This application claims priority to Japanese Patent Application No. 2017-199780, filed on Oct. 13, 2017. The entire disclosure of Japanese Patent Application No. 2017-199780 is hereby incorporated herein by reference.
The present disclosure generally relates to a bicycle component.
Some bicycles are provided with a bicycle drive system that assists in propulsion of the bicycle. For example, Japanese Laid-Open Patent Publication No 2014-19181 (Patent document 1) discloses a bicycle drive system in which a bicycle component includes a housing mounted on a frame of a bicycle, a crankshaft provided to the housing, and a motor provided on the housing to assist propulsion of the bicycle.
In some bicycle components, the rotational axis of a propulsion assist motor is arranged parallel to the rotational axis of the crankshaft. Thus, in a direction parallel to the rotational axis of the crankshaft, it is difficult to reduce the size of the bicycle component at the portion where the propulsion assist motor is provided.
One object of the present disclosure is to provide a bicycle component that allows the portion where the propulsion assist motor is provided to be reduced in size in a direction parallel to the rotational axis of the crankshaft.
A bicycle component in accordance with a first aspect of the present disclosure includes a bicycle drive unit and a battery. The bicycle drive unit includes a housing configured to be mounted on a frame of a bicycle, a crankshaft provided to a first portion of the housing, and a propulsion assist motor provided to a second portion of the housing. The battery is electrical connected to the propulsion assist motor to supply electrical power to the propulsion assist motor. The propulsion assist motor includes a rotational axis extending in a direction intersecting a direction in which the crankshaft extends. At least part of the second portion and at least part of the battery are accommodated in the frame in a state in which the second portion and the battery are arranged next to each other in a direction parallel to the rotational axis of the propulsion assist motor and the battery is coupled to the second portion in an attachable and detachable manner. In accordance with the first aspect, the rotational axis of the propulsion assist motor extends in the direction intersecting the direction in which the crankshaft extends. Thus, in a direction parallel to the rotational axis of the crankshaft, the second portion where the propulsion assist motor is provided can be reduced in size in the sideward direction of the bicycle. Further, at least part of the second portion and at least part of the battery are accommodated in the frame. This contributes to the reduction in size of the bicycle.
In accordance with a second aspect of the present disclosure, in the bicycle component according to the first aspect, the housing is configured to be at least partially accommodated in the frame. In accordance with the second aspect, the interior of the frame is effectively used, and the integrity in the outer appearance of the bicycle drive unit and the frame is improved.
In accordance with a third aspect of the present disclosure, the bicycle component according to the first or second aspect is configured so that the frame includes a down tube. In accordance with the third aspect, the bicycle component is mounted on the down tube.
In accordance with a fourth aspect of the present disclosure, the bicycle component according to any one of the first to third aspects is configured so that the battery has a maximum dimension of smaller than or equal to 75 mm in a direction orthogonal to the rotational axis of the propulsion assist motor. In accordance with the fourth aspect, the dimension of the battery is set to smaller than or equal to 75 mm in the direction orthogonal to the rotational axis of the propulsion assist motor of the housing.
In accordance with a fifth aspect of the present disclosure, the bicycle component according to any one of the first to fourth aspects is configured so that the battery has a maximum dimension of smaller than or equal to 400 mm in a direction parallel to the rotational axis of the propulsion assist motor. In accordance with the fifth aspect, the dimension of the battery is set to smaller than or equal to 400 mm in the direction parallel to the rotational axis of the propulsion assist motor of the housing.
In accordance with a sixth aspect of the present disclosure, the bicycle component according to any one of the first to fifth aspects is configured so that the second portion has a maximum dimension of smaller than or equal to 75 mm in a direction orthogonal to the rotational axis of the propulsion assist motor. In accordance with the sixth aspect, the dimension of the second portion is set to smaller than or equal to 75 mm in a direction orthogonal to the rotational axis of the propulsion assist motor.
In accordance with a seventh aspect of the present disclosure, the bicycle component according to any one of the first to sixth aspects is configured so that the second portion has a minimum dimension of larger than or equal to 40 mm in a direction orthogonal to the rotational axis of the propulsion assist motor. The seventh aspect limits decreases in the strength that would occur if the dimension of the second portion were to be smaller than 40 mm in the direction orthogonal to the rotational axis of the propulsion assist motor.
In accordance with an eighth aspect of the present disclosure, in the bicycle component according to any one of the first to seventh aspects, the second portion has a first dimension extending in a first direction differs from a second dimension extending in a second direction perpendicular to the first direction on a plane orthogonal to the rotational axis of the propulsion assist motor. In accordance with the eighth aspect, the dimensions of the second portion differ in the first direction and the second direction on the plane orthogonal to the rotational axis of the propulsion assist motor.
In accordance with a ninth aspect of the present disclosure, the bicycle component according to the eighth aspect is configured so that the first direction is parallel to a direction in which the crankshaft extends, and the first dimension is smaller than the second dimension. In accordance with the ninth aspect, the dimension of the second portion in the direction parallel to the direction in which the crankshaft extends is smaller than the dimension of the second portion in the direction perpendicular to the direction in which the crankshaft extends.
In accordance with a tenth aspect of the present disclosure, the bicycle component according to the eighth or ninth aspect is configured so that a ratio of the second dimension to the first dimension is larger than 1 and smaller than or equal to 1.5. In accordance with the tenth aspect, the second dimension is restricted from becoming larger than 1.5 times the first dimension.
