Biaxial foldout tool with multiple tools on a side and a rotational stop

Information

  • Patent Grant
  • 9701005
  • Patent Number
    9,701,005
  • Date Filed
    Friday, September 19, 2014
    10 years ago
  • Date Issued
    Tuesday, July 11, 2017
    7 years ago
Abstract
A biaxial foldout tool includes a body with opposing ends and one or more sets of tool drivers. The opposing ends are rotated 90° from each other. A first set of tool drivers is positioned on/near a first end and rotates about a first hinge; a second set of tool drivers is positioned on/near a second end and rotates about a second hinge. A first portion of the first set opens in a direction counter to an open direction of a second portion of the first set of tool drivers. A first portion of the second set opens in a direction counter to an open direction of a second portion of the second set of tool drivers. When tool drivers are in an open position, internal stops prevent the tool drivers from opening past a predetermined angle. The tool drivers are contained within channels of the body when in a closed position.
Description
FIELD OF THE INVENTION

The present invention relates to the field of hand held tools. More specifically, the present invention relates to the field of hexagonal wrenches and related tools and safety, comfort, and convenience of accessories and tools.


BACKGROUND OF THE INVENTION

Hexagonal wrenches or tool drivers, also referred to as alien wrenches or L-wrenches, have a hexagonal L-shaped body, including a long leg member and a short leg member. The end of either leg member is able to be inserted into a head of a screw or tool designed to accept a hexagonal wrench. Once inserted, rotational pressure is applied to the hexagonal wrench in order to tighten or loosen the screw. The leg members of the hexagonal wrench are designed to be of different lengths in order to allow a user flexibility when using the wrench in different environments and situations. For example, in a narrow, confined environment, the long leg of the hexagonal wrench is inserted into the head of the screw and the user will apply rotational pressure to the short leg. Or, if the environment is not so confined, the user is able to insert the short leg of the hexagonal wrench into the head of the screw and apply rotational pressure to the long leg.


Hexagonal wrenches are manufactured and distributed in multiple English (e.g., standard) and metric sizes in order to facilitate their use with screw heads of multiple sizes. Such wrenches are usually sold in a set which includes wrenches of multiple sizes but are also distributed individually.


When using a hexagonal wrench, a user will insert an end of the hexagonal wrench into the head of a workpiece such as a screw, and will then exert rotational pressure on the opposite end of the wrench in order to tighten or loosen the screw. Because of the size and dimensions of the hexagonal wrench it is particularly difficult to exert a great amount of rotational pressure on the hexagonal wrench when the long leg of the hexagonal wrench is inserted into the head of the screw. Because the hexagonal wrench is typically turned with the user's fingers, the user is able to also experience scrapes and cuts from the use of hexagonal wrenches in this manner. Ingenuitive users have also used other tools, including vice grips, pliers and the like, to turn hexagonal wrenches. However, this method is disadvantageous because such tools are able to lose their hold on the hexagonal wrench when rotational pressure is applied or are able to even bend or otherwise disfigure the hexagonal wrench.


SUMMARY OF THE INVENTION

A radial foldout tool includes a body with opposing ends and one or more sets of tool drivers. A first set of tool drivers are positioned on/near a first end and a second set of tool drivers are positioned on/near a second end. The tool drivers are contained within channels of the body when in a closed position. The tool drivers are also contained in a plurality of planes. The tool drivers open by rotating/moving in a direction at least perpendicular to a neighboring tool driver. When they are in an open position, each of the tool drivers are in/near the center of the end of the body. By being positioned in/near the center of the end, the radial foldout tool is able to be gripped and turned in a fashion similar to a standard screwdriver.


In one aspect, a device comprises a body having a center, a first end and a second end, wherein the first end and the second end are positioned on opposite ends of the body and a first set of tool drivers positioned within the body in a plurality of planes, wherein each tool driver of the first set of tool drivers is configured to be positioned generally in the center out of the first end in an open position. The device further comprises a second set of tool drivers positioned within the body in the plurality of planes, wherein the second set of tool drivers are configured to be positioned out of the second end. The first set of tool drivers and the second set of tool drivers are positioned within the body in a closed position. Each tool driver of the second set of tool drivers is positioned out of the second end in an open position. Each tool driver of the second set of tool drivers is positioned generally in the center of the second end in an open position. In some embodiments, a first tool driver of the first set of tool drivers is in the same plane as a second tool driver of the second set of tool drivers. The body includes a set of channels for the first set of tool drivers and the second set of tool drivers to be positioned in the closed position. In some embodiments, each tool driver of the first set of tool drivers is positioned at least 90° around the circumference of the first end away from a neighboring tool driver and each tool driver of the second set of tool drivers is positioned at least 90° around the circumference of the second end away from a neighboring tool driver. The body is generally cylindrical. In some embodiments, the first set of tool drivers and the second set of tool drivers are selected from the group consisting of hexagonal wrenches, screwdrivers, socket wrenches and star-shaped drivers. In some embodiments, the first set of tool drivers are hexagonal wrenches and the second set of tool drivers are screwdrivers. The device further comprises a stop within the body for preventing each of the first set of tool drivers from opening further. In some embodiments, each of the first set of tool drivers do not open further than 180°.


In another aspect, a device comprises a body having a center, the body including a plurality of faces, a first end and a second end, wherein the first end and the second end are positioned on opposite ends of the body, a first set of tool drivers, each tool driver of the first set of tool drivers positioned within the body on a face of the plurality of faces, wherein the first set of tool drivers are configured to be positioned generally in the center out of the first end in an open position and a second set of tool drivers, each tool driver of the second set of tool drivers positioned on a face of the plurality of faces within the body, wherein the first set of tool drivers are configured to be positioned generally in the center out of the second end in an open position. The first set of tool drivers and the second set of tool drivers are positioned within the body in a closed position. In some embodiments, a first tool driver of the first set of tool drivers is in the same plane as a second tool driver of the second set of tool drivers. The body includes a set of channels for the first set of tool drivers and the second set of tool drivers to be positioned in the closed position. Each tool driver of the first set of tool drivers and the second set of tool drivers is positioned in the open position by rotation in a substantially perpendicular direction away from the face. The body is generally cylindrical. In some embodiments, the first set of tool drivers and the second set of tool drivers are selected from the group consisting of hexagonal wrenches, screwdrivers, socket wrenches and star-shaped drivers. In some embodiments, the first set of tool drivers are hexagonal wrenches and the second set of tool drivers are screwdrivers. The device further comprises a stop within the body for preventing each of the first set of tool drivers and the second set of tool drivers from opening further.


In yet another aspect, a generally cylindrical tool handle having a body with a center, a first end and a second end and a generally cylindrical surface, the handle including a plurality of tool drivers each of a differing size in a plurality of planes, wherein each of the plurality of tool drivers includes an elongated rod coupled with the tool handle having a bend through a predetermined angle and including a proximal end for engaging an object, and a mounting end between the bend and a distal end, further wherein each tool driver of the set of tool drivers is positioned generally in the center of one of the first end and the second end in an open position. The set of tool drivers are positioned within the body in a closed position. In some embodiments, each tool driver of the set of tool drivers is positioned at least 90° around the circumference of one of the first end and the second end away from a neighboring tool driver. The tool handle further comprises a stop within the body for preventing each tool driver of the set of tool drivers from opening further.


