This invention relates to a bicycle crank and a method for manufacturing said crank.
More precisely, this invention relates to a bicycle crank comprising:
an elongated core with a first and a second end,
a first and a second insert arranged on the ends of said core, and
a high-resistance fibre coating incorporated in a plastic material matrix.
U.S. Pat. No. 6,202,506 describes a bicycle crank of the type specified above, wherein the inserts are foamed into a rigid plastic material forming the core of the crank. This document discloses a method for manufacturing a crank comprising the following steps: introducing into a mould one layer of fabric soaked in synthetic resin providing a partially open fibre-reinforced plastic casing, inserting a pair of inserts in the partially open casing, foaming the inserts with high-resistance foam, sealing the fibre-reinforced plastic material casing with at least one layer of fibre fabric soaked in plastic material, and hardening the fibre-reinforced plastic material and said foam.
The object of the present invention is to provide a crank and a method for manufacturing said crank providing a simpler connection between the inserts and the core, which does not require foaming the inserts in the mould.
According to this invention, this object is attained by means of a crank and a manufacturing method having the characteristics forming the subject of the claims.
This invention will be better explained by the following detailed descriptions with reference to the accompanying Figures, given as non-limiting example, wherein:
With reference to FIGS. 1 to 3, numeral 10 indicates a pre-formed foamed plastic material core, such as polyurethane or similar material, obtained by foaming in mould. Core 10 has an elongated shape and presents two ends 12, 14, to which respective union elements or couplings 16, 18 are connected; said union elements being provided with recesses 20, 22 for receiving the end portions 12, 14 of the core 10 and establishing a union therewith.
Numerals 24 and 26 indicate inserts, for example made of aluminum alloy, or fibre-reinforced plastic material, having end portions 28, 30 inserted into corresponding recesses 32, 34 of the union elements 16, 18 to establish a shaped coupling therewith. Preferably, inserts 24, 26 consist of solid metallic blocks. The inserts preferably include apertures 50, 52 for receiving the pedal spindle and the bottom bracket spindle, respectively, see
The arrangement shown in
After moulding, the plastic material matrix is hardened. The crank removed from the mould appears as shown schematically in
The method described above with reference to the left crank is used similarly for manufacturing the right crank, as shown in
Both in the case of the left crank and in the case of the right crank, the inserts are preferably subjected to further processing to form a threaded hole 50 for connecting a pedal spindle and a polygonal hole 52 for connecting a bottom bracket spindle after polymerisation in mould.
As stated previously, the core 10 does not contribute substantially to the structural resistance. The structural characteristic part of the crank being the casing 40, which presents a high-resistance and is capable of transferring the force and the torque between the inserts 24 and 26 during the use of the crank. The core 10 may be made of any material which sustain a form and a support to the structural fibres during moulding, such as foam, wax or resin.
In accordance with a more preferred embodiment of the present invention, the core 10 is removed after final formation of the structural fibre casing 40. The core of this embodiment can be formed by granular material, e.g. sand, mixed with a binding resin. The granular material can be extracted from the structural fibre casing 40 through a hole, illustrated at 42, after the hardening to form a unit comprised of the hollow casing 40 of structural fibres and the inserts 24 and 26.
In view of the above description it will be evident that the structural components crank in accordance with the present invention is formed by the casing of structural fibres and the inserts. These components of the crank, i.e. the components are what transmits a load during normal use of the crank.
Naturally, numerous changes can be implemented to the construction and forms of embodiment of the invention herein envisaged, all comprised within the context of the concept characterising this invention, as defined by the following claims.
Number | Date | Country | Kind |
---|---|---|---|
TO2001A000617 | Jun 2001 | IT | national |
This application is a continuation of U.S. patent application Ser. No. 10/174,636, filed on Jun. 19, 2002, which will issue on Mar. 21, 2006 as U.S. Pat. No. 7,013,753, and which is incorporated by reference as if fully set forth.
Number | Date | Country | |
---|---|---|---|
Parent | 10174636 | Jun 2002 | US |
Child | 11375149 | Mar 2006 | US |