In accordance with an eleventh aspect of the present disclosure, the bicycle component according to any one of the first to tenth aspects is configured so that the bicycle drive unit is configured such that a distance from the rotational axis of the crankshaft to a part of the bicycle drive unit that is farthest from the rotational axis of the crankshaft is smaller than or equal to 210 mm in the direction parallel to the rotational axis of the propulsion assist motor. In accordance with the eleventh aspect, the distance from the rotational axis of the crankshaft to the end of the bicycle drive unit is set to smaller than or equal to 210 mm in the direction parallel to the rotational axis of the propulsion assist motor.
In accordance with a twelfth aspect of the present disclosure, the bicycle component according to the eleventh aspect is configured so that the second portion of the housing includes a first end and a second end that are spaced in a direction parallel to the rotational axis of the propulsion assist motor. The first end is connected to the first portion, and the part of the bicycle drive unit that is farthest from the rotational axis of the crankshaft includes the second end. In accordance with the twelfth aspect, the distance from the rotational axis of the crankshaft to the second end is set to smaller than or equal to 210 mm.
In accordance with a thirteenth aspect of the present disclosure, the bicycle component according to the eleventh or twelfth aspect is configured so that the battery has a maximum dimension in the direction parallel to the rotational axis of the propulsion assist motor that is smaller than or equal to 290 mm.
In accordance with a fourteenth aspect of the present disclosure, the bicycle component according to any one of the first to thirteenth aspects is configured so that the first portion has a maximum dimension of smaller than or equal to 100 mm in the direction in which the crankshaft extends. In accordance with the fourteenth aspect, the dimension of the first portion is set to smaller than or equal to 100 mm in the direction in which the crankshaft extends.
In accordance with a fifteenth aspect of the present disclosure, the bicycle component according to any one of the first to fourteenth aspects is configured so that the propulsion assist motor has a maximum output of larger than or equal to 10 Nm and smaller than or equal to 80 Nm. In accordance with the fifteenth aspect, the propulsion of the bicycle is assisted in a preferred manner by the propulsion assist motor having the maximum torque of larger than or equal to 10 Nm and smaller than or equal to 80 Nm.
In accordance with a sixteenth aspect of the present disclosure, the bicycle component according to the fifteenth aspect is configured so that the maximum output of the propulsion assist motor is larger than or equal to 10 Nm and smaller than or equal to 60 Nm. In accordance with the sixteenth aspect, the propulsion of the bicycle is assisted in a preferred manner by the propulsion assist motor having the maximum torque of larger than or equal to 10 Nm and smaller than or equal to 60 Nm.
In accordance with a seventeenth aspect of the present disclosure, the bicycle component according to the sixteenth aspect is configured so that the maximum output of the propulsion assist motor is larger than or equal to 10 Nm and smaller than or equal to 40 Nm. In accordance with the seventeenth aspect, the propulsion of the bicycle is assisted in a preferred manner by the propulsion assist motor having the maximum torque of larger than or equal to 10 Nm and smaller than or equal to 40 Nm.
In accordance with an eighteenth aspect of the present disclosure, the bicycle component according to any one of the first to seventeenth aspect is configured so that the propulsion assist motor has a maximum output of larger than or equal to 100 watts and smaller than or equal to 600 watts. In accordance with the eighteenth aspect, the propulsion of the bicycle is assisted in a preferred manner by the propulsion assist motor having the maximum output of larger than or equal to 100 watts and smaller than or equal to 600 watts.
In accordance with a nineteenth aspect of the present disclosure, the bicycle component according to the eighteenth aspect is configured so that the maximum output of the propulsion assist motor is larger than or equal to 100 watts and smaller than or equal to 450 watts. In accordance with the nineteenth aspect, the propulsion of the bicycle is assisted in a preferred manner by the propulsion assist motor having the maximum output of larger than or equal to 100 watts and smaller than or equal to 450 watts.
In accordance with a twentieth aspect of the present disclosure, the bicycle component according to the nineteenth aspect is configured so that the maximum output of the propulsion assist motor is larger than or equal to 100 watts and smaller than or equal to 300 watts. In accordance with the twentieth aspect, the propulsion of the bicycle is assisted in a preferred manner by the propulsion assist motor having the maximum output of larger than or equal to 100 watts and smaller than or equal to 300 watts.
In accordance with a twenty-first aspect of the present disclosure, the bicycle component according to any one of the first to twentieth aspects is configured so that the rotational axis of the propulsion assist motor and the rotational axis of the crankshaft are included in the same plane. In accordance with the twenty-first aspect, the bicycle component is further reduced in size than a case where the rotational axis of the propulsion assist motor and the rotational axis of the crankshaft are skew lines.
In accordance with a twenty-second aspect of the present disclosure, the bicycle component according to the twenty-first aspect is configured so that the rotational axis of the propulsion assist motor is orthogonal to the rotational axis of the crankshaft. In accordance with the twenty-second aspect, the component can be further reduced in size.
In accordance with a twenty-third aspect of the present disclosure, the bicycle component according to any one of the first to twenty-second aspects further includes an output part provided to the housing. The crankshaft and the propulsion assist motor are operatively coupled to the output part to transmit torque from the crankshaft and the propulsion assist motor to the output part. In accordance with the twenty-third aspect, the output part generates the resultant force of the crankshaft and the propulsion assist motor in a preferred manner.
In accordance with a twenty-fourth aspect of the present disclosure, in the bicycle component according to the twenty-third aspect, the output part is configured to mount one or more sprockets. In accordance with the twenty-fourth aspect, the torque of the crankshaft and the propulsion assist motor is transmitted from the output to the sprockets.