In yet another aspect, a device comprises a body. The body includes a first face opposite a third face, a second face opposite a fourth face, and a first end opposite a second end, wherein the first end and the second end are rotated 90° from each other. A portion of each face is typically represented on each end. The device further comprises a first hinge located at the first end, wherein the first hinge couples together the second face and the fourth face, and a first set of tool drivers positioned within the body, wherein each tool driver of the first set of tool drivers is configured to rotate about the first hinge. A first portion of the first set of tool drivers is positioned within the first face and a second portion of the first set of tool drivers is positioned within the third face of the body in a closed position. Tool drivers of the first portion of the first set open in a direction counter to an open direction of tool drivers of the second portion of the first set. Tool drivers of the first portion of the first set are positioned within the first face according to size, and tool drivers of the second portion of the first set are positioned within the third face according to size. The device further comprises a first internal stop on the first face configured to prevent tool drivers of the second portion of the first set from opening past 180°, and a second internal stop on the third face configured to prevent tool drivers of the first portion of the first set from opening past 180°. In some embodiments, the device further comprises a second hinge located at the second end, wherein the second hinge couples together the first face and the third face, and a second set of tool drivers positioned within the body, wherein each tool driver of the second set of tool drivers is configured to rotate about the second hinge. A first portion of the second set of tool drivers is positioned within the second face and a second portion of the second set of tool drivers is positioned within the fourth face of the body in a closed position. Tool drivers of the first portion of the second set open in a direction counter to an open direction of tool drivers of the second portion of the second set. Tool drivers of the first portion of the second set are positioned within the second face according to size, and tool drivers of the second portion of the second set are positioned within the fourth face according to size. The device further comprises a first internal stop on the second face configured to prevent tool drivers of the second portion of the second set from opening past 180°, and a second internal stop on the fourth face configured to prevent tool drivers of the first portion of the second set from opening past 180°.


In yet another aspect, a tool comprises a body including a plurality of sides, a first end and a second end, wherein the first end and the second end are twisted 90° from each other, a plurality of hinges including a first hinge and a second hinge, wherein the first hinge couples together a second side and a fourth side, wherein the second hinge couples together a first side with a third side, a first set of tool drivers configured to rotate about the first hinge, and a second set of tool drivers configured to rotate about the second hinge. Tool drivers of the first set of tool drivers and the second set of tool drivers fit securely within channels of the body. A first portion of the first set of tool drivers is positioned within the first side of the body and a second portion of the first set of tool drivers is positioned within the third face of the body in a closed position. Tool drivers of the first portion of the first set are arranged according to size, and tool drivers of the second portion of the first set are arranged according to size. The tool further comprises a first stop integral to the first face configured to prevent tool drivers of the second portion of the first set from opening past 180°, and a second stop integral to the third face configured to prevent tool drivers of the first portion of the first set from opening past 180°. A first portion of the second set of tool drivers is positioned within the second face and a second portion of the second set of tool drivers is positioned with the fourth face of the body in a closed position. Tool drivers of the first portion of the second set are arranged according to size, and tool drivers of the second portion of the second set are arranged according to size. The tool further comprises a first stop integral to the second face configured to prevent tool drivers of the second portion of the second set from opening past 180°, and a second stop integral to the fourth face configured to prevent tool drivers of the first portion of the second set from opening past 180°.


In yet another aspect, an apparatus comprises a body including a first end and a second end, wherein the first end has a first hinge and the second end has a second hinge, further wherein the first end and the second end are rotated 90° from each other, a first set of tool drivers coupled to and rotates about the first hinge, wherein a first subset of the first set of tool drivers is positioned within a first side of the body in order of size and a second subset of the first set of tool drivers is positioned within a third side of the body in order of size, further wherein the first side and third side are opposite sides of the body, a second set of tool drivers coupled to and rotates about the second hinge, wherein a first subset of the second set of tool drivers is positioned within a second side of the body in order of size and a second subset of the second set of tool drivers is positioned within a fourth side of the body in order of size, further wherein the second side and the fourth side are opposite sides of the body, and a plurality of internal stops. The plurality of internal stops includes a first internal stop at a distal end of the second hinge on the first side, the first internal stop configured to prevent tool drivers of the second subset of the first set of tool drivers from opening past 180°, a second internal stop at a distal end of the first hinge on the second side, the second internal stop configured to prevent tool drivers of the second subset of the second set of tool drivers from opening past 180°, a third internal stop at a distal end of the second hinge on the third side, the third internal stop configured to prevent tool drivers of the first subset of the first set of tool drivers from opening past 180°, and a fourth internal stop at a distal end of the first hinge on the fourth side, the fourth internal stop configured to prevent tool drivers of the first subset of the second set of tool drivers from opening past 180°.


In yet another aspect, a tool handle comprising a body with a generally cylindrical surface, the body comprises four sides, wherein each side has a plurality of tool drivers coupled to a first end via a hinge, a recessed area at an opposite end to receive an end of another hinge, and an internal stop near the first end configured to prevent a portion of the plurality of the tool drivers from opening past a predetermined angle. In some embodiments, the predetermined angle is 180°. In other embodiments, the predetermined angle is 90°.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 illustrates an isometric view of a radial foldout tool in a closed position in accordance with the present invention.



FIG. 2 illustrates a perspective view of a radial foldout tool in a closed position in accordance with the present invention.



FIG. 3 illustrates a perspective view of a radial foldout tool with a tool driver moving from a closed position to an open position in accordance with the present invention.



FIG. 4 illustrates a perspective view of a radial foldout tool in an open position in accordance with the present invention.



FIG. 5 illustrates a perspective view of a radial foldout tool with all of the tool drivers in an open or partially open position in accordance with the present invention.



FIG. 6A illustrates a perspective view of a radial foldout tool with alternative tool drivers in accordance with the present invention.



FIG. 6B illustrates a perspective view of a radial foldout tool with alternative tool drivers in accordance with the present invention.



FIG. 6C illustrates a perspective view of a radial foldout tool with alternative tool drivers in accordance with the present invention.



FIG. 7 illustrates a perspective view of a radial foldout tool with a plurality of faces in a closed position in accordance with the present invention.



FIG. 8A illustrates a first perspective view of a radial foldout tool having multiple tool drivers positioned on each face in a closed positioned in accordance with the present invention.



FIG. 8B illustrates a second perspective view of a radial foldout tool having multiple tool drivers positioned on each face in a closed positioned in accordance with the present invention.



FIG. 8C illustrates a third perspective view of a radial foldout tool having multiple tool drivers positioned on each face in a closed positioned in accordance with the present invention.



FIG. 8D illustrates a fourth perspective view of a radial foldout tool having multiple tool drivers positioned on each face in a closed positioned in accordance with the present invention.



FIG. 9 illustrates a perspective view of a radial foldout tool with a tool driver moving from a closed position to an open position in accordance with the present invention.



FIG. 10A illustrates a perspective view of a radial foldout tool in a 180° open position in accordance with the present invention.



FIG. 10B illustrates a perspective view of a radial foldout tool in a 90° open position in accordance with the present invention.



FIG. 11A illustrates a perspective view of a radial foldout tool with alternative tool drivers in accordance with the present invention.



FIG. 11B illustrates a perspective view of a radial foldout tool with alternative tool drivers in accordance with the present invention.



FIG. 11C illustrates a perspective view of a radial foldout tool with alternative tool drivers in accordance with the present invention.





DETAILED DESCRIPTION

In the following description, numerous details are set forth for purposes of explanation. However, one of ordinary skill in the art will realize that the invention may be practiced without the use of these specific details or with equivalent alternatives. Thus, the present invention is not intended to be limited to the embodiments shown but is to be accorded the widest scope consistent with the principles and features described herein.


Reference will now be made in detail to implementations of the present invention as illustrated in the accompanying drawings. The same reference indicators will be used throughout the drawings and the following detailed description to refer to the same or like parts.


Embodiments of the present invention are directed to a foldout tool that stores tool drivers in a compact configuration. The tool drivers are able to be positioned for use to tighten or loosen an object such as a screw or bolt.


Radial Foldout Tool



FIG. 1 illustrates an isometric view of a radial foldout tool 100 in a closed position in accordance with the present invention. A first set of tool drivers 108 is coupled to or near a first end 104 of a body 102 of the radial foldout tool 100. Each tool driver 112 of the first set of tool drivers 108 is coupled so that it is able to rotate out to an open position. In some embodiments, each of the first set of tool drivers 108, when stored in a closed position, fits securely within a different channel of the body 102. A second set of tool drivers 110 is coupled to or near a second end 106 of the body 102 of the radial foldout tool 100. Each tool driver 112 of the second set of tool drivers 110 is coupled so that it is able to rotate out to an open position. In some embodiments, each of the second set of tool drivers 110, when stored in a closed position, fits securely within a different channel of the body 102.


