant Technology, International Search Report / Written Opinion, PCT/US08/88146, Feb. 26, 2009, 10 pgs. |
Pliant Technology, International Search Report / Written Opinion, PCT/US08/88154, Feb. 27, 2009, 8 pgs. |
Pliant Technology, International Search Report / Written Opinion, PCT/US08/88164, Feb. 13, 2009, 6 pgs. |
Pliant Technology, International Search Report / Written Opinion, PCT/US08/88206, Feb. 18, 2009, 8 pgs. |
Pliant Technology, International Search Report / Written Opinion, PCT/US08/88217, Feb. 19, 2009, 7 pgs. |
Pliant Technology, International Search Report / Written Opinion, PCT/US08/88229, Feb. 13, 2009, 7 pgs. |
Pliant Technology, International Search Report / Written Opinion, PCT/US08/88232, Feb. 19, 2009, 8 pgs. |
Pliant Technology, International Search Report / Written Opinion, PCT/US08/88236, Feb. 19, 2009, 7 pgs. |
Pliant Technology, International Search Report / Written Opinion, PCT/US2011/028637, Oct. 27, 2011, 11 pgs. |
Pliant Technology, Supplementary ESR, 08866997.3, Feb. 23, 2012, 6 pgs. |
SanDisk Enterprise IP LLC, International Search Report / Written Opinion, PCT/US2012/042764, Aug. 31, 2012, 12 pgs. |
SanDisk Enterprise IP LLC, International Search Report / Written Opinion, PCT/US2012/042771, Mar. 4, 2013, 14 pgs. |
SanDisk Enterprise IP LLC, International Search Report / Written Opinion, PCT/US2012/042775, Sep. 26, 2012, 8 pgs. |
SanDisk Enterprise IP LLC, International Search Report / Written Opinion, PCT/US2012/059447, Jun. 6, 2013, 12 pgs. |
SanDisk Enterprise IP LLC, International Search Report / Written Opinion, PCT/US2012/059453, Jun. 6, 2013, 12 pgs. |
Sandisk Enterprise IP LLC, International Search Report / Written Opinion, PCT/US2012/059459, Feb. 14, 2013, 9 pgs. |
SanDisk Enterprise IP LLC, International Search Report / Written Opinion, PCT/US2012/065914, May 23, 2013, 7 pgs. |
SanDisk Enterprise IP LLC, International Search Report / Written Opinion, PCT/US2012/065916, Apr. 5, 2013, 7 pgs. |
SanDisk Enterprise IP LLC, International Search Report / Written Opinion, PCT/US2012/065919, Jun. 17, 2013, 8 pgs. |
SanDisk Enterprise IP LLC, Notification of the Decision to Grant a Patent Right for Patent for Invention, CN 200880127623.8, Jul. 4, 2013, 1 pg. |
SanDisk Enterprise IP LLC, Office Action, CN 200880127623.8, Apr. 18, 2012, 12 pgs. |
SanDisk Enterprise IP LLC, Office Action, CN 200880127623.8, Dec. 31, 2012, 9 pgs. |
SanDisk Enterprise IP LLC, Office Action, JP 2010-540863, Jul. 24, 2012, 3 pgs. |
Watchdog Timer and Power Savin Modes, Microchip Technology Inc., 2005, 14 pgs. |
Zeidman, 1999 Verilog Designer's Library, 9 pgs. |
International Search Report and Written Opinion dated Jul. 25, 2014, received in International Patent Application No. PCT/US2014/029453, which corresponds to U.S. Appl. No. 13/963,444, 9 pages (Frayer). |
International Search Report and Written Opinion dated Mar. 7, 2014, received in International Patent Application No. PCT/US2013/074772, which corresponds to U.S. Appl. No. 13/831,218, 10 pages (George). |
International Search Report and Written Opinion dated Mar. 24, 2014, received in International Patent Application No. PCT/US2013/074777, which corresponds to U.S. Appl. No. 13/831,308, 10 pages (George). |
International Search Report and Written Opinion dated Mar. 7, 2014, received in International Patent Application No. PCT/US2013/074779, which corresponds to U.S. Appl. No. 13/831,374, 8 pages (George). |
Invitation to Pay Additional Fees dated Feb. 13, 2015, received in international Patent Application No. PCT/US2014/063949, which corresponds to U.S. Appl. No. 14/135,433, 6 pages (Delpapa). |
International Search Report and Wrltten Opinion dated Jan. 21, 2015, received in International Application No. PCT/US2014/059748, which corresponds to U.S. Appl. No. 14/137,511, 13 pages (Dancho). |
International Search Report and Written Opinion dated Feb. 18, 2015, received in International Application No. PCT/US2014/066921, which corresponds to U.S. Appl. No. 14/135,280, 13 pages (Fitzpatrick). |
Ashkenazi et aL., “Platform independent overall security architecture in multi-processor system-on-chip integrated circuits for use in mobile phones and handheld devices,” ScienceDirect, Computers and Electrical Engineering 33 (2007), 18 pages. |
Lee et al., “A Semi-Preemptive Garbage Collector for Solid State Drives,” Apr 2011, IEEE, pp. 12-21. |
Office Action dated Feb. 17, 2015, received in Chinese Patent Application No. 201210334987.1, which corresponds to U.S. Appl. No. 12/082,207, 9 pages (Prins). |
International Search Report and Written Opinion dated May 4, 2015, received in International Patent Application No. PCT/US2014/065987, which corresponds to U.S. Appl. No. 14/135,400, 12 pages (George). |
International Search Report and Written Opinion dated Mar. 17, 2015, received in International Patent Application No. PCT/US2014/067407, which corresponds to U.S. Appl. No. 14/135,420, 13 pages (Lucas). |
International Search Report and Written Opinion dated Apr. 20, 2015, received in International Patent Application No. PCT/US2014/063949, which corresponds to U.S. Appl. No. 14/135,433, 21 pages (Delpapa). |
International Search Report and Written Opinion dated Mar. 9, 2015, received in International Patent Appilcation No. PCT/U52014/059747, which corresponds to U.S. Appl. No. 14/137,440, 9 pages (Fitzpatrick). |
IBM Research-Zurich, “The Fundamental Limit of Flash Random Write Performance: Understanding, Analysis and Performance Modeling,” Mar. 31, 2010, pp. 1-15. |
Office Action dated Dec. 8, 2014, received in Chinese Patent Application No. 201180021660.2, which corresponds to U.S. Appl. No. 12/726,200, 7 pages (Olbrich). |
Office Action dated Jul. 31, 2015, received in Chinese Patent Application No. 201180021660.2, which corresponds to U.S. Appl. No. 12/726,200, 9 pages (Olbrich). |
International Search Report and Written Opinion dated Sep. 14, 2015, received in International Patent Application No. PCT/US2015/036807, which corresponds to U.S. Appl. No. 14/311,152, 9 pages (Higgins). |
Gasior, “Gigabyte's i-Ram storage device, Ram disk without the fuss,” The Tech Report, p. 1, Jan. 25, 2006, 5 pages. |
Number | Date | Country | |
---|---|---|---|
20150113206 A1 | Apr 2015 | US |
Number | Date | Country | |
---|---|---|---|
61893102 | Oct 2013 | US |