In accordance with a twenty-fifth aspect of the present disclosure, the bicycle component according to the twenty-fourth aspects is configured so that the one or more sprockets each include at least thirty teeth no more than fifty-five teeth. In accordance with the twenty-fifth aspect, the torque of the crankshaft and the propulsion assist motor is transmitted by the sprockets, each including at least thirty teeth no more than fifty-five teeth.
In accordance with a twenty-sixth aspect of the present disclosure, the bicycle component according to any one of the twenty-third to twenty-fifth aspects further includes a first one-way clutch provided to the housing in a first power transmission path between the crankshaft and the output part. In accordance with the twenty-sixth aspect, the one-way clutch transmits rotation only in one direction of the crankshaft.
In accordance with a twenty-seventh aspect of the present disclosure, the bicycle component according to any one of the twenty-third to twenty-sixth aspects is configured so that the output part is coaxial with the crankshaft, and at least part of the output part is exposed from the housing. In accordance with the twenty-seventh aspect, the output part and a member of the power transmission path connected to the output part are easily connected.
In accordance with a twenty-eighth aspect of the present disclosure, the bicycle component according to any one of the twenty-third to twenty-seventh aspects further includes a decelerator provided to the housing and connected to the propulsion assist motor. In accordance with the twenty-eighth aspect, the decelerator reduces the rotational speed of the propulsion assist motor in a preferred manner.
In accordance with a twenty-ninth aspect of the present disclosure, the bicycle component according to the twenty-eighth aspect is configured so that the decelerator includes a first gear, to which the torque of the propulsion assist motor is transmitted, and a second gear engaged with the first gear to transmit the torque to the output part. The first gear includes a first rotational axis parallel to the rotational axis of the propulsion assist motor. The second axis includes a second rotational axis parallel to the rotational axis of the crankshaft. In accordance with the twenty-ninth aspect of the present disclosure, the propulsion assist motor rotates the output by reducing the rotational speed with the first gear and the second gear and changing the rotational direction while reducing the rotational speed.
In accordance with a thirtieth aspect of the present disclosure, the bicycle component according to any one of the twenty-third to twenty-ninth aspects further includes a second one-way clutch provided to the housing in a second power transmission path between the propulsion assist motor and the output part. In accordance with the thirtieth aspect, the second one-way clutch restricts the transmission of rotation force to the propulsion assist motor from the crankshaft and the output part.
In accordance with a thirty-first aspect of the present disclosure, the bicycle component according to the thirtieth aspect is configured so that the second one-way clutch is provided to the first portion of the housing. In accordance with the thirty-first aspect, the second one-way clutch is located at a position close to the crankshaft.
In accordance with a thirty-second aspect of the present disclosure, the bicycle component according to any one of the first to thirty-first aspects further includes an electronic controller provided to the housing and operatively coupled to the propulsion assist motor. In accordance with the thirty-second aspect, the wiring between the controller and the propulsion assist motor is shortened.
In accordance with a thirty-third aspect of the present disclosure, the bicycle component according to the thirty-second aspect further includes a detector provided to the housing and configured to detect a human driving force input from the crankshaft. The electronic controller is configured to control the propulsion assist motor in accordance with a detection result of the detector. In accordance with the thirty-third aspect, there is no need to mount the detector separately from the bicycle drive unit.
In accordance with a thirty-fourth aspect of the present disclosure, the bicycle component according to any one of the first to thirty-third aspects further includes an electrical terminal provided to the housing and electrically connected to the battery. In accordance with the thirty-fourth aspect, the electrical terminal facilitates the use of the battery power.
In accordance with a thirty-fifth aspect of the present disclosure, the bicycle component according to the thirty-fourth aspect is configured so that the second portion of the housing includes a first end and a second end that are spaced apart in a direction parallel to the rotational axis of the propulsion assist motor. The first end is connected to the first portion, and the electrical terminal is provided on the second end. In accordance with the thirty-fifth aspect, power is easily supplied from the battery that is located on the second end of the second portion.
The bicycle component in accordance with the present disclosure allows the portion where the propulsion assist motor is provided to be reduced in size in a direction parallel to the rotational axis of the crankshaft.
Referring now to the attached drawings which form a part of this original disclosure.
Selected embodiments will now be explained with reference to the drawings. It will be apparent to those skilled in the bicycle field from this disclosure that the following descriptions of the embodiments are provided for illustration only and not for the purpose of limiting the invention as defined by the appended claims and their equivalents.
With reference to
As shown in
The wheels 14 include a front wheel 18 and a rear wheel 20. The front wheel 18 includes an axle 18A connected to an end of the front fork 12A. The rear wheel 20 includes an axle 20A connected to a rear end of the frame 30.
The drive mechanism 16 includes a crank 22 and a pair of pedals 24. The crank 22 includes a crankshaft 64 and a pair of crank arms 22A. The crankshaft 64 is included in the drive unit 60. The drive mechanism 16 transmits the human driving force applied to the pedals 24 to the rear wheel 20. The drive mechanism 16 includes a front rotational body 26 coupled to an output part 68 of the drive unit 60. The front rotational body 26 includes a plurality of sprockets 26A. The drive mechanism 16 is configured to transmit rotation of the crank 22 through, for example, a chain, a belt, or a shaft, to a rear rotational body 28 coupled to the rear wheel 20. The rear rotational body 28 includes a sprocket. A one-way clutch is provided between the rear rotational body 28 and the rear wheel 20. The one-way clutch is configured to rotate the rear wheel 20 forward in case the rear rotational body 28 rotates forward. The rear rotational body 28 can include a plurality of rear sprockets.