In some embodiments, each of the tool drivers 112 of the first set of tool drivers 108 is positioned in the body 102 in a different plane from the other tool drivers of the first set of tool drivers 108. Similarly, in some embodiments, each of the tool drivers 112 of the second set of tool drivers 110 is positioned in the body 102 in a different plane from the other tool drivers of the second set of tool drivers 110. For example, in a radial foldout tool 100 which has a body 102 that is generally cylindrical in shape and surface, a first tool driver is positioned at 0° along the circumference of a round first end of the tool, a second tool driver is positioned at 120° along the circumference and a third tool driver is positioned at 240° along the circumference. Tool drivers are similarly positioned on the opposite end as well.


In some embodiments, each tool driver of the first set of tool drivers 108 is positioned in the same plane as a correspondingly positioned tool driver of the second set of tool drivers 110.


In some embodiments, each of the tool drivers of the radial foldout tool 100 is configured to open at least perpendicularly to its neighboring tool driver. For example, with a radial foldout tool 100 containing three tool drivers at each end, a first tool driver opens at 0°, a second tool driver opens at 90° and a third tool driver opens at 270°. This configuration enables each of the tool drivers to open into/near the middle/center of the end, so that a user has better and easier turning power instead of the awkward turning capabilities when the tool drivers are not positioned near the middle of the end. In other words, each of the tool drivers fold out to a position as close as possible to a central axis of the radial foldout tool 100.


In some embodiments, a hard stop such as an internal wall prevents the tool drivers from opening past a certain angle such as 180° so that the tool extends perpendicular to the corresponding end.



FIG. 2 illustrates a perspective view of a radial foldout tool 100 in a closed position in accordance with the present invention. A first set of tool drivers 108 is coupled to or near a first end 104 of a body 102 of the radial foldout tool 100. The first set of tool drivers 108 is coupled so that the tool drivers 112 are able to rotate out to an open position. In some embodiments, each of the first set of tool drivers 108, when stored in a closed position, fits securely within a different channel 114 of the body 102. A second set of tool drivers 110 is coupled to or near a second end 106 of the body 102 of the radial foldout tool 100. The second set of tool drivers 110 is coupled so that the tool drivers 112 are able to rotate out to an open position. In some embodiments, each of the second set of tool drivers 110, when stored in a closed position, fits securely within a different channel 114 of the body 102.



FIG. 3 illustrates a perspective view of a radial foldout tool 100 with a tool driver moving from a closed position to an open position in accordance with the present invention. When positioned in a closed position, the tool driver 112 is stored within a channel 114, in some embodiments. A user is able to rotate the tool driver 112 to an open position as shown. In some embodiments, the tool driver 112 is limited in the direction it is able to rotate, such that it rotates away from the channel 114 in which it is stored. Furthermore, the tool driver's rotational range is limited so that the tool driver 112 stops rotating once it is pointing in a parallel direction to the body 102. In an open position, the tool driver 112 is also generally in the middle of the end of the body 102. In other words, the tool driver 112 folds out to a position as close as possible to the central axis of the radial foldout tool 100. To position the tool driver 112 in a closed position, a user rotates the tool driver 112 in an opposite direction from the opening direction so that the tool driver 112 rests within the channel 114, in some embodiments.



FIG. 4 illustrates a perspective view of a radial foldout tool 100 in an open position in accordance with the present invention. When in an open position, a tool driver 112 is positioned pointing in a parallel direction to the body 102 and generally in the middle of the end of the body 102, in some embodiments. This enables users to grip the body 102 as a handle and use the radial foldout tool 100 similarly to a screw driver or other tool that has a body with a tool driver protruding out of the middle of the handle. The radial foldout tool 100 is intended to be used with one of the tool drivers 112 in an open position. While one of the tool drivers 112 is in an open position, the other tool drivers 112 are typically in a closed position.



FIG. 5 illustrates a perspective view of a radial foldout tool 100 with all of the tool drivers in an open or partially open position in accordance with the present invention. The drawing of FIG. 5 is for illustration purposes only. When in use, the radial foldout tool 100 is designed to work with one tool driver open at a time.


In some embodiments, the radial foldout tool 100 is designed to include some hexagonal wrenches of English (e.g., standard) sizes including a ¼ inch hexagonal wrench, a 7/32 inch hexagonal wrench, a 3/16 inch hexagonal wrench, a 5/32 inch hexagonal wrench, a 9/64 inch hexagonal wrench, a ⅛ inch hexagonal wrench, a 7/64 inch hexagonal wrench, a 3/32 inch hexagonal wrench and a 5/64 inch hexagonal wrench.


In some embodiments, the radial foldout tool 100 is designed to include some hexagonal wrenches of metric sizes including an 8 mm hexagonal wrench, a 6 mm hexagonal wrench, a 5 mm hexagonal wrench, a 4 mm hexagonal wrench, a 3 mm hexagonal wrench, a 2.5 mm hexagonal wrench, a 2 mm hexagonal wrench and a 1.5 mm hexagonal wrench. It should be apparent to one skilled in the art that a radial foldout tool 100 is able to be formed to hold fewer, additional or different sizes of hexagonal wrenches.


In some embodiments, the radial foldout tool 100 is designed to be of a round shape. In some embodiments, the radial foldout tool 100 is designed to be of a triangular shape including three faces, a square or rectangle shape including four faces, a hexagonal shape including six faces or any other appropriate shape. In some embodiments, a single tool driver is positioned on each face of the radial foldout tool 100. In some embodiments, each face is approximately 1 inch across its width and the body 102 of the radial foldout tool 100 is approximately 4.5 inches in length. The body 102 is designed to provide a comfortable, user-friendly interface to a user's hand, in order to enhance a user's ability to exert rotational pressure on the tool driver 112 without subjecting the user to personal injury or requiring the use of additional tools. As should be apparent to one skilled in the art, the body 102 of the present invention may be designed to be of any convenient shape, including any number of faces.



FIGS. 6A, 6B and 6C each illustrates a perspective view of a radial foldout tool with alternative tool drivers in accordance with the present invention. FIG. 6A illustrates a radial foldout tool 100′ with screwdrivers as tool drivers 112′. The body 102 is similar to or the same as embodiments above with two opposing ends 104 and 106. Additionally, the channels 114 are also similar to or the same as embodiments above. However, in this embodiment, a first set of tool drivers 108′ includes flat head screwdrivers, and the second set of tool drivers 110′ includes phillips head screwdrivers. In some embodiments, the sizes and/or shapes of the heads of the screwdrivers vary. For example, the sizes of the screwdriver heads are able to vary to small enough for use with a tiny screw for securing eyeglass components together up to much larger screws. Also, for varying shapes, at times a more pointed screwdriver is necessary for a screw while other times a flatter screwdriver is necessary or preferred. The thickness of the screwdriver tip varies, in some embodiments. In some embodiments, the first set and the second set of tool drivers are all flat head screwdrivers or phillips head screwdrivers. Any variations of screwdrivers are possible.



FIG. 6B illustrates a radial foldout tool 100″ with star-shaped drivers as tool drivers 112″. As described above in reference to FIG. 6A, the body 102 with two opposing ends 104 and 106 is similar to or the same as well as the channels 114 for previous embodiments. However, in this embodiment, the first and second sets of tool drivers 108″ and 110″ are star-shaped drivers. The star-shaped drivers vary in size, tip recess (security star) and/or any other characteristic.



