The present invention relates to a bicycle, and more particularly to a bicycle chain.
Bicycle is a human-powered vehicle, having a frame, two wheels, and a drivetrain system. The drivetrain system includes a chain, a front crankset, a rear cogset, a front derailleur, and a rear derailleur. The derailleurs are operated to derail the chain onto different sprockets.
Typically, a conventional bicycle chain includes a plurality of inner links and outer links, which are connected by pins. In a transverse movement of the chain when derailing, the outer links tend to contact with the sprocket. To enhance a smooth transverse movement of the chain and reduce interference when derailing, the crankset is provided with recess or dents, or the chain has specific design.
U.S. Patents No. 2008/0119312 and U.S. Pat. No. 7,325,391 disclosed a bicycle chain, which provides dents on the outer links and inclined portions on opposite ends of the outer links. The dents reduce thicknesses of the outer links, and the inclined portions provide spaces for derailing the chain onto the other sprocket.
However, making dents on the outer links will complicate the manufacture process, and the inclined portion will reduce the strength of the outer link. Therefore, the prior art didn't provide a good solution.
In view of the above, the primary objective of the present invention is to provide a bicycle chain, which provides a smooth movement of the chain when derailing.
The secondary objective of the present invention is to provide a bicycle chain, which provides a low torque loss and high torque output.
In order to achieve the objective of the present invention, a bicycle chain includes a plurality of link units in series connection, and each of the link units includes two outer link plates, two inner link plates, and a pin. Each outer link plate includes two outer plate end portions and an outer plate connecting portion between to the outer plate end portions, and each outer plate end portion has a bore. Each outer link plate is defined with a bore line, which extends through centers of the bores, and two radial lines, which extend through the centers of the bores respectively and are perpendicular to the bore line. Each outer plate end portion of the outer link plate has two cut portions on an edge thereof, and each cut portion has two inclined sections on opposite sides of the edge of the outer plate end portion. Opposite ends of the inclined sections are located at opposite sides of the radial lines. The inner link plates each has two inner plate end portions, and each inner plate end portion has a bore. The inner link plates are attached to inner sides of the outer link plates with the bores of the inner link plates aligned with the bores of the outer link plates respectively. The pin is inserted into the bores of the outer link plates and the inner link plates.
The cut portions of the outer link plates provides a space, which is helpful to derailing the chain onto another sprocket in a low interference and a fast and smooth way.
The present invention will be best understood by referring to the following detailed description of some illustrative embodiments in conjunction with the accompanying drawings, in which
The present invention provides a new design of the chain 12 to reduce the interference between the chain 12 and the sprockets of the front crankset 16 and rear cogset 18 when derailing the chain 12 through the derailleurs 20, 22.
As shown in
As shown in
As shown in
As shown in
The outer link plate 32 has two cut portions 56 on edges of the outer plate end portions 34 respectively, and each of the cut portions 56 includes two inclined sections 58, 60 on opposite sides of the edge of the outer plate end portion 34. The inclined sections 58, 60 make the bore 38 closer to the edge of the outer plate end portion 34. Furthermore, opposite ends of the inclined sections 58, 60 are located at opposite sides of the radial lines 52, 54 respectively.
The outer link plate 32 further has a curved section 62 on each of the edges of the outer plate end portions 34 respectively. Opposite ends of the curved section 62 are connected to the cut portions 56. Preferable, the curved section 62 is between the inclined sections 58, 60, and connected thereto.
As shown in
The outer link plate 32 further includes two extending curved sections 72 on each of the edges of the outer plate end portions 34 respectively. Each of the extending curved sections 72 has opposite ends connected to the end of the inclined sections 58, 60 and the outer plate connecting portion 36. Each of the extending curved sections 72 has an outward portion 74 and an inward portion 76. The outward portion 74 has opposite ends connected to the inclined section 58, 60 and the inward portion 76 while the inward portion 76 is connected to the outer plate connecting portion 36. The opposite curvature design of the extending curved sections 72 reduces the stresses of the inclined sections 58, 60, the outer plate connecting portion 36, as well as the portions nearby.
As shown in
The present invention reduces an area of the outer plate end portions 34, and a distance between the inclined sections 58, 60 and the center of the bore 38, so that the outer link plates 32 could be made of medium carbon steel with a suitable heat treatment to have a desirable strength at the inclined sections 58, 60. The design of the bent portions 78 increases a tensile strength of the outer link plates 32. As a result, the chain 12 of the present invention has an essential strength.
As shown in FIS. 9 and 10, while the chain 12 is being derailed from a small sprocket 26 onto a big sprocket 27, the chain 12 is forced toward the big sprocket 27 in a tilted condition, and the outer link plate 32 on the inner side is the first part arrived at the big sprocket 27. The link units 30 will be closer to the big sprocket 27 than the prior art, so that teeth of the big sprocket 27 and the chain units 30 which are engaged with the big sprocket 27 are kept in the same direction. As a result, the teeth of the big sprocket 27 is located at centers of the chain units 30.
As shown in
In conclusion, the chain 12 of the present invention provides a space for derailing the chain 12 from the small sprocket 26. With the tilting angle of the chain 12, the chain could be derailed with a low interference.
Although the chain 12 is tilted and tensioned when derailing, it could make the teeth of the sprocket 26 engage the link units 30 at the centers thereof. Therefore, a relative angle between the chain 12 and the sprocket 26 is reduced. It could reduce the tilting angle and the tension of the chain 12, furthermore, it could increase the mobility of the chain 12 to make it faster and smoother for derailing.
It must be pointed out that the embodiments described above are only some preferred embodiments of the present invention. All equivalent structures which employ the concepts disclosed in this specification and the appended claims should fall within the scope of the present invention.
Number | Name | Date | Kind |
---|---|---|---|
1109808 | Wilmot | Sep 1914 | A |
1453088 | Bachman | Apr 1923 | A |
1694275 | Merwin | Dec 1928 | A |
4102216 | Nagano | Jul 1978 | A |
5362282 | Lickton | Nov 1994 | A |
7325391 | Oishi | Feb 2008 | B1 |
7437870 | Wu | Oct 2008 | B2 |
7946941 | Oishi | May 2011 | B2 |
8157683 | Korse | Apr 2012 | B2 |
9255624 | Fukumori | Feb 2016 | B2 |
9939045 | Fukumori | Apr 2018 | B2 |
20080119312 | Oishi et al. | May 2008 | A1 |
20110263369 | Kurihara | Oct 2011 | A1 |
20150094181 | Fukumori | Apr 2015 | A1 |
20150308542 | Fukumori | Oct 2015 | A1 |
20190048974 | Fukumori | Feb 2019 | A1 |
Number | Date | Country | |
---|---|---|---|
20180223955 A1 | Aug 2018 | US |