1. Field of the Invention
This invention generally relates to a bicycle component that is movable between at least two positions. More specifically, the present invention relates to a bicycle component with position sensing for sensing a position of part of the bicycle component (e.g., a shift operating device, a derailleur, etc.).
2. Background Information
Bicycling is becoming an increasingly more popular form of recreation as well as a means of transportation. Moreover, bicycling has become a very popular competitive sport for both amateurs and professionals. Whether the bicycle is used for recreation, transportation or competition, the bicycle industry is constantly improving the various components of the bicycle.
Most bicycles are provided with a drive train having multiple gears that allows the rider to select a particular gear for a particular situation. There are many types of shifting arrangements and drive trains that are currently available on the market. In most cases, a gear position indicator is provided to inform the rider of the current gear selection. In the case of mechanical shift operating device, a mechanical gear position indicator is often used to indicate the gear position. Some of these mechanical gear position indicators are operated by a cable that is connected to the shift operating device. Typically, a separate gear position indicator is provided for each of the shift operating devices. For example of this type of arrangement is disclosed in U.S. Pat. No. 6,647,824 to Watarai (assigned to Shimano Inc.).
Recently, bicycles have been provided with cycle computers to inform the rider of various traveling conditions of the bicycle. These cycle computers typically provide the rider with information about the current gear position. When a cycle computer is used, the cycle computer can display the gear position for each of the shift operating devices in a single display unit at a central location of the handlebar. This very convenient for the rider. In order to use the cycle computer to display the current gear positions of the derailleurs, the cycle computer needs to receive electrical signals that are indicative of the gear positions of the derailleurs.
In view of the above, it will be apparent to those skilled in the art from this disclosure that there exists a need for an improved bicycle component. This invention addresses this need in the art as well as other needs, which will become apparent to those skilled in the art from this disclosure.
One object of the present invention is to provide a bicycle component that can easily and accurately identify one of predetermined operating positions of the bicycle component.
The foregoing objects can basically be attained by providing a bicycle component that basically comprises a base member, a movable portion, a magnetic element and a position sensing device. The base member is configured to be attached to a bicycle. The movable portion is movably coupled to the base member. The movable portion includes a plurality of predetermined operating positions. The magnetic element is attached to one of the base member and the movable portion. The position sensing device is attached to the other one of the base member and the movable portion. The position sensing device includes a sensor element that is sensitive to a presence of a magnetic field to generate an analog signal, and an analog-to-digital conversion unit that is configured to convert the analog signal from the sensor element into a digital signal to identify one of the predetermined operating positions of the movable portion.
These and other objects, features, aspects and advantages of the present invention will become apparent to those skilled in the art from the following detailed description, which, taken in conjunction with the annexed drawings, discloses preferred embodiments of the present invention.
Referring now to the attached drawings which form a part of this original disclosure:
Selected embodiments of the present invention will now be explained with reference to the drawings. It will be apparent to those skilled in the art from this disclosure that the following descriptions of the embodiments of the present invention are provided for illustration only and not for the purpose of limiting the invention as defined by the appended claims and their equivalents.
Referring initially to
A cycle computer 33 is mounted on the handlebar 16 for providing information to the rider, including but no limited to, gear positions corresponding to the positions of the rear derailleur 18 and the front derailleur 26. The cycle computer 33 is electrically coupled to the bicycle control device 12 by a first electrical wire 34 for receiving an electrical signal that is indicative of the gear position of the rear derailleur 18. The cycle computer 33 is electrically coupled to the bicycle control device 14 by a second electrical wire 35 for receiving an electrical signal that is indicative of the gear position of the front derailleur 26.
Referring now to
The base member 36 is fixedly mounted to the handlebar 16 in a relatively conventional manner. In particular, the base member 36 has a body 36a and a handlebar mounting structure 36b, which is preferably a conventional band clamp or similar structure. Thus, the base member 36 is configured and arranged to be attached to the bicycle 10.
The first shift operating lever 41 is a dual function operating lever that performs a braking operation in addition to a shifting operation. Thus, the bicycle control device 14 is configured and arranged to perform both a braking operation and a shifting operation as a single integrated unit that is mounted to the handlebar 16. In the illustrated embodiment, the first shift operating lever 41 is configured and arranged to perform a wire pulling operation and a braking operation, while the second shift operating lever 42 is configured and arranged to perform a wire releasing operation.
In the illustrated embodiment, as seen in
Generally, the first shift operating lever 41 is operatively coupled to the shift control unit 38 via the control member 40 to operate the shift control unit 38 (mainly, the wire takeup member 51) in a first operating direction D1 or a wire pulling direction about the shift unit axle 50 of the shift control unit 38. The second shift operating lever 42 is operatively coupled to the shift control unit 38 to operate the shift control unit 38 (mainly, the wire takeup member 51) in a second operating direction D2 or a wire releasing direction about the shift unit axle 50 of the shift control unit 38.