FIG. 6C illustrates a radial foldout tool 100″′ with both screwdrivers and hexagonal wrenches as tool drivers. Again, the body 102 with two opposing ends 104 and 106 and the channels 114 are similar to or the same as in previous embodiments. However, instead of simply having one type of tool driver, such as hexagonal wrenches, multiple sets of tool drivers are included such as hexagonal wrenches and screwdrivers. In the embodiment shown, a first set of tool drivers 108 includes hexagonal wrenches and a second set of tool drivers 110′ includes screwdrivers. Furthermore, the screwdrivers are able to be one type of screwdriver with varying shapes and sizes, and/or are able to include multiple types of screwdrivers such as flat heads and phillips head screwdrivers. While an example of a radial foldout tool with screwdrivers and hexagonal wrenches has been shown, other types of combination tools are possible such as screwdrivers and star-shaped drivers, hexagonal wrenches and star-shaped drivers, hexagonal wrenches and socket wrenches, combinations of three or more tool drivers or any other combinations of tool drivers.



FIG. 7 illustrates a perspective view of a radial foldout tool 200 with a plurality of faces in a closed position in accordance with the present invention. A first set of tool drivers 208 is coupled to or near a first end 204 of a body 202 of the radial foldout tool 200. The first set of tool drivers 208 is coupled so that the tool drivers 208 are able to rotate out to an open position. In some embodiments, each of the first set of tool drivers 208, when stored in a closed position, fits securely within a different channel 214 of the body 202. A second set of tool drivers 210 is coupled to or near a second end 206 of the body 202 of the radial foldout tool 200. The second set of tool drivers 210 is coupled so that the tool drivers 212 are able to rotate out to an open position. In some embodiments, each of the second set of tool drivers 210, when stored in a closed position, fits securely within a different channel 214 of the body 202. In some embodiments, some of the faces contain two or more tool drivers. In some embodiments, each of the faces contains a single tool driver. As described in detail below, in other embodiments, each of the faces contain at least one tool driver.


As described in this section, the tool drivers in some embodiments are configured to rotate to an open position which is generally in the middle/center of each end of the body of the radial foldout tool. In other words, the tool drivers each folds out to a position as close as possible to a central axis of the radial foldout tool. By being near the middle of each end, turning the radial foldout tool is more stable for a user when the radial foldout tool is in use and each of the tool drivers is in use. The tool drivers are also stored in a plurality of planes in the body which help ensure the tool drivers open to the middle of each end. Since the tool drivers are stored in a plurality of planes, the tool drivers open in a direction at least perpendicular to their neighboring tool driver to further ensure they open to the middle of each end of the radial foldout tool. Previously existing foldout tools suffer from an awkward grasping implementation where the awkwardness is due to the fact that, in the worst case, for example, the previously existing tools allow for the smallest of wrenches to place the part of the tool that is grasped and turned, as far off-axis as possible (and without the benefit of a hard stop in the fully extended position as the present radial foldout tool does). In addition to that, since the previously existing tools are rectangular cubes, the user's hand is required to either fully disengage the tool between turns, or to use rather involved spider-like, alternating stepping actions with the fingers to crawl the hand around the tool into position for the next twist, all the while, keeping the tool stabilized in multiple axes due to the fact that the grasp is compromised and that the wrench, when fully extended, is able to rotate at least 270°. Whereas, with the present radial foldout tool design, the user's hand is able to simply loosen the grasp and slide the palm around within the circumference of the tool while maintaining a steady and sure grasp on the tool, wrench and fastener.


Biaxial Foldout Tool


As described above, in some embodiments, multiple tool drivers are positioned on each face of a foldout tool. FIGS. 8A, 8B, 8C and 8D each illustrate a perspective view of a biaxial foldout tool 300 having multiple tool drivers positioned on each face in a closed position in accordance with the present invention. The biaxial foldout tool 300 has a body 302 that generally includes four faces; a first face is opposite of a third face, and a second face is opposite of a fourth face. FIG. 8A illustrates a first perspective view of the biaxial foldout tool 300 showing the first face and the fourth face. FIG. 8B illustrates a second perspective view of the biaxial foldout tool 300 showing the first face and the second face. FIG. 8C illustrates a third perspective view of the biaxial foldout tool 300 showing the second face and the third face. FIG. 8D illustrates a fourth perspective view of the biaxial foldout tool 300 showing the third face and the fourth face.


In some embodiments, a first set of tool drivers 308 is coupled to or near a first end 304 of the body 302 of the biaxial foldout tool 300. Each tool driver 312 of the first set of tool drivers 308 is coupled so that it is able to rotate out to an open position via a first hinge 316. In some embodiments, when the first set of tool drivers 308 is stored in a closed position, tool drivers 312 fit securely within channels 314 of the body 302. A second set of tool drivers 310 is coupled to or near a second end 306 of the body 302 of the biaxial foldout tool 300. Each tool driver 312 of the second set of tool drivers 310 is coupled so that it is able to rotate out to an open position via a second hinge 318. In some embodiments, when the second set of tool drivers 310 is stored in a closed position, tool drivers 312 fit securely within channels 314 of the body 302.


In some embodiments, each tool driver 312 of the first set of tool drivers 308 is configured to fully open in parallel with the body 302 and an opposite direction of the other tool drivers 312 in the first set of tool drivers 308. Similarly, in some embodiments, each tool driver 312 of the second set of tool drivers 310 is configured to fully open in parallel direction with the body 302 and an opposite direction of the other tool drivers 312 in the second set of tool drivers 310.


In some embodiments, while each tool driver 312 of the first set of tool drivers 308 rotates about the first hinge 316, a first portion 308a of the first set of tool drivers 308 fits securely within a channel 314 on the first face of the biaxial foldout tool 300, and a second portion 308b of the first set of tool drivers 308 fit securely within a channel 314 on the third face of the biaxial foldout tool 300. The tool drivers 312 of the first portion 308a open in a direction counter to the direction of the tool drivers 312 of the second portion 308b. Similarly, in some embodiments, while each tool driver 312 of the second set of tool drivers 310 rotates about the second hinge 318, a first portion 310a of the second set of tool drivers 310 fits securely within a channel 314 on the second face of the biaxial foldout tool 300, and a second portion 310b of the second set of tool drivers 310 fits securely within a channel 314 on the fourth face of the biaxial foldout tool 300. The tool drivers 312 of the first portion 310a open in a direction counter to the direction of the tool drivers 312 of the second portion 310b.


The first hinge 316 typically couples together the second face and the fourth face. The second hinge 318 typically couples together the first face and the third face. In other words, the ends 304, 306 of the biaxial foldout tool 300 are rotated or twisted approximately 90° from each other, such that ends of each hinge are on each face of the biaxial foldout tool 300. Although the biaxial foldout tool 300 has four faces, the 90° rotation creates a more cylindrical body, thereby providing a user with a better grasp of the biaxial foldout tool 300 while tightening or loosening an object such as a screw or bolt.


The biaxial foldout tool 300 in some embodiments is designed to include some hexagonal wrenches of English (e.g., standard) sizes. In some embodiments, the first portion 308a of the first set of tool drivers 308 includes a 3/16 inch hexagonal wrench and a 7/32 inch hexagonal wrench, while the second portion 308b of the first set of the tool driver 308 includes a ¼ inch hexagonal wrench. In some embodiments, the first portion 310a of the second set of tool drivers 310 includes a 9/64 inch hexagonal wrench and a 5/32 inch hexagonal wrench, while the second portion 310b of the second set of the tool driver 310 includes a 5/64 inch hexagonal wrench, 3/32 inch hexagonal wrench, 7/64 inch hexagonal wrench, and ⅛ inch hexagonal wrench.


The biaxial foldout tool 300 in other embodiments is designed to include some hexagonal wrenches of metric sizes. In some embodiments, the first portion 308a of the first set of tool drivers 308 includes a 5 mm hexagonal wrench and a 6 mm hexagonal wrench, while the second portion 308b of the first set of the tool driver 308 includes an 8 mm hexagonal wrench. In some embodiments, the first portion 310a of the second set of tool drivers 310 includes a 4 mm hexagonal wrench and a 4.5 mm hexagonal wrench, while the second portion 310b of the second set of the tool driver 310 includes a 2 mm hexagonal wrench, 2.5 mm hexagonal wrench, 3 mm hexagonal wrench, and a 3.5 mm hexagonal wrench. It should be apparent to one skilled in the art that a biaxial foldout tool 300 is able to be formed to hold fewer, additional or different sizes of hexagonal wrenches.


