The present invention relates to devices for securing bicycles and more particularly to a bicycle carrier for use on vehicles.
Bicycles are often transported on vehicles. Numerous racks and devices have been devised to secure bicycles to vehicles during transport. One particularly common bicycle carrier utilizes a fork block mounted to a rack structure. The fork block has a skewer that clamps the front forks of a bicycle to secure the bicycle to the rack. The clamping pressure of the skewer on the forks is sufficient to stabilize the bicycle against tipping during travel. Typically, a wheel tray extends back from the fork block to support the rear wheel.
Fork block-type bicycle carriers present a number of design challenges. First, the fork block/skewer must grip the forks of the bicycle firmly enough to provide the needed stability. At the same time, it should be easy to secure the bicycle to or release it from the fork block, as well as easy to adjust to fit various bikes. In addition, the carrier should provide some way of securing the bicycle against theft when it is left unattended. More recently, bicycles have begun to incorporate front disk brakes. The disk brakes require calipers mounted to the front forks and such calipers often will not fit over the wheel tray on existing designs.
A sport equipment carrier in the form of a bicycle carrier according to the present invention is shown generally at 10 in
Rack portion 14, shown mounted to the roof of a vehicle, includes crossbars 30, which extend across the roof and are typically either round or rectangular in cross section. The crossbars are secured to the vehicle by towers 32 that may secure to the gutters at the edge of the roof or an original equipment rack. Alternatively, the rack portion may be part of a hitch-mounted rack or other type of rack.
As shown in
Lower jaw 44 is selectively secured by a catch 52 controlled by a handle 54. Handle 54 is pivotally mounted to head portion 40 at a pivot pin 56. The catch includes an upper hoop 58 that fits around a pin 60 carried by handle 54. The catch also includes a lower hook 62 that fits into a recess 64 formed in the free end of the lower jaw.
As the handle is raised to the open position, the catch is lowered sufficiently to allow the hook to be removed from the recess, releasing the lower jaw. To secure the jaw, the hook is placed in the recess and the handle is depressed. This brings the catch up and closes the jaw. The hook has sufficient curvature to provide some tension on the lower jaw in the closed position. The arrangement of couplings between the handle, catch and lower jaw creates an over-center geometry when the handle is in the closed position so that the handle tends to remain closed unless manually opened.
Head portion 40 includes a passage 70 configured to receive a skewer bolt 72. As will be described below, the skewer bolt is removable and serves to clamp the forks to the head portion. A locking mechanism interacts with the skewer bolt to selectively permit or prevent the opening of the lower jaw. The locking mechanism includes a toggle member 74 pivotally mounted on pivot pin 56. The toggle member includes a lever end 76 and an interference end 78 that projects through slots 80, 82 formed in the handle and catch into passage 70. See
When the toggle member is in the lower or released configuration, the handle can be operated normally to clamp or release a crossbar. However, when the toggle member is in the upper or locked configuration, it blocks movement of the handle and therefore release of the crossbar. More specifically, in the locked configuration, the upper surface of the interference end rides against the lower surface of the skewer, while the lower surface is located against the bottom of slot 80. In order to rotate the handle, the bottom of the slot must rotate upward, which cannot happen while the toggle is under the skewer bolt.
By using the locking mechanism, a user can select at the time they install the skewer bolt whether or not they want the fork block to be releasable on the crossbar with the skewer locked. By engaging the locking mechanism, additional security against theft of the fork block and/or bicycle is obtained. However, by unlocking the mechanism, it is easier to adjust the location of the fork blocks on the crossbars to accommodate various bicycles or combinations of other equipment that might be mounted to the crossbars.
Extension portion 42 is generally elongate and extends back from head portion 40 to a wheel tray mount 86. The wheel tray is secured to the wheel tray mount by a bolt 88 and nut 90. The extension portion includes a waist region 92 between the head portion and wheel tray mount to provide increased clearance for calipers 20. See
Skewer bolt 72 forms part of a skewer assembly 100. See
Wheel 104 includes a textured gripping perimeter 120 and a coupling flange 122. The coupling flange 122 is captured in recesses 124 formed in halves 126, 128 of transfer link 106. This arrangement allows the wheel to rotate within the link, but not move longitudinally relative to it. The flattened end of the skewer bolt rides in shank section 130 of the link in an elongate track 132 formed in each half of the link. The tracks have a flat bottom that interacts with the flats on the end of the skewer bolt to prevent the skewer bolt from rotating in the link, while still permitting the bolt to shift longitudinally for adjustment purposes. The link includes tabs 133 that slide in tracks 134 formed in housing 102.