In a case where there are only two front sprockets so that the front derailleur 26 only has two gear positions, the position of the wire takeup member 51 is sensed by the gear positioning indicator 43 to indicate the top and low gear positions of the front derailleur 26. In particular, the gear positioning indicator 43 produces a first electrical signal that is indicative of the wire takeup member 51 being in a pulled position, which corresponds to the top gear position, e.g., after the first shift operating lever 41 has been operated. The first electrical signal is sent to the cycle computer 33, where the top gear position of the front derailleur 26 is displayed to the rider. When the wire takeup member 51 is a released position, e.g., the second shift operating lever 42 has been operated, a second electrical signal is produced that is indicative of the wire takeup member 51 being in the released position, which corresponds to the low gear position of the front derailleur 26. This second electrical signal is sent to the cycle computer 33, where the low gear position of the front derailleur 26 is displayed to the rider. Of course, the gear positioning indicator 43 can be modified to produce additional signals or no signal to indicative of a particular position of the front derailleur 26 as needed and/or desired. Thus, the gear positioning indicator 43 is configured and arranged to produce one or more electrical signals to indicate a position of the front derailleur 26 based on a current position of the shift control unit 38.
Referring now to
As indicated above, the wire takeup member 51 (i.e., the movable portion) includes a plurality of predetermined operating positions (i.e., two in the illustrated embodiment). Since the control device 14 of the illustrated embodiment only has two positions, the magnetic element 61 includes a single magnet with a south pole S and a north pole N. Of course, it will be apparent from this disclosure that several magnets can be used as needed and/or desired.
The position sensing device 62 includes a sensor element 62a and an analog-to-digital conversion unit 62b. In illustrated embodiment, the position sensing device 62 includes a single Hall-effect digital sensor that is formed with the sensor element 62a and the analog-to-digital conversion unit 62b. The position sensing device 62 (Hall-effect digital sensor) is an integrated circuit that switches in response to changes in magnetic fields created by movement of the magnetic element 61. The position sensing device 62 generally switches to a first signal state when the magnetic field of south pole S of the magnetic element 61 comes close to produce a sufficient strength at the sensor element 62a, and switches to a second signal state when the magnetic field of the north pole of the magnetic element 61 comes close to produce a sufficient strength at the sensor element 62a. However, no output signal (e.g., a third signal state) is produce if the magnetic field is removed from the sensor element 62a. Hall-effect digital sensors are well known devices that are commercially available. Thus, the position sensing device 62 will not be discussed and/or illustrated in detail herein.
Moreover, while the position sensing device 62 produces the first and second electrical signals in illustrated embodiment, as mentioned above, it will be apparent from this disclosure that that the position sensing device 62 can produce a single signal indicative of one operating position of the wire takeup member 51 (i.e., the movable portion) and then produce no signal when the operating position of the wire takeup member 51 is in another one operating positions of the wire takeup member 51 (i.e., the movable portion).
The sensor element 62a is sensitive to a presence of a magnetic field so as to generate an analog signal. Thus, the sensor element 62a detects the magnetic element 61 to produce a first analog signal when the sensor element 62a is located in the magnetic field of the south pole S of the magnetic element 61 and produce a second analog signal when the sensor element 62a is located in the magnetic field of the north pole N.
The analog-to-digital conversion unit 62b is configured to convert the analog signal from the sensor element 62a into a digital signal to identify one of the predetermined operating positions of the wire takeup member 51 (i.e., the movable portion). In particular, the analog-to-digital conversion unit 62b outputs a first digital signal indicative of a first operating (gear) position of the predetermined operating positions of the wire takeup member 51 (i.e., the movable portion) when the sensor element 62a senses the south pole S of the magnetic element 61. The analog-to-digital conversion unit 62b outputs a second digital signal indicative of a second operating (gear) position of the predetermined operating positions of the wire takeup member 51 (i.e., the movable portion) when the sensor element 62a senses the north pole N.
The cycle computer 33 functions as a gear position identifying unit that is configured to identify one of the predetermined operating (gear) positions of the wire takeup member 51 (i.e., the movable portion) based on first and second digital signals from the analog-to-digital conversion unit 62b of the position sensing device 62. In particular, the cycle computer 33 (position identifying unit) identifies the first operating (gear) position of the predetermined operating positions of the wire takeup member 51 (i.e., the movable portion) when the sensor element 62a senses the south pole S the magnetic element 61. The cycle computer 33 (position identifying unit) identifies the second operating (gear) position of the predetermined operating positions of the wire takeup member 51 (i.e., the movable portion) when the sensor element 52a senses the north pole N the magnetic element 61. In other words, the first and second electrical signals outputted from the gear position indicator 43 are same as the first and second digital signals outputted from the position sensing device 62. Alternatively, the first and second digital signals can be modified to be first and second electrical signals.
Referring now to
The base member 66 is fixedly mounted to the handlebar 16 in a relatively conventional manner. In particular, the base member 66 has a body 66a and a handlebar mounting structure 66b, which is preferably a conventional band clamp or similar structure. Thus, the base member 66 is configured and arranged to be attached to the bicycle 10.