In some embodiments, the tool drivers are grouped into sets depending on a predetermined characteristic such as size. For example, each tool driver of a set of tool drivers is larger than each tool driver of another set of tool drivers. In addition or alternatively, each tool driver of a portion of a set of tool drivers is positioned within a channel 314 in a predetermined order such as size. For example, a largest tool driver of a portion is positioned towards a centerline of the body 300, and a smallest tool driver is positioned towards an outside of the channel 314. As such, in an open position, the largest tool driver is generally in the middle of the body 302. Having the largest tool driver generally in the middle of the body 302 advantageously provides a more even torque during usage. Alternatively, the largest tool driver of a portion is positioned towards the outside of the channel 314, and the smallest tool driver is positioned towards the inside of the channel 314.



FIG. 9 illustrates a perspective view of a biaxial foldout tool 300 with a tool driver moving from a closed position to an open position in accordance with the present invention. When positioned in a closed position, the tool driver 312 is stored within a channel 314, in some embodiments. A user is able to rotate the tool driver 312 to an open position as shown. In some embodiments, the tool driver 312 is limited in the direction it is able to rotate, such that it rotates away from the channel in which it is stored. Furthermore, the tool driver's rotational range is limited so that the tool driver 312 stops rotating once it is pointing in a parallel direction to the body 302. In some embodiments, a hard stop such as an internal wall 320 prevents the tool driver from opening past a predetermined angle such as 90° or 180°. To position the tool driver 312 in a closed position, a user rotates the tool driver 312 in an opposite direction from the opening direction so that the tool driver 312 rests within the channel 314, in some embodiments.



FIG. 10A illustrates a perspective view of a biaxial foldout tool 300 in a 180° open position in accordance with the present invention. When in a 180° open position, a tool driver 312 is positioned pointing in a parallel direction to the body 302. This enables users to grip the body 302 as a handle and use the biaxial foldout tool 300 similarly to a screw driver or other tool that has a body with a tool driver protruding out of the middle of the handle. The biaxial foldout tool 300 is intended to be used with one of the tool 312 in a 180° open position. While one of the tool drivers 312 is in a 180° open position, the other tool drivers 312 are in a closed position.



FIG. 10B illustrates a perspective view of a biaxial foldout tool 300 in a 90° open position in accordance with the present invention. When in a 90° open position, a tool driver 312 is positioned pointing in a perpendicular direction to the body 302. The user is able to grip the body 302 as a handle during, for example, the starting and/or the finishing of hardware since the user is able to generate the most torque using this configuration. The biaxial foldout tool 300 is intended to be used with one of the tool 312 in a 90° open position. While one of the tool drivers 312 is in a 90° open position, the other tool drivers 312 are in a closed position.



FIGS. 11A, 11B and 11C each illustrates a perspective view of a biaxial foldout tool with alternative tool drivers. FIG. 11A illustrates a biaxial foldout tool 300′ with flat head screwdrivers as tool drivers 312′. FIG. 11B illustrates a biaxial foldout tool 300″ with phillips head screwdrivers as tool drivers 312″. FIG. 11C illustrates a biaxial foldout tool 300′″ with both flat head screwdrivers and phillips screwdrivers as tool drivers 312″; the flat head screwdrivers are part of a first set of tool drivers 308″′ and the phillips head screwdrivers are part of a second set of tool drivers 310″′. As illustrated, the biaxial foldout tool 300′, the biaxial foldout tool 300″ and the biaxial foldout tool 300″′ are similarly configured as the biaxial foldout tool 300, except that the tool drivers are different. It should be understood that different combinations of tool drivers are possible. It should also be understood that each tool driver can be different from the other tool drivers.


As described in this section, the tool drivers in some embodiments are configured to rotate to an open position via hinges. Each side of the body of the biaxial foldout tool contains at least one tool driver. Since the ends of the biaxial foldout tool are rotated approximately 90° from each other, the body is more cylindrical in shape, providing a user with a better grasp of the biaxial foldout tool as compared to previously existing tools that are rectangular cubes. Furthermore, a more cylindrical shape advantageously allows for more tool drivers to be coupled to the biaxial foldout tool as one unit.


Composition of the Body


A body of a foldout tool (e.g., radial or biaxial) is able to be composed of any appropriate material, which is of maximum strength and includes properties which resist materials that the handle will likely be exposed to, e.g., oil, grease, gasoline and the like. In some embodiments, the body is materially composed of 30% glass-filled polypropylene or nylon. In some embodiments, the body is materially composed of any suitable composition including, but not limited to aluminum or steel. In some embodiments, tool drivers are materially composed of aluminum, steel or any other appropriate material. In some embodiments, the body is constructed using an injection molded, core/cavity process as is well known in the art. Alternatively, the body may be constructed in any known manner.


Operation


In operation, a foldout tool (e.g., radial or biaxial) contains multiple tool drivers to consolidate the space needed for a set of tool drivers. Furthermore, the body of the foldout tool contains channels for storing the tool drivers in a closed position, so that more tools are able to be stored. To utilize the foldout tool, a user moves a desired tool driver from a closed position to an open position. In some embodiments, the open position as at 90° (e.g., the desired tool driver is perpendicular to the body). In other embodiments, the open position is at 180° (e.g., the desired tool driver is parallel to the body). The user moves the desired tool driver using a finger or two to simply pull or push the tool driver in the appropriate direction. In some embodiments, the tool driver locks into place in the open position. The user then grasps the body of the foldout tool similarly to grasping a handle of a screwdriver. The user turns the body of the foldout tool to either tighten or loosen an object such as a screw or bolt. This turning action is also similar to the use of a screwdriver. Once the user has performed the tightening or loosening actions on the desired object or objects, the tool driver is moved to a closed position by pushing or pulling the tool driver with the user's fingers. In some embodiments, the tool drivers lock in the closed position. When in the closed position, the tools are safely stored within channels in the body to prevent injuries. Unlike a standard screwdriver which has a sharp point jutting out of the handle, the foldout tool is able to be compacted and stored safely.


The present invention has been described in terms of specific embodiments incorporating details to facilitate the understanding of principles of construction and operation of the invention.


Such reference herein to specific embodiments and details thereof is not intended to limit the scope of the claims appended hereto. It will be readily apparent to one skilled in the art that other various modifications may be made in the embodiment chosen for illustration without departing from the spirit and scope of the invention as defined by the appended claims.