The frame 30 includes a mounting portion 32 into which part of a housing 62 of the drive unit 60 is inserted (refer to
As shown in
As shown in
As shown in
As shown in
The opening 36 shown in
The first opening portion 36A is formed to allow for insertion of at least part of a first portion 84 of the housing 62 accommodating the crankshaft 64. The second opening portion 36B is formed to allow for insertion of at least part of a second portion 86 of the housing 62 accommodating the motor 66. The frame 30 includes the accommodation compartment 30S (refer to
The frame 30 further includes a cover 42. The cover 42 closes at least part of the opening 36. Preferably, the cover 42 entirely closes the second opening portion 36B and a part of the first opening portion 36A that opens toward the lower side of the bicycle 10. The cover 42 includes two frame attaching portions 42A that are attachable to at least one of the opening 36 and the drive unit 60. The frame attaching portions 42A can be attachable to only the mounting portion 32 of the frame 30 adjacent the opening 36, only the drive unit 60, or both the mounting portion 32 and the drive unit 60. Here, the cover 42 is attached to the mounting portion 32 by a plurality of bolts B1 coupling the frame attaching portions 42A to the first and second side walls 34 and 38. The frame attaching portions 42A include a pair of holes into which the bolts B1 are inserted. The bolts B1 are inserted through the holes of the frame attaching portions 42A and fastened to threaded holes provided to the first and second side walls 34 and 38 of the mounting portion 32 around the opening 36 to attach the cover 42 to the mounting portion 32.
As shown in
As shown in
The drive unit 60 includes a first direction X, a second direction Y and a third direction Z. The first direction X is parallel to the direction in which the crankshaft 64 extends. The direction in which the crankshaft 64 extends is parallel to the rotational axis C1 of the crankshaft 64. The second direction Y is parallel to the rotational axis C2 of the motor 66. The second direction Y intersects the first direction X. Preferably, the first direction X and the second direction Y extend perpendicular to each other on a plane orthogonal to the rotational axis C2 of the motor 66. The third direction Z is orthogonal to the first direction X and the second direction Y.
With reference to
In the direction parallel to the rotational axis C2 of the motor 66, a distance LA from the rotational axis C1 of the crankshaft 64 to the part of the drive unit 60 that is the farthest from the rotational axis C1 of the crankshaft 64 is preferably smaller than or equal to 210 mm. More preferably, the distance LA from the rotational axis C1 of the crankshaft 64 to the part of the drive unit 60 that is the farthest from the rotational axis C1 of the crankshaft 64 is smaller than or equal to 190 mm. Preferably, the distance LA from the rotational axis C1 of the crankshaft 64 to the part of the drive unit 60 that is the farthest from the rotational axis C1 of the crankshaft 64 is larger than or equal to 100 mm.
In a direction orthogonal to the rotational axis C2 of the motor 66 and the rotational axis C1 of the crankshaft 64, the drive unit 60 has a maximum dimension LZ of, preferably, smaller than or equal to 110 mm. More preferably, in the direction orthogonal to the rotational axis C2 of the motor 66 and the rotational axis C1 of the crankshaft 64, the maximum dimension LZ of the drive unit 60 is smaller than or equal to 80 mm. Preferably, the maximum dimension LZ of the drive unit 60 in the direction orthogonal to the rotational axis C2 of the motor 66 and the rotational axis C1 of the crankshaft 64 is larger than or equal to 50 mm. The maximum dimension LZ of the drive unit 60 in the direction orthogonal to the rotational axis C2 of the motor 66 and the rotational axis C1 of the crankshaft 64 is substantially equal to the maximum dimension of the housing 62 in the direction orthogonal to the rotational axis C2 of the motor 66 and the rotational axis C1 of the crankshaft 64.
Preferably, the ratio of the maximum dimension LZ of the drive unit 60 in the direction orthogonal to the rotational axis C2 of the motor 66 and the rotational axis C1 of the crankshaft 64 to the maximum dimension LY of the drive unit 60 in the direction parallel to the rotational axis C2 of the motor 66 is smaller than or equal to 6. More preferably, the ratio of the maximum dimension LZ of the drive unit 60 in the direction orthogonal to the rotational axis C2 of the motor 66 and the rotational axis C1 of the crankshaft 64 to the maximum dimension LY is larger than or equal to 1.3 and less than or equal to 6. Further preferably, the ratio of the maximum dimension LZ of the drive unit 60 in the direction orthogonal to the rotational axis C2 of the motor 66 and the rotational axis C1 of the crankshaft 64 to the maximum dimension LY is smaller than or equal to 4.
In a direction parallel to the rotational axis C1 of the crankshaft 64, the housing 62 has a maximum dimension LX that is preferably smaller than or equal to 100 mm. More preferably, the maximum dimension LX of the housing 62 in the direction parallel to the rotational axis C1 of the crankshaft 64 is smaller than or equal to 80 mm. Preferably, the maximum dimension LX of the housing 62 in the direction parallel to the rotational axis C1 of the crankshaft 64 is larger than or equal to 70 mm.