The first shift operating lever 71 is a dual function operating lever that performs a braking operation in addition to a shifting operation. Thus, the bicycle control device 12 is configured and arranged to perform both a braking operation and a shifting operation as a single integrated unit that is mounted to the handlebar 16. In the illustrated embodiment, the first shift operating lever 71 is configured and arranged to perform a wire pulling operation and a braking operation, while the second shift operating lever 72 is configured and arranged to perform a wire releasing operation.
In the illustrated embodiment, as seen in
Generally, the first shift operating lever 71 is operatively coupled to the shift control unit 68 via the control member 70 to operate the shift control unit 68 (mainly, the wire takeup member 81) in a third operating direction D3 or a wire pulling direction about the shift unit axle 80 of the shift control unit 68. The second shift operating lever 72 is operatively coupled to the shift control unit 68 to operate the shift control unit 38 (mainly, the wire takeup member 81) in a fourth operating direction D4 or a wire releasing direction about the shift unit axle 80 of the shift control unit 68.
In a case where there are ten rear gears so that the rear derailleur 18 has a ten gear positions, the position of the wire takeup member 81 is sensed by the gear positioning indicator 73 to indicate each of the ten gear positions of the rear derailleur 18. In particular, the gear positioning indicator 73 produces ten different electrical signals that is indicative of a current position of the wire takeup member 81. These electrical signals are sent to the cycle computer 33, where the current gear position of the rear derailleur 18 is displayed to the rider. Thus, the gear positioning indicator 73 is configured and arranged to produce a plurality of electrical signals to indicate a current operating (gear) position of the rear derailleur 18 based on a current position of the shift control unit 68.
Referring now to
As indicated above, the wire takeup member 81 (i.e., the movable portion) includes a plurality of predetermined operating positions (i.e., ten in the illustrated embodiment). Since the control device 12 of the illustrated embodiment only has ten positions, the magnetic element 91 includes five bar magnets 91a to 91f, with each having a south pole S and a north pole N. Of course, it will be apparent from this disclosure that the number of magnets can be greater or fewer as needed and/or desired.
The position sensing device 92 includes three Hall-effect digital sensors 93a, 93b and 93c that are identical to the one used in the position sensing device 62. Thus, each of the Hall-effect digital sensors 93a, 93b and 93c includes a sensor element and an analog-to-digital conversion unit. The Hall-effect digital sensors 93a, 93b and 93c are each an integrated circuit that switches in response to changes in magnetic fields created by movement of the magnets 81a to 81f in and out of proximity of the Hall-effect digital sensors 93a, 93b and 93c. The Hall-effect digital sensors 93a, 93b and 93c generally switch to a first signal state when the magnetic field of south pole S of one the magnets 81a to 81f comes close to produce a sufficient strength at one the Hall-effect digital sensors 93a, 93b and 93c, and switches to a second signal state when the magnetic field of the north pole of one the magnets 81a to 81f comes close to produce a sufficient strength at one the Hall-effect digital sensors 93a, 93b and 93c. However, no output signal (e.g., a third signal state) is produced if the magnetic field is removed from the digital sensors 93a, 93b and 93c. As mentioned above, Hall-effect digital sensors are well known devices that are commercially available. Thus, the Hall-effect digital sensors 93a, 93b and 93c will not be discussed and/or illustrated in detail herein.
As seen in
The rear and front derailleurs 18 and 26 can be provided with gear positioning indicators that provide signals to the cycle computer 33 for identifying the current gear position. For example, as seen in
In the above discussed embodiments, the gear positioning indicators were installed on cable operated devices, which are merely selected examples. In other words, the gear positioning indicators is not limited to a cable operated system, but rather the gear positioning indicators can be used with other types of devices. For example, the gear positioning indicator can be used with pneumatically operated system, or hydraulically operated system.
In understanding the scope of the present invention, the term “configured” as used herein to describe a component, section or part of a device includes hardware and/or software that is constructed and/or programmed to carry out the desired function. In understanding the scope of the present invention, the term “comprising” and its derivatives, as used herein, are intended to be open ended terms that specify the presence of the stated features, elements, components, groups, integers, and/or steps, but do not exclude the presence of other unstated features, elements, components, groups, integers and/or steps. The foregoing also applies to words having similar meanings such as the terms, “including”, “having” and their derivatives. Also, the terms “part,” “section,” “portion,” “member” or “element” when used in the singular can have the dual meaning of a single part or a plurality of parts. As used herein to describe the present invention, the following directional terms “forward, rearward, above, downward, vertical, horizontal, below and transverse” as well as any other similar directional terms refer to those directions of a bicycle equipped with the present invention. Accordingly, these terms, as utilized to describe the present invention should be interpreted relative to a bicycle equipped with the present invention as used in the normal riding position. Finally, terms of degree such as “substantially”, “about” and “approximately” as used herein mean a reasonable amount of deviation of the modified term such that the end result is not significantly changed.
While only selected embodiments have been chosen to illustrate the present invention, it will be apparent to those skilled in the art from this disclosure that various changes and modifications can be made herein without departing from the scope of the invention as defined in the appended claims. Furthermore, the foregoing descriptions of the embodiments according to the present invention are provided for illustration only, and not for the purpose of limiting the invention as defined by the appended claims and their equivalents.