Claims
  • 1. A utility tool comprising: a. a first end comprising a first hinge and one or more tool drivers configured to rotate about the first hinge; andb. a second end comprising a second hinge non-parallel to the first hinge and one or more tool drivers configured to rotate about the second hinge.
  • 2. The utility tool of claim 1 wherein the one or more tool drivers of the first end and the one or more tool drivers of the second end are grouped according to size.
  • 3. The utility tool of claim 1 wherein the tool comprises an internal stop configured to prevent the one or more tool drivers of the first end and the one or more tool drivers of the second end from opening past an angle.
  • 4. The utility tool of claim 1 wherein the second hinge is rotated 90° in orientation from the first hinge.
  • 5. The utility tool of claim 1 wherein the one or more tool drivers of the first end and the one or more tool drivers of the second end are stored in one or more channels of the utility tool when not in use.
  • 6. The utility tool of claim 1 wherein the first end and the second end each comprise one or more tool drivers on a first side and a second side opposite the first side.
  • 7. The utility tool of claim 6 wherein the tool drivers of the first side and the one or more tool drivers of the second side open in opposite directions.
  • 8. A utility tool comprising: a. a first end and a second end;b. a first hinge coupled to the first end;c. a second hinge coupled to the second end and non-parallel to the first hinge;d. a first tool driver configured to rotate to an open position about the first hinge;e. a second tool driver configured to rotate to an open position about the first hinge and in an opposite direction from the first tool driver; andf. a third tool driver configured to rotate to an open position about the second hinge.
  • 9. The utility tool of claim 8 wherein the first tool driver, the second tool driver and the third tool driver are grouped according to size.
  • 10. The utility tool of claim 8 wherein the tool comprises an internal stop configured to prevent the tool drivers from opening past an angle.
  • 11. The utility tool of claim 8 wherein the tool drivers are stored within one or more channels when not in use.
  • 12. A utility tool comprising: a. a body comprising a first end, a second end and four sides; andb. a first channel and a second channel each holding one or more rotatable tool drivers, and wherein the first channel and the second channel are on opposite sides of the first end.
  • 13. The utility tool of claim 12 wherein the one or more rotatable tool drivers of the first channel and the one or more rotatable tool drivers of the second channel are configured to rotate in opposite directions to an operative position.
  • 14. The utility tool of claim 13 wherein the one or more rotatable tool drivers of the first channel and the one or more rotatable tool drivers of the second channel rotate about a same first hinge.
  • 15. The utility tool of claim 14 comprising a second hinge non-parallel to the first hinge and one or more tool drivers configured to rotate about the second hinge.
  • 16. The utility tool of claim 12 wherein the second hinge is rotated 90° in orientation from the first hinge.
  • 17. The utility tool of claim 12 wherein the tool drivers are grouped according to size.
  • 18. The utility tool of claim 12 wherein the tool comprises an internal stop configured to prevent the tool drivers from opening past an angle.
RELATED APPLICATIONS

This patent application is a continuation of the co-pending U.S. patent application Ser. No. 13/908,703, filed Jun. 3, 2013, entitled “BIAXIAL FOLDOUT TOOL WITH MULTIPLE TOOLS ON A SIDE AND A ROTATIONAL STOP,” which is a continuation of U.S. patent application Ser. No. 12/567,606, filed Sep. 25, 2009, entitled “BIAXIAL FOLDOUT TOOL WITH MULTIPLE TOOLS ON A SIDE AND A ROTATIONAL STOP,” which is a continuation-in-part of the co-pending U.S. patent application Ser. No. 12/009,461, filed Jan. 17, 2008, entitled “RADIAL FOLDOUT TOOL.” The U.S. patent application Ser. No. 12/567,606, filed Sep. 25, 2009, entitled “BIAXIAL FOLDOUT TOOL WITH MULTIPLE TOOLS ON A SIDE AND A ROTATIONAL STOP” and the U.S. patent application Ser. No. 12/009,461, filed Jan. 17, 2008, entitled “RADIAL FOLDOUT TOOL” are both hereby incorporated by reference.

