These claimed embodiments relate to a method for braking a bicycle and more particularly to a handlebar having integrated brake handles.
Most bicycles use brake levers to control the front and rear wheel braking action to slow down or stop the bicycle. It is considered a necessary and critical part of the bicycle. Brake levers are typically mounted on or near the handlebar to allow easy access for the cyclist hands to engage the brake handle.
Bicycles are human powered vehicles and therefore the efficiency of the bicycle is extremely important to achieve acceptable speed for competition racing bicycles. The efficiency of the bicycle depends on many variables. With modern technology the drive train efficiency on a competitive bicycle is 96% or higher. Friction of the drive components, rolling resistance of the wheels, etc. . . . are nearly perfect from an efficiency standpoint. Since the drive train efficiency has become nearly perfect on competition bicycles, it is well known within the sport that nearly all of the impedance to the cyclist speed is caused by air resistance. Therefore almost all of the development for faster bicycles has become centered on improving the aerodynamics of the bicycle and the cyclist's position.
There are many different disciplines and forms of bicycle racing. When cyclists are allowed to draft behind other cyclist or group of cyclists, there are specific rules to make sure the position of the cyclist and design of the bicycle does not compromise control and the safety of the sport. There are several disciplines in bicycle racing that do not allow riding closely behind another rider to work as a team or group. The sport of Triathlon (swim, bike, run) is one such example.
The sport of professional and more specifically non-professional triathlon has grown rapidly over the past 30 years since the first IronMan event was held in Hawaii. Therefore the market for competition bicycles specifically designed for triathlon racing has become significant.
A typical brake device for a Triathlon Bike (also referred to as TT Bike). includes a handlebar, external shifters, and brake levers. Short comings of these typical brake devices are that they have reduced aerodynamic efficiency. Further the brake levers stick out and can deeply puncture a bike rider in an accident. Also the nature of the handle makes it difficult to lower the profile height without losing the distance the cable is pulled.
A bicycle handlebar is provided that includes an elongated member having a top and a bottom. The elongated member includes a narrow midsection that attaches to a front mounting post of a bicycle and extends outward from the front mounting post in a substantially horizontal plane. The elongated member includes a pair of wide main sections respectively disposed adjacent the midsection to support arms of a bicycle rider on the top when the elongated member is attached to the front mounting post. The member forms a first and second recess respectively disposed adjacent each end of the member on the bottom. A first and a second pin is coupled to the member and respectively extends through the first and second recess. A first and second brake handle is rotatably coupled to the first and second pin respectively. The first and second brake handle are at least partially disposed within each recess. The brake handles respectively couple to a front and rear brake cable of a bicycle to brake the bicycle in response to a partial rotation of the first or second brake handle about the first pin or the second pin within the recess by the bicycle user.
A method of braking a bicycle is disclosed. The method includes providing an elongated member with a top, a bottom, and a narrow midsection. Formed in the elongated member are a) a pair of wide main sections adjacent the narrow midsection, and b) a first recess and a second recess adjacent each end of the member on the bottom. A first and second pin are coupled to the member through the first and second recess respectively. A first and second brake handle are rotatably coupled to the first and second pin respectively such that the first and second brake handle are at least partially disposed within each recess. The narrow midsection is attached to a front mounting post of a bicycle such that the elongated member extends outward from the front mounting post in a substantially horizontal plane. The brake handles couples to a front brake cable and a rear brake cable of a bicycle respectively. The front brake cable couples to a bicycle front brake and the rear brake cable to a bicycle rear brake. Arms of a bicycle rider are supported on the top adjacent the wide main sections when the elongated member is attached to the front mounting post. The bicycle is braked with hands of the bicycle rider reaching below the attached member adjacent the first end or the second end to engage a rear section of the first or the second brake handle to at least partially rotate the first or the second brake handle about the first pin or the second pin within the recess.
A bicycle is provided that includes a bicycle frame with a front mounting post. A front wheel and a back wheel are coupled to the bicycle frame. A front brake and a rear brake are coupled to the bicycle for stopping rotation of the front wheel and back wheel. One end of a front cable engages with the front brake, and one end of a rear cable engages with the rear brake. The bicycle has a handlebar that includes an elongated member having a top and a bottom. The elongated member includes a narrow midsection attached to the front mounting post and extends outward from the front mounting post in a substantially horizontal plane. The elongated member includes a pair of wide main sections respectively disposed adjacent the midsection. The pair of wide main sections support the arms of a bicycle rider on the top adjacent the wide main sections. The member forms a first and second recess respectively disposed adjacent each end of the member on the bottom. A first and second pin are coupled to the member and respectively extend through the first and second recess. A first and second brake handle rotatably couple to the first and second pin respectively. The first and second brake handles includes a front section that extends from at least one of the pins forward away from the bicycle and a rear section that extends from at least one of the pins backward toward the bicycle. The first and second brake handle respectfully are at least partially disposed within the first and second recess. the front section of the front brake handle engages with the front brake cable and the front section of the rear brake handle engages the rear brake cable of the bicycle to brake the bicycle in response to a bicycle rider engaging with either the rear section of the front brake handle to partially rotate the front brake handle about the first pin within the recess, or the rear brake handle to partially rotate the rear brake handle about the second pin within the recess.
One purpose of the subject invention being disclosed is to improve the aerodynamics and safety of the brake lever and handlebar apparatus.
The detailed description is described with reference to the accompanying figures. In the figures, the left-most digit(s) of a reference number identifies the figure in which the reference number first appears. The use of the same reference number in different figures indicates similar or identical items.
Referring to
Referring to
The elongated member 26 includes a pair of wide main sections 36, 38 respectively disposed adjacent the midsection 32. The pair of wide main sections 36 and 38 to support the arms of a bicycle rider on top 28 adjacent the wide main sections 36, 38. The member 26 forms a first recess 40 and a second recess 42 respectively disposed adjacent each end (44 and 46) of the member 26 on bottom 30. The first recess 40 and second recess 42 are formed on the bottom side 30 of the elongated member 26. In one implementation, recess 40 and 42 are wide enough and have a curvature to allow sufficient rotational movement of the lever 54a and/or 54b (
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
During operation of the bicycle, the arms of a bicycle rider are supported on the top adjacent the wide main sections when the elongated member is attached to the front mounting post. The bicycle 10 is braked using the hands of the bicycle rider reaching below the attached member 26 adjacent the first end 44 or the second end 46 of member 26 to engage a rear section 58 of the first brake handle 54a or the second brake handle 54b. The bicycle rider at least partially rotates the first brake handle 54a or the second brake handle 54b about the first pin 50 or the second pin 52 within the recess 40 or 42. Once the brake handle 54a or 54b is rotated, the spring 80 generates a force to automatically return the handle 54a or 54b to its original position. Top of handle 54a and/or handle 54b rests against a portion of a wall of recess 40 and/or recess 42 respectively to maintain the original position of handles 54a, 54b in a nearly neutral and/or horizontal position.
While the above detailed description has shown, described and identified several novel features of the invention as applied to a preferred embodiment, it will be understood that various omissions, substitutions and changes in the form and details of the described embodiments may be made by those skilled in the art without departing from the spirit of the invention. Accordingly, the scope of the invention should not be limited to the foregoing discussion, but should be defined by the appended claims.