As shown in
As shown in
The first portion 84 has an outer shape that is substantially cylindrical. The first portion 84 includes an outer circumferential portion provided with one or more projections 84A projecting radially outward from the first portion 84. Preferably, there is a plurality of, for example, three projections 84A. Each of the projections 84A includes one of the first coupling portions 84B, which is coupled to the frame 30. The first coupling portion 84B includes a threaded hole fastened with a bolt B2 (refer to
The frame 30 includes second coupling portions 32A that are coupled to the first coupling portions 84B. The second coupling portions 32A include a plurality of holes for insertion of the bolts B2. The holes of the second coupling portions 32A extend parallel to the crankshaft 64. The second coupling portions 32A are provided adjacent the opening 36. The first portion 84 includes a first side surface 88 and a second side surface 90. The first side surface 88 includes one of the end faces in the sideward direction of the bicycle 10. The second side surface 90 includes the other one of the end faces in the sideward direction of the bicycle 10. The first side surface 88 and the second side surface 90 are connected by a connecting wall 89. Preferably, the connecting wall 89 is formed integrally with the first side surface 88 as a one-piece member. The connecting wall 89 extends around the rotational axis C1 of the crankshaft 64. The connecting wall 89 connects the outer circumference of the first side surface 88 and the outer circumference of the second side surface 90 with respect to the radial direction of the crankshaft 64. The second side surface 90 is coupled by a plurality of bolts B3 to the connecting wall 89. The bolts B3 are inserted through insertion holes formed in the outer circumferential portion of the second side surface 90 with respect to the radial direction of the crankshaft 64 and fastened to threaded holes provided to the connecting wall 89.
The first side surface 88 includes a first hole 88A through which the first end 64A of the crankshaft 64 passes. The first side surface 88 includes a ring 88B that projects outward in the sideward direction of the bicycle 10. The ring 88B includes the first hole 88A. The ring 88B includes an outer circumferential portion defining a third coupling portion 88C. A coupling member 44 is coupled to the third coupling portion 88C to couple the drive unit 60 to the frame 30. The third coupling portion 88C includes a male thread. The coupling member 44 is annular and includes an inner circumferential portion forming a female thread 44A. The female thread 44A of the coupling member 44 is configured to be joined with the male thread of the third coupling portion 88C. The third coupling portion 88C is spaced apart from the first coupling portions 84B in the axial direction of the crankshaft 64. The second side surface 90 includes a second hole 90A through which a second end 64B of the crankshaft 64 and the output part 68 extends. The second end 64B of the crankshaft 64 has a serrated outer circumferential portion. One of the crank arms 22A is coupled in an attachable and detachable manner to the second end 64B of the crankshaft 64.
The second portion 86 extends along the rotational axis C2 of the motor 66. The second portion 86 includes a first end 86A and a second end 86B that are spaced in the direction parallel to the rotational axis C2 of the motor 66. The first end 86A is connected to the first portion 84. A tubular retainer 87A extends between the first end 86A and the second end 86B.
The second portion 86 includes the retainer 87A and a connecting section 87B connected to the first portion 84. The connecting section 87B is provided at the first end 86A. The connecting section 87B is formed integrally with the retainer 87A as a one-piece member. The connecting section 87B is connected by a plurality of bolts B4 to the first portion 84. The first portion 84 and the second portion 86 are preferably coupled in a detachable manner but can be coupled in a non-detachable manner.
The first portion 84 has a maximum dimension LX1 in a direction in which the crankshaft 64 extends that is, preferably, smaller than or equal to 100 mm. More preferably, the maximum dimension LX1 of the first portion 84 in the direction in which the crankshaft 64 extends is smaller than or equal to 80 mm. Further preferably, the maximum dimension LX1 of the first portion 84 in the direction in which the crankshaft 64 extends is larger than or equal to 70 mm and smaller than or equal to 100 mm.
A maximum dimension LY1 of the first portion 84 in a direction parallel to the rotational axis C2 of the motor 66 is smaller than a maximum dimension LY2 of the second portion 86 in the direction parallel to the rotational axis C2 of the motor 66. In the direction parallel to the rotational axis C2 of the motor 66, a distance LB from the rotational axis C1 of the crankshaft 64 to the part of the first portion 84 that is farthest from the rotational axis C1 of the crankshaft 64 is shorter than a distance LC from the rotational axis C1 of the crankshaft 64 to the part of the second portion 86 that is farthest from the rotational axis C1 of the crankshaft 64. In the direction parallel to the rotational axis C2 of the motor 66, the distance LC is substantially equal to the distance LA from the rotational axis C1 of the crankshaft 64 to the part of the drive unit 60 that is the farthest from the rotational axis C1 of the crankshaft 64.
The maximum dimension LX1 of the first portion 84 in the direction parallel to the rotational axis C1 of the crankshaft 64 is larger than the maximum dimension of the second portion 86 in the direction parallel to the rotational axis C1 of the crankshaft 64.
The maximum dimension of the second portion 86 in a direction orthogonal to the rotational axis C2 of the motor 66 is preferably equal to a maximum dimension LZ2 of the second portion 86 in a direction orthogonal to the rotational axis C2 of the motor 66 and parallel to the rotational axis C1 of the crankshaft 64. Preferably, the maximum dimension LZ2 of the second portion 86 in the direction orthogonal to the rotational axis C2 of the motor 66 is smaller than or equal to 75 mm. More preferably, the maximum dimension LZ2 of the second portion 86 in the direction orthogonal to the rotational axis C2 of the motor 66 is smaller than or equal to 60 mm. Preferably, the maximum dimension LZ2 of the second portion 86 in the direction orthogonal to the rotational axis C2 of the motor 66 is larger than or equal to 50 mm.
In a direction orthogonal to the rotational axis C2 of the motor 66, the second portion 86 has a minimum dimension LX3 that is, preferably, larger than or equal to 40 mm. Preferably, the minimum dimension LX3 of the second portion 86 is smaller than or equal to 75 mm.