US Referenced Citations (439)
Number Name Date Kind
244309 Rhodes Jul 1881 A
363331 Hammer May 1887 A
364422 Laforge Jun 1887 A
580235 Strum Apr 1897 A
647528 Schmidt Apr 1900 A
655007 Rairigh Jul 1900 A
763745 Gheen Jun 1904 A
776761 Sampson Dec 1904 A
873363 Ross Dec 1907 A
875493 Beard Dec 1907 A
890150 Marble Jun 1908 A
959408 Volbert May 1910 A
1000900 Dorsey Aug 1911 A
1006679 Rice Oct 1911 A
1100070 Graham Jun 1914 A
1172656 Yorgensen Feb 1916 A
1187842 Kaas Jun 1916 A
D53597 Marcmann Jul 1919 S
1398583 Bovee Nov 1921 A
1425270 Morgan Aug 1922 A
1500852 Shepard Jul 1924 A
1502044 McCann Jul 1924 A
1530905 Nance Mar 1925 A
1559097 Hill Oct 1925 A
1699020 Raleigh Jan 1929 A
1753026 Rosati Apr 1930 A
1825936 Bodmer Jun 1931 A
1888222 Curtis et al. Nov 1932 A
1915245 Cook Jun 1933 A
1940606 Little Jan 1934 A
1970409 Wiedermann Aug 1934 A
2236333 Cowies Mar 1941 A
2332656 Mirando Oct 1943 A
2346364 Dowe Apr 1944 A
D142982 Bloomfield Nov 1945 S
2409613 Brooks Oct 1946 A
2410971 Hartley Nov 1946 A
2465152 Ellison Mar 1949 A
2465619 Veit Mar 1949 A
2475268 Wittle Jul 1949 A
2485991 Stowell Oct 1949 A
D156677 Smith Dec 1949 S
D157154 Horton Feb 1950 S
2509507 Kane May 1950 A
2512967 Quiron Jun 1950 A
2530024 Moody Nov 1950 A
2532636 Minnich Dec 1950 A
2569069 Motel Sep 1951 A
2590307 Gibson Mar 1952 A
2593828 Arey Apr 1952 A
2604211 Steine Jul 1952 A
2701052 Martel Feb 1955 A
D175056 Wilson Jun 1955 S
2715028 Dossie Aug 1955 A
2719042 Epsy Sep 1955 A
2720691 Topar Dec 1955 A
2726091 Topar Dec 1955 A
2776589 Gregory Jan 1957 A
2778396 Swain Jan 1957 A
D179979 Noga Apr 1957 S
2797599 McGarvie Jul 1957 A
2800816 Tasciotti Jul 1957 A
2804970 Kuc et al. Sep 1957 A
2810472 Midkiff Oct 1957 A
2836210 Garofalo May 1958 A
2842020 Traquino Jul 1958 A
2844244 Hanson Jul 1958 A
2851915 Martinez Sep 1958 A
2854741 Cholger Oct 1958 A
2878701 Weersma Mar 1959 A
3023054 Shigekuni Feb 1962 A
3061927 Von Frakenberg Und Ludwingdorf Nov 1962 A
3113479 Swingle Dec 1963 A
3156143 Wolf Nov 1964 A
3222959 Clark Dec 1965 A
3255792 Beck Jun 1966 A
3257991 Mosch Jun 1966 A
D205745 Nannfeldt Sep 1966 S
3342229 Janes Sep 1967 A
3343434 Schroeder Sep 1967 A
3370696 Dembicks Feb 1968 A
3424039 Scott Jan 1969 A
3592086 Derwin Jul 1971 A
3654975 Ballsmith et al. Apr 1972 A
3667518 Stillwagon, Jr. Jun 1972 A
3707893 Hofman Jan 1973 A
3733936 Flynn May 1973 A
3802286 Winklofer et al. Apr 1974 A
3863693 Carniker Feb 1975 A
3943801 Yates Mar 1976 A
3958469 Meese May 1976 A
3997053 Bondhus Dec 1976 A
4000767 Geng Jan 1977 A
4043230 Scrivens Aug 1977 A
4124915 Schlicher Nov 1978 A
4154125 Frank May 1979 A
4196761 Royer Apr 1980 A
4227430 Jansson et al. Oct 1980 A
4235269 Kraus Nov 1980 A
4238862 Leatherman Dec 1980 A
4241773 Personnat Dec 1980 A
4302990 Chirchton et al. Dec 1981 A
4308770 Macdonald Jan 1982 A
4310094 Hotchkiss Jan 1982 A
4327790 Stevens et al. May 1982 A
4384499 Shockley May 1983 A
D270024 Strasser Aug 1983 S
4424728 Macdonald Jan 1984 A
4448097 Rocca May 1984 A
4469109 Mehl Sep 1984 A
4476751 Mishma Oct 1984 A
4525889 Dunau Jul 1985 A
4542667 Jang Sep 1985 A
D284810 Kelemen, Sr. Jul 1986 S
4598822 Hemmings Jul 1986 A
4621718 Decarolis Nov 1986 A
4640155 Condon Feb 1987 A
4667822 Coopmans May 1987 A
4699020 Bush et al. Oct 1987 A
4699030 Yang Oct 1987 A
4703673 Allen Nov 1987 A
4711353 Rozmestor Dec 1987 A
4715346 Dempsey Dec 1987 A
4716795 Corona et al. Jan 1988 A
4716796 Corona et al. Jan 1988 A
4767006 Wasem Aug 1988 A
4783867 Tsao Nov 1988 A
4787276 Condon Nov 1988 A
4815346 Littlehorn Mar 1989 A
4819523 Souza Apr 1989 A
4819800 Wilson Apr 1989 A
4820090 Chen Apr 1989 A
D302102 Amagaya Jul 1989 S
4882841 Margolis Nov 1989 A
4922569 Brinker May 1990 A
4926721 Hsiao May 1990 A
D308462 Komatsu Jun 1990 S
4934223 Wong Jun 1990 A
D310770 Zmarripa Sep 1990 S
D311124 Learney Oct 1990 S
4960016 Seals Oct 1990 A
4974477 Anderson Dec 1990 A
4979407 Hernandez et al. Dec 1990 A
5029707 Feng Jul 1991 A
5036975 Chow Aug 1991 A
5042658 Tiramani et al. Aug 1991 A
5062173 Collins et al. Nov 1991 A
5063796 Gennep Nov 1991 A
5065487 Yother Nov 1991 A
5086674 Her Feb 1992 A
5146815 Scott, III Sep 1992 A
5147038 Pergeau Sep 1992 A
D333769 Jureckson Mar 1993 S
D334516 Tsunoda Apr 1993 S
D339048 Baum Sep 1993 S
5251352 Cullison Oct 1993 A
5263389 Frazell et al. Nov 1993 A
5265504 Fruhm Nov 1993 A
D342433 Sorenson Dec 1993 S
5271300 Zurbuchen et al. Dec 1993 A
D343106 Eklind et al. Jan 1994 S
5295422 Chow Mar 1994 A
5320004 Hsiao Jun 1994 A
5394984 Aiba Mar 1995 A
D359671 Acosta Jun 1995 S
5421225 Chen Jun 1995 A
5450774 Chang Sep 1995 A
5461950 Iwinski Oct 1995 A
D365681 Chow Jan 1996 S
5480166 Milsop Jan 1996 A
5495942 Ishak Mar 1996 A
5499560 Aeschliman Mar 1996 A
5499562 Feng Mar 1996 A
5505316 Lee Apr 1996 A
5517885 Feng May 1996 A
5522291 Liu Jun 1996 A
5535882 Liu Jul 1996 A
5542322 Knox et al. Aug 1996 A
D373943 Fuhrmann Sep 1996 S
5553340 Brown, Jr. Sep 1996 A
5566596 Lin Oct 1996 A
D376520 Morin Dec 1996 S
5581834 Collins Dec 1996 A
D377444 Lin Jan 1997 S
5592859 Johnson et al. Jan 1997 A
D378797 Poremba et al. Apr 1997 S
5630342 Owoc May 1997 A
D380131 Sung Jun 1997 S
D382190 Blackston et al. Aug 1997 S
5653525 Park Aug 1997 A
D383048 Sorensen et al. Sep 1997 S
5662013 Lin Sep 1997 A
D385172 Bramsiepe et al. Oct 1997 S
D386955 Jones et al. Dec 1997 S
5692656 Dembicks Dec 1997 A
D388609 Chan Jan 1998 S
5711042 Chuang Jan 1998 A
5711194 Anderson et al. Jan 1998 A
D394792 Bourque Jun 1998 S
D394794 Vasudeva Jun 1998 S
5758870 Weaver Jun 1998 A
5765247 Seber et al. Jun 1998 A
5765454 Barbulescu et al. Jun 1998 A
5768960 Archuleta Jun 1998 A
5791211 Bondhus et al. Aug 1998 A
5802936 Liu Sep 1998 A
5803584 Chung Sep 1998 A
5816401 Vasudeva et al. Oct 1998 A
5820288 Cole Oct 1998 A
5822830 Lin Oct 1998 A
D400775 Hsu Nov 1998 S
5855274 Piao Jan 1999 A
D405335 Lin Feb 1999 S
D408253 Rowlay Apr 1999 S
5911799 Johnson et al. Jun 1999 A
5916277 Dallas Jun 1999 A
5916341 Lin Jun 1999 A
5918513 Ho Jul 1999 A
5918741 Vasudeva Jul 1999 A
5938028 Hu Aug 1999 A
5970828 Bondhus et al. Oct 1999 A
D415946 Tsai Nov 1999 S
5983759 Turner Nov 1999 A
5992626 Anderson Nov 1999 A
D418731 Rowlay et al. Jan 2000 S
D420885 Lin Feb 2000 S
6032332 Lin Mar 2000 A
6032796 Hopper et al. Mar 2000 A
1337769 Hemming Apr 2000 A
6044973 Vasudeva Apr 2000 A
D426449 Eklind Jun 2000 S
D426450 Eklind Jun 2000 S
D427875 Chiu Jul 2000 S
6085620 Anderson et al. Jul 2000 A
6088861 Sessions et al. Jul 2000 A
6089133 Liao Jul 2000 A
6092656 Ernst Jul 2000 A
6095018 Schuster Aug 2000 A
6105767 Vasudeva Aug 2000 A
6128981 Bondhus et al. Oct 2000 A
6131740 Huang Oct 2000 A
D433613 Jailin Nov 2000 S
D433910 Oliver et al. Nov 2000 S
6151998 Fu-Hui Nov 2000 A
D435415 Johnson et al. Dec 2000 S