Spring 108 fits over shank section 130 and biases against the bottom of cam plate 110. This tends to push the wheel away from the cam plate and therefore biases the skewer bolt to the open position. The cam plate includes ribs 136 that fit in tracks 134 to prevent the cam plate from rotating in the housing. The cam plate is secured to the housing by a pair of lock pins 137 pressed through holes 138 in the housing and cam plate.
Cam lever 112 is attached to the end of the shank section of transfer link 106 via a pin 140 pressed through holes 142 formed in the shank and lever. The cam lever includes an arcuate cam surface 144 that rides against cam plate 110. As the lever is rotated, the cam surface is shaped to shift the link toward and away from the lever end of the skewer assembly to tighten or loosen the skewer assembly. See
It should be noted that the housing including access openings 146 that provide access to the adjustment wheel when the lever is in the released position. See
The lever includes a lock receptacle 150 configured to receive a lock body 152. The lock body includes a rotatable T-catch 154 that can be rotated with a key to either pass through or catch on a slot 156 formed in a lock shelf located on the side of the housing. When the catch is engaged to catch on the slot, the lever cannot be opened to release the skewer assembly, and, as long as the lever remains closed, the wheel is hidden and cannot be used to loosen the skewer. Moreover, because the wheel is mounted inside the housing and the skewer housing cannot rotate on the skewer bolt because of the interaction of the flats in the transfer link, it is not possible to use the skewer housing as a handle to loosen the skewer assembly.
The various structural members of the disclosed embodiment may be constructed of steel, stainless steel, nylon, aluminum or similar materials with sufficient structural strength to withstand the loads incurred in use.
It is believed that the disclosure set forth above encompasses multiple distinct inventions with independent utility. While each of these inventions has been disclosed in its preferred form, the specific embodiments thereof as disclosed and illustrated herein are not to be considered in a limiting sense as numerous variations are possible. The subject matter of the inventions includes all novel and non-obvious combinations and subcombinations of the various elements, features, functions and/or properties disclosed herein. No single feature, function, element or property of the disclosed embodiments is essential to every one of the disclosed inventions. Similarly, where the claims recite “a” or “a first” element or the equivalent thereof, such claims should be understood to include incorporation of one or more such elements, neither requiring nor excluding two or more such elements.
It is believed that the following claims particularly point out certain combinations and subcombinations that are directed to some of the disclosed inventions and are novel and non-obvious. Inventions embodied in other combinations and subcombinations of features, functions, elements and/or properties may be claimed through amendment of the present claims or presentation of new claims in this or a related application. Such amended or new claims, whether they are directed to a different invention or directed to the same invention, whether different, broader, narrower or equal in scope to the original claims, are also regarded as included within the subject matter of the inventions of the present disclosure.
This application is a continuation of U.S. patent application Ser. No. 10/321,299 filed Dec. 16, 2002 now U.S. Pat. No. 6,851,590 which is a continuation application of Ser. No. 09/585,723 filed May 31, 2000, now U.S. Pat. No. 6,494,351, and are hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
3828993 | Carter | Aug 1974 | A |
3848784 | Shimano et al. | Nov 1974 | A |
4629104 | Jacquet | Dec 1986 | A |
4842148 | Bowman | Jun 1989 | A |
5042705 | Johansson | Aug 1991 | A |
5203484 | Englander | Apr 1993 | A |
5275319 | Ruana | Jan 1994 | A |
5362173 | Ng | Nov 1994 | A |
5377886 | Sickler | Jan 1995 | A |
5419479 | Evels et al. | May 1995 | A |
5492258 | Brunner | Feb 1996 | A |
5511894 | Ng | Apr 1996 | A |
5598959 | Lorensen et al. | Feb 1997 | A |
5730343 | Settelmayer | Mar 1998 | A |
5762248 | Englander et al. | Jun 1998 | A |
5862964 | Moliner | Jan 1999 | A |
5875947 | Noel et al. | Mar 1999 | A |
5924614 | Kuntze et al. | Jul 1999 | A |
6062450 | Noel et al. | May 2000 | A |
6167735 | Brown | Jan 2001 | B1 |
6283310 | Dean et al. | Sep 2001 | B1 |
6425509 | Dean et al. | Jul 2002 | B1 |
6494351 | Dean | Dec 2002 | B1 |
6851590 | Dean | Feb 2005 | B2 |
Number | Date | Country |
---|---|---|
3912692 | Apr 1989 | DE |
2251187 | Jun 1975 | FR |
2420454 | Oct 1979 | FR |
2428545 | Jan 1980 | FR |
2303344 | Feb 1997 | GB |
10-138847 | May 1998 | JP |
WO9810959 | Mar 1998 | SE |
Number | Date | Country | |
---|---|---|---|
20050205627 A1 | Sep 2005 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10321299 | Dec 2002 | US |
Child | 11053180 | US | |
Parent | 09585723 | May 2000 | US |
Child | 10321299 | US |