Preferably, the minimum dimension of the retainer 87A in a direction orthogonal to the rotational axis C2 of the motor 66 is substantially equal to a minimum dimension LX2 of the retainer 87A in a direction orthogonal to the rotational axis C2 of the motor 66 and parallel to the rotational axis C1 of the crankshaft 64. The minimum dimension LX2 of the retainer 87A in the direction orthogonal to the rotational axis C2 of the motor 66 is, preferably, larger than or equal to 40 mm. Preferably, the minimum dimension LX2 of the motor retainer 87A is smaller than or equal to 75 mm.
The second portion 86 is configured so that a first dimension L21 in the first direction X differs from a second dimension L22 in the second direction Y. The first dimension L21 is smaller than the second dimension L22. The ratio of the second dimension L22 to the first dimension L21 is larger than 1 and smaller than or equal to 1.5.
The electrical terminal 82 is provided on the housing 62. The electrical terminal 82 is provided on the second end 86B of the second portion 86. The electrical terminal 82 is electrically connected to the battery 52. The electrical terminal 82 is provided on the end of the housing 62 including the part of the drive unit 60 that is farthest from the rotational axis C1 of the crankshaft 64. The part of the drive unit 60 that is farthest from the rotational axis C1 of the crankshaft 64 includes the second end 86B.
The crankshaft 64 is provided to the housing 62. The crankshaft 64 is provided to the first portion 84. The output part 68 is provided to the housing 62. Torque is transmitted from the crankshaft 64 and the motor 66 to the output part 68. The output part 68 is provided to the first portion 84. The output part 68 is coaxial with the crankshaft 64. More specifically, here, the output part 68 is a hollow output shaft that is coaxially disposed around the crankshaft 64. At least part of the output part 68 is exposed from the housing 62. The output part 68 is configured to allow for the mounting of one or more sprockets 26A (refer to
The first bearing 76A is provided on a surface defining the first hole 88A in the first side surface 88 of the first portion 84. The first bearing 76A supports the crankshaft 64 so that the crankshaft 64 is rotatable relative to the housing 62. The second bearing 76B is provided on a surface defining the second hole 90A in the second side surface 90 of the first portion 84. The second bearing 76B supports the output part 68 so that the output part 68 is rotatable relative to the housing 62. A support 77 is located between the crankshaft 64 and the output part 68. The support 77 supports the crankshaft 64 so that the crankshaft 64 is rotatable relative to the output part 68. The support 77 can include a bearing or a sleeve. The sleeve can be formed from metal or resin.
The first one-way clutch 72 is provided to the housing 62. The one-way clutch 72 is provided to the first portion 84 of the housing 62. The first one-way clutch 72 is provided to a first power transmission path between the crankshaft 64 and the output part 68. The first one-way clutch 72 is located between the outer circumference of the crankshaft 64 and the inner circumference of the output part 68. The output part 68 can be configured by a single member or a plurality of members. The first one-way clutch 72 transmits the rotation of the crankshaft 64 to the output part 68 in case the crankshaft 64 is rotated in a first rotation direction to move the bicycle 10 forward. The first one-way clutch 72 does not transmit the rotation of the crankshaft 64 to the output part 68 in case the crankshaft 64 is rotated in a second direction that is opposite to the first rotation direction. The first one-way clutch 72 can be configured by a roller clutch or a ratchet clutch. The first one-way clutch 72 includes an inner race that can be formed integrally with the crankshaft 64 as a one-piece member. Further, the first one-way clutch 72 includes an outer race that can be formed integrally with the output part 68 as a one-piece member. The first one-way clutch 72 can be omitted. In this case, the crankshaft 64 and the output part 68 are fixed together so as to be non-rotatable relative to each other and so as to be rotated integrally with each other.
The motor 66 is provided to the housing 62 to assist propulsion of the bicycle 10. In particular, the motor 66 is configured to add an assisting force to a human drive force inputted from the crankshaft 64. The motor 66 is provided to the second portion 86. The motor 66 includes an electric motor. The motor 66 is the so-called brushless motor. The motor 66 includes a stator 66A, a rotor 66B, and an output shaft 66C. The stator 66A is fixed to the inner circumference of the second portion 86. The rotor 66B is arranged in the inner circumferential portion of the stator 66A. The rotor 66B and the output shaft 66C are supported by the third bearing 76C and fourth bearing 76D, which are provided to the second portion 86, to be rotatable relative to the second portion 86.
The motor 66 includes the rotational axis C2 that extends in a direction intersecting the direction in which the crankshaft 64 extends. In one example, the rotational axis C2 of the motor 66 and the rotational axis C1 of the crankshaft 64 are included in the same plane. In one example, the rotational axis C2 of the motor 66 is orthogonal to the rotational axis C1 of the crankshaft 64.
The decelerator 70 is provided to the housing 62. At least part of the decelerator 70 is provided to at least one of the first portion 84 and the second portion 86. The decelerator 70 is connected to the motor 66. The decelerator 70 includes a first reduction mechanism 92, a second reduction mechanism 94, a first gear 96, and a second gear 98. The decelerator 70 reduces the speed of the rotation generated by the motor 66 and transmits the rotation to the output part 68.
The first reduction mechanism 92 includes a planetary gear mechanism. The first reduction mechanism 92 includes a first sun gear 92A, a first ring gear 92B, a plurality of first planet gears 92C, and a first carrier 92D. The first sun gear 92A is provided on the outer circumference of the output shaft 66C of the motor 66. The first sun gear 92A can be formed integrally with the output shaft 66C as a one-piece member. Alternatively, the first sun gear 92A can be formed separately from the output shaft 66C and coupled to the output shaft 66C. The first ring gear 92B is provided on the inner circumference of the second portion 86. The first ring gear 92B can be formed integrally with the second portion 86 or separately from the second portion 86. The first planet gears 92C are arranged between the first sun gear 92A and the first ring gear 92B. The first carrier 92D supports the first planet gears 92C so that the first planet gears 92C integrally orbit around the first sun gear 92A. The first carrier 92D is supported by the fifth bearing 76E, which is provided on the inner circumference of the second portion 86, to be rotatable relative to the second portion 86.