6164172 Huang Dec 2000 A
D435773 Lin Jan 2001 S
D437541 Hermansen et al. Feb 2001 S
D437763 Oliver et al. Feb 2001 S
6186785 Rogers et al. Feb 2001 B1
6202864 Ernst et al. Mar 2001 B1
6206189 Huot, Jr. et al. Mar 2001 B1
D440852 Ernst Apr 2001 S
6233769 Seber et al. May 2001 B1
6237451 Wei May 2001 B1
6257106 Anderson et al. Jul 2001 B1
6260453 Anderson et al. Jul 2001 B1
6279434 Brown Aug 2001 B1
6279435 Zayat, Jr. Aug 2001 B1
6289768 Anderson Sep 2001 B1
6295903 Tripper et al. Oct 2001 B1
6305248 Rowlay Oct 2001 B1
6308599 Fu-Hui Oct 2001 B1
6311587 Johnson et al. Nov 2001 B1
6314600 Cachot Nov 2001 B1
6314838 Wall Nov 2001 B2
6318218 Anderson et al. Nov 2001 B1
6332381 Vasudeva Dec 2001 B1
6345557 Kuo Feb 2002 B1
D454766 Lin Mar 2002 S
6352010 Giarritta et al. Mar 2002 B1
6357068 Seber et al. Mar 2002 B1
D455630 Chiu Apr 2002 S
6371290 Yearous et al. Apr 2002 B1
6378402 Kalomeris et al. Apr 2002 B1
6382057 Kienholz May 2002 B1
6389931 Delaney et al. May 2002 B1
6397709 Wall Jun 2002 B1
6401576 Wu Jun 2002 B1
6401923 Huang Jun 2002 B1
6405620 Liao Jun 2002 B2
D459967 Johnson et al. Jul 2002 S
D461311 Gharib Aug 2002 S
6427564 Nelson Aug 2002 B1
6490954 Johnson et al. Dec 2002 B2
6510767 Rivera Jan 2003 B1
D470739 Chen Feb 2003 S
D472712 Sagen Apr 2003 S
D472931 Leins Apr 2003 S
6564680 Rinner et al. May 2003 B1
6598503 Cunningham Jul 2003 B1
6601481 Chuang Aug 2003 B2
6606925 Gmeilbauer Aug 2003 B1
D479963 Chang Sep 2003 S
6634502 Yu Oct 2003 B1
6640675 Chuang Nov 2003 B1
6675678 Liu Jan 2004 B2
6698318 Peters Mar 2004 B2
6701813 Hu Mar 2004 B2
6709196 Medendorp Mar 2004 B1
6739224 Wershe May 2004 B1
6751819 Chuang Jun 2004 B2
6751820 Wu Jun 2004 B1
6752046 Lee Jun 2004 B1
6758350 Lin Jul 2004 B2
6763744 Johnson et al. Jul 2004 B2
D494438 Falkenstein et al. Aug 2004 S
6799490 Chu Oct 2004 B1
6827210 Chen Dec 2004 B2
6863471 Medendorp Mar 2005 B2
6877186 Shiao Apr 2005 B2
6898998 Shyu May 2005 B2
6901826 Huang Jun 2005 B2
6918323 Arnold et al. Jul 2005 B2
6922870 Tontz, Sr. Aug 2005 B2
6925910 Alford Aug 2005 B2
6928908 Yu Aug 2005 B1
6935211 Chen Aug 2005 B2
6935212 Wadsworth Aug 2005 B2
6941843 Johnson et al. Sep 2005 B2
6948406 Li Sep 2005 B1
6968758 Lin Nov 2005 B2
6988616 Chen Jan 2006 B2
7028593 Lin et al. Apr 2006 B1
7047847 Chuang May 2006 B2
7051626 Chen et al. May 2006 B1
7051629 Huang May 2006 B2
D523637 Chang Jun 2006 S
7066061 Chen et al. Jun 2006 B1
7073418 Kuo Jul 2006 B2
7080582 Karle Jul 2006 B2
7086314 Wannop Aug 2006 B2
7093519 Huang Aug 2006 B1
D527903 Chan Sep 2006 S
7100476 Feit Sep 2006 B1
7131358 Hsien Nov 2006 B2
7140280 Hawkins et al. Nov 2006 B2
7143669 Hu Dec 2006 B2
7150208 Debley Dec 2006 B2
7155998 Shyu Jan 2007 B1
7159260 Hansen Jan 2007 B2
7159491 Chaconas et al. Jan 2007 B1
7165479 Lee Jan 2007 B1
7168345 Hsieh Jan 2007 B1
7182003 Hsieh Feb 2007 B1
7185565 Hu Mar 2007 B1
7216569 Abdelgany May 2007 B2
7237463 Lee Jul 2007 B1
D548464 Lin Aug 2007 S
7284466 Ho Oct 2007 B1
D557099 Lin Dec 2007 S
7305908 Chi Dec 2007 B2
7406896 Rivera Aug 2008 B2
7409894 Valentine Aug 2008 B1
7415745 Rivera Aug 2008 B2
7467574 Lin Dec 2008 B1
7467575 Lai Dec 2008 B2
7565852 Yu Jul 2009 B2
7571517 Smith et al. Aug 2009 B2
7600640 Hallee et al. Oct 2009 B2
D604509 Andrews Nov 2009 S
7698972 Hi Apr 2010 B2
7743685 Chang Jun 2010 B2
D622125 Robinson Aug 2010 S
D623037 Johnson et al. Sep 2010 S
7810415 Adamany et al. Oct 2010 B2
7815058 Cheng Oct 2010 B2
7836534 Simmons Nov 2010 B2
7846203 Cribier Dec 2010 B2
7946203 Johnson et al. May 2011 B2
8011277 Johnson et al. Sep 2011 B2
8015642 Oakley Sep 2011 B1
D650257 Royes et al. Dec 2011 S
8336428 Johnson et al. Dec 2012 B2
8359954 Johnson Jan 2013 B2
8468916 Johnson Jun 2013 B2
8613121 White Dec 2013 B1
8640574 Johnson et al. Feb 2014 B2
8875601 Johnson Nov 2014 B2
8925429 Johnson Jan 2015 B2
20010005576 Rogers et al. Jun 2001 A1
20010045145 Legg Nov 2001 A1
20030000902 Keis et al. Jan 2003 A1
20030047474 Dahlson Mar 2003 A1
20030126957 Huang Jul 2003 A1
20030136234 Cunningham Jul 2003 A1
20030188610 Lin Oct 2003 A1
20030226428 Liu Dec 2003 A1
20040050218 Napoli Mar 2004 A1
20040173061 Liou Sep 2004 A1
20040262344 White Dec 2004 A1
20050011318 Tsai Jan 2005 A1
20050199108 Jheng Sep 2005 A1
20050229752 Nickipuck Oct 2005 A1
20050247587 Holland-Letz Nov 2005 A1
20050268754 Fa Dec 2005 A1
20050284267 Liao Dec 2005 A1
20060042428 Chuang Mar 2006 A1
20060101955 Chang May 2006 A1
20060118500 Chen Jun 2006 A1
20060150784 Hsieh Jul 2006 A1
20060254396 Hu Nov 2006 A1
20060288531 Hu Dec 2006 A1
20060288823 Schepman Dec 2006 A1
20070023306 Lai Feb 2007 A1
20070044559 Andrews Mar 2007 A1
20070044598 Frohm et al. Mar 2007 A1
20070056117 Gardiner et al. Mar 2007 A1
20070056872 Begim Mar 2007 A1
20070062831 Chen Mar 2007 A1
20070084740 Malek Apr 2007 A1
20070141885 Chen Jun 2007 A1
20070151402 Scheerman et al. Jul 2007 A1
20070186731 Schnarr et al. Aug 2007 A1
20070221017 Heaven Sep 2007 A1
20070228672 Huang Oct 2007 A1
20070245862 Gonzalez et al. Oct 2007 A1
20070295171 Johnson et al. Dec 2007 A1
20080128370 Shih Jun 2008 A1
20080148909 Lai Jun 2008 A1
20080156754 Cheng Jul 2008 A1
20080164171 Meng Jul 2008 A1
20080190249 Yu Aug 2008 A1
20080202963 Liao Aug 2008 A1
20080223179 Nash et al. Sep 2008 A1
20080251402 Chiu Oct 2008 A1
20080256816 Consentino Oct 2008 A1
20080271573 Lown et al. Nov 2008 A1
20080295657 Culthe Dec 2008 A1
20090107303 Steinweg et al. Apr 2009 A1
20090183604 Johnson et al. Jul 2009 A1
20090183608 Johnson et al. Jul 2009 A1
20090183609 Johnson et al. Jul 2009 A1
20090241740 Heagerty Oct 2009 A1
20100258465 Gomas Oct 2010 A1
20110000024 Johnson et al. Jan 2011 A1
20110094910 Fleury et al. Apr 2011 A1
20120012485 Wang Jan 2012 A1
20130228484 Yang Sep 2013 A1
Foreign Referenced Citations (33)
Number Date Country
1147176 May 1983 CA
1232781 Feb 1988 CA
2628230 Jul 2004 CN
464002 Aug 1928 DE
2035793 Mar 1972 DE
2453480 May 1976 DE
3744176 Aug 1989 DE
102004011892 Jan 2005 DE
202004013404 Mar 2005 DE
20 2007 003841 Sep 2007 DE
856233 Dec 1960 EP
503559 Sep 1992 EP
618046 Oct 1994 EP
1693163 Feb 2006 EP
01777042 Apr 2007 EP
787512 Sep 1935 FR
55045442 Mar 1980 JP
57-13165 Jan 1982 JP
61136778 Jun 1986 JP
3-47775 May 1991 JP
03103162 Oct 1991 JP
429368 Mar 1992 JP
5-31882 Apr 1993 JP
0850512 Jun 1996 JP
I236402 Jul 2005 TW
M284496 Jan 2006 TW
M284500 Jan 2006 TW
M296765 Sep 2006 TW
I270445 Jan 2007 TW
8301406 Apr 1983 WO
9412322 Jun 1994 WO
9623631 Aug 1996 WO
9729887 Aug 1997 WO
Related Publications (1)
Number Date Country
20150013506 A1 Jan 2015 US
Continuations (2)
Number Date Country
Parent 13908703 Jun 2013 US
Child 14491891 US
Parent 12567606 Sep 2009 US
Child 13908703 US
Continuation in Parts (1)
Number Date Country
Parent 12009461 Jan 2008 US
Child 12567606 US