The second reduction mechanism 94 includes a planetary gear mechanism. The second reduction mechanism 94 includes a second sun gear 94A, a second ring gear 94B, a plurality of second planet gears 94C, and a second carrier 94D. The second sun gear 94A is connected to the first carrier 92D and rotated integrally with the first carrier 92D. The second ring gear 94B is provided on the inner circumference of the second portion 86. The second ring gear 94B can be formed integrally with the second portion 86 as a one-piece member or separately from the second portion 86. The second planet gears 94C are arranged between the second sun gear 94A and the second ring gear 94B. The second carrier 94D supports the second planet gears 94C so that the second planet gears 94C integrally orbit around the second sun gear 94A. The second carrier 94D is supported by the sixth bearing 76F, which is provided on the inner circumference of the second portion 86, so as to be rotatable relative to the second portion 86.
The torque of the motor 66 is transmitted to the first gear 96. The first gear 96 includes a first rotational axis C3 that is parallel to the rotational axis C2 of the motor 66. The second gear 98 is engaged with the first gear 96 to transmit torque to the output part 68. The second gear 98 includes a second rotational axis C4 that is parallel to the rotational axis C1 of the crankshaft 64. The first gear 96 and the second gear 98 each include a bevel gear. The first gear 96 is connected to the second carrier 94D and rotated integrally with the second carrier 94D. At least part of the first gear 96 is provided to the first portion 84. The first gear 96 includes a smaller number of teeth than the second gear 98. The first gear 96 and the second gear 98 configure a third reduction mechanism. The second gear 98 is provided on the outer circumference of the output part 68. The first gear 96 and the second gear 98 convert rotation around the first rotational axis C3 of the first gear 96 to rotation around the second rotational axis C4 of the second gear 98 and output the rotation to the output part 68.
The rotation of the motor 66 is reduced in speed by three stages, namely, the first reduction mechanism 92, the second reduction mechanism 94, and the first gear 96 and second gear 98, and then transmitted to the output part 68. The decelerator 70 can reduce the speed of the rotation of the motor 66 with two or less stages or four or more stages and before transmitting the rotation to the output part 68. In the decelerator 70, the number of speed reduction stages and the speed reduction ratio can be changed as required. The structure of the decelerator 70 can also be changed in accordance with the desired speed reduction ratio.
The second one-way clutch 74 is provided to the housing 62. The second one-way clutch 74 is provided to the first portion 84 of the housing 62. The second one-way clutch 74 is provided to a second power transmission path between the motor 66 and the output part 68. Preferably, the second one-way clutch 74 is provided between the inner circumference of the second gear 98 and the outer circumference of the output part 68. The crankshaft 64, the output part 68, and the second gear 98 are coaxial. In case the speed of the rotation of the second gear 98 in the first rotation direction is higher than or equal to the speed of the rotation of the output part 68 in the first rotation direction, the second one-way clutch 74 transmits the rotation of the second gear 98 to the output part 68. In case the speed of the rotation of the second gear 98 in the first rotation direction is lower than or equal to the speed of the rotation of the output part 68 in the first rotation direction, the second one-way clutch 74 does not transmit rotation of the output part 68 to the second gear 98. Preferably, the second one-way clutch 74 is configured by a roller clutch but can be configured by a ratchet clutch.
The detector 78 is provided to the housing 62. The detector 78 detects human driving force input from the crankshaft 64. The detector 78 is provided, for example, on the output part 68 in the first power transmission path at the downstream side of the first one-way clutch 72. Further, the detector 78 is provided, for example, on the output part 68 in the first power transmission path at the upstream side of the second one-way clutch 74. The detector 78 includes a strain sensor or a magnetostrictive sensor. The strain sensor includes a strain gauge. In case the detector 78 includes a strain sensor, the strain sensor is provided on the outer circumference of the output part 68. The detector 78 can include a unit that performs wireless or wired communication. The detector 78 can include a rotation sensor that detects rotation of the crankshaft 64. The communication unit (e.g., a transmitter) is configured to communicate with the electronic controller 80.
The electronic controller 80 is provided to the housing 62. The electronic controller 80 controls the motor 66. The electronic controller 80 controls the motor 66 in accordance with the detection result of the detector 78. The electronic controller 80 controls the motor 66 so that the ratio of the human driving force to the assist force generated by the motor 66 becomes equal to a predetermined ratio. The electronic controller 80 includes a drive circuit. The drive circuit includes an inverter circuit and controls the power supplied from the battery 52 to the motor 66. The electronic controller 80 includes a processor(s) that executes predetermined control programs. The processor includes, for example, a central processing unit (CPU) or a micro-processing unit (MPU). The electronic controller 80 can include one or more microcomputers. The term “electronic controller” as used herein refers to hardware that executes a software program. The electronic controller 80 can further include a memory device and a timer. The memory device stores various control programs and information used for various control processes. The memory device is any computer storage device or any computer readable medium with the sole exception of a transitory, propagating signal. The memory device includes, for example, a non-volatile memory and a volatile memory. Preferably, the electronic controller 80 is accommodated in the second portion 86. The electronic controller 80 is provided adjacent to the motor 66. The electronic controller 80 is provided on the second end 86B of the second portion 86. Preferably, the electronic controller 80 is provided between the motor 66 and the electrical terminal 82 in the direction of the rotational axis C2 of the motor 66. The electronic controller 80 includes one or more circuit boards 81. Preferably, each of the circuit boards 81 is arranged in the housing 62 so that its thickness-wise direction is parallel to the rotational axis C2 of the motor 66.
The electronic controller 80 controls the motor 66 so that the output torque of the motor 66 is smaller than or equal to the maximum output torque. In one example, the maximum output torque of the motor 66 is larger than or equal to 10 Nm and smaller than or equal to 80 Nm. More preferably, the maximum output torque of the motor 66 is larger than or equal to 10 Nm and smaller than or equal to 60 Nm. Further preferably, the maximum output torque of the motor 66 is larger than or equal to 10 Nm and smaller than or equal to 40 Nm. The electronic controller 80 controls the motor 66 so that the output of the motor 66 is smaller than or equal to the maximum output. In one example, the maximum output of the motor 66 is larger than or equal to 100 watts and smaller than or equal to 600 watts. Preferably, the maximum output of the motor 66 is larger than or equal to 100 watts and smaller than or equal to 450 watts. More preferably, the maximum output of the motor 66 is larger than or equal to 100 watts and smaller than or equal to 300 watts.
The battery 52 shown in
The battery 52 is accommodated in the frame 30. The battery 52 is shaped so that it can be accommodated in the down tube 30A of the frame 30. In a direction orthogonal to the rotational axis C2 of the motor 66, the battery 52 includes a maximum dimension LBZ that is preferably smaller than or equal to 75 mm. Preferably, the maximum dimension LBZ of the battery 52 is larger than or equal to 50 mm. In one example, the maximum dimension LBZ of the battery 52 in the direction orthogonal to the rotational axis C2 of the motor 66 is substantially equal to the maximum dimension LZ2 of the second portion 86 of the housing 62 (refer to
Referring to
With reference to
The method for mounting the drive unit 60 includes a first step and a second step. The method for mounting the drive unit 60 further includes a third step and a fourth step. In the first step, the first portion 84 of the housing 62 is arranged at a position for mounting the first portion 84 on the frame 30. In the first step, the drive unit 60 is moved in the direction in which the crankshaft 64 extends. In the first step, the first end 64A of the crankshaft 64 is inserted into the through hole 34A of the frame 30. In the first step, the drive unit 60 is moved in a direction intersecting the sideward direction of the frame 30 of the bicycle 10.
As shown in
As shown in
As shown in
As shown in
In a third step, after the second step, the first coupling portions 84B are coupled to the second coupling portions 32A. In the third step, the first coupling portions 84B are coupled to the second coupling portions 32A with the bolts B2, which are shown in
In a fourth step, after the third step, the cover 42 (refer to
In one example, preferably, the battery 52 is arranged in the accommodation compartment 30S of the frame 30 before mounting the drive unit 60 on the frame 30. In this case, the battery terminal 52B of the battery 52 and the electrical terminal 82 of the drive unit 60 are connected after the third step and before the fourth step. In a further example, the second opening portion 36B of the opening 36 is extended to where the battery 52 is arranged, and the first to fourth steps are performed on the bicycle component 50 in a state in which the battery 52 and the drive unit 60 are connected to mount the drive unit 60 on the frame 30.
The description related with the above embodiment exemplifies an applicable form of a bicycle drive unit mounting method and a bicycle frame according to the present disclosure and is not intended to limit the forms. In addition to the embodiment described above, the bicycle drive unit mounting method and bicycle frame according to the present disclosure is applicable to, for example, modifications of the above embodiments that are described below and combinations of at least two of the modifications that do not contradict each other.
The structure for mounting the drive unit 60 on the frame 30 can be changed as required. For example, as shown in
As shown in
The maximum dimension LX1 of the first portion 84 in a direction parallel to the rotational axis C1 of the crankshaft 64 can be smaller than or equal to a maximum dimension LX2 of the second portion 86 in the direction parallel to the rotational axis C1 of the crankshaft 64.
The motor 66 can be provided to the housing 62 so that the rotational axis C2 of the motor 66 is inclined relative to the rotational axis C1 of the crankshaft 64. Further, the motor 66 can be provided to the housing 62 so that the rotational axis C2 of the motor 66 and the rotational axis C1 of the crankshaft 64 are not included in the same plane.
As shown in
Instead of or in addition to the lower side of the bicycle 10, the through hole 34A can be open toward the front side or rear side of the bicycle 10. The through hole 34A can be shaped in any manner as long as the through hole 34A allows for insertion of the first portion 84 of the drive unit 60.
The opening 36 can be open toward the upper side of the bicycle 10. Instead of or in addition to the down tube 30A, the mounting portion 32 can be provided on at least one of the chainstay 30F and the seat tube 30D. The mounting portion 32 can be provided on only the chainstay 30F, only the seat tube 30D, or both the chainstay 30F and the seat tube 30D instead of or in addition to the down tube 30A.
The housing 62 can be mounted on the outer side of the frame 30. The output part 68 can be configured to allow for the mounting of a pulley. In this case, the front rotational body 26 and the rear rotational body 28 each include a pulley, and the front rotational body 26 and the rear rotational body 28 are connected by a belt.
In the first step, the drive unit 60 can be moved parallel to the sideward direction of the bicycle 10. In this case, the second side wall 38 is configured so that part of the housing, especially, the first coupling portions 84B, does not contact the second side wall 38. For example, the second side wall 38 can be partially cut out.
Number | Date | Country | Kind |
---|---|---|---|
2017-199780 | Oct 2017 | JP | national |