The present invention relates to a bicycle crank assembly and a bicycle sprocket assembly.
Bicycling is becoming an increasingly more popular form of recreation as well as a means of transportation. Moreover, bicycling has become a very popular competitive sport for both amateurs and professionals. Whether the bicycle is used for recreation, transportation or competition, the bicycle industry is constantly improving the various components of the bicycle. One bicycle component that has been extensively redesigned is a sprocket.
In accordance with a first aspect of the present invention, a bicycle crank assembly comprises a crank arm, a first sprocket, and a second sprocket. The first sprocket is coupled to the crank arm to integrally rotate with the crank arm about a rotational center axis. The first sprocket comprises a first sprocket body and a plurality of first sprocket teeth. The first sprocket body includes a first outer periphery. The plurality of first sprocket teeth is provided on the first outer periphery. The plurality of first sprocket teeth includes at least one first tooth provided on the first outer periphery to be received in only an outer link space defined between a pair of outer link plates of a bicycle chain. The second sprocket is coupled to the crank arm to integrally rotate with the crank arm about the rotational center axis. The second sprocket comprises a second sprocket body and a plurality of second sprocket teeth. The second sprocket body includes a second outer periphery. The plurality of second sprocket teeth is provided on the second outer periphery. The plurality of second sprocket teeth includes at least one second tooth provided on the second outer periphery to be engaged with the bicycle chain. One of the first sprocket and the second sprocket has a pitch-circle diameter larger than a pitch-circle diameter of the other of the first sprocket and the second sprocket. The one of the first sprocket and the second sprocket comprises a first shifting facilitation area and a second shifting facilitation area. The first shifting facilitation area is to facilitate a first shifting operation in which the bicycle chain is shifted from the second sprocket toward the first sprocket in a first chain-phase state in which a reference tooth of the plurality of second sprocket teeth is received in the outer link space. The second shifting facilitation area is to facilitate a second shifting operation in which the bicycle chain is shifted from the second sprocket toward the first sprocket in a second chain-phase state in which the reference tooth of the plurality of second sprocket teeth is received in an inner link space defined between a pair of inner link plates of the bicycle chain.
With the bicycle crank assembly according to the first aspect, it is possible to smoothly shift the bicycle chain from the second sprocket to the first sprocket in each of the first chain-phase state and the second chain-phase state different from the first chain-phase state.
In accordance with a second aspect of the present invention, the bicycle crank assembly according to the first aspect is configured so that the at least one first tooth includes a plurality of first teeth provided on the first outer periphery to be received in only the outer link space. The at least one second tooth includes a plurality of second teeth provided on the second outer periphery to be capable of being received in each of the outer link space and the inner link space.
With the bicycle crank assembly according to the second aspect, it is possible to smoothly shift the bicycle chain from the second sprocket to the first sprocket in each of the first chain-phase state and the second chain-phase state different from the first chain-phase state.
In accordance with a third aspect of the present invention, the bicycle crank assembly according to the first or second aspect is configured so that the plurality of first sprocket teeth includes at least one first additional tooth provided on the first outer periphery to be received in only the inner link space.
With the bicycle crank assembly according to the third aspect, it is possible to improve chain-holding performance of the first sprocket. Furthermore, the first sprocket has only one chain-phase state since the at least one first additional tooth is received in only the inner link space. This makes it easier for the user to set the bicycle chain to the first sprocket.
In accordance with a fourth aspect of the present invention, the bicycle crank assembly according to any one of the first to third aspects is configured so that the first sprocket body has a first reference center plane perpendicular to the rotational center axis. The at least one first tooth has a first maximum width and a first tooth center plane. The first maximum width is defined in an axial direction parallel to the rotational center axis. The first tooth center plane is defined to bisect the first maximum width in the axial direction and offset from the first reference center plane in the axial direction.
With the bicycle crank assembly according to the fourth aspect, it is possible to save weight of the first sprocket with improving the chain-holding performance.
In accordance with a fifth aspect of the present invention, the bicycle crank assembly according to any one of the first to fourth aspects is configured so that the first sprocket comprises at least one first additional tooth provided on the first outer periphery to be received in only the inner link space. The at least one first tooth and the at least one first additional tooth are alternatingly arranged in a circumferential direction defined about the rotational center axis.
With the bicycle crank assembly according to the fifth aspect, it is possible to improve chain-holding performance of the first sprocket.
In accordance with a sixth aspect of the present invention, the bicycle crank assembly according to any one of the first to fifth aspects is configured so that the first sprocket has a first pitch-circle diameter defined by the plurality of first sprocket teeth. The second sprocket has a second pitch-circle diameter defined by the plurality of second sprocket teeth. The second pitch-circle diameter is larger than the first pitch-circle diameter.
With the bicycle crank assembly according to the sixth aspect, it is possible to smoothly shift the bicycle chain from the second sprocket to the first sprocket in each of the first chain-phase state and the second chain-phase state different from the first chain-phase state.
In accordance with a seventh aspect of the present invention, the bicycle crank assembly according to the sixth aspect is configured so that the at least one second tooth includes a first derailing tooth and a second derailing tooth. The first derailing tooth is provided in the first shifting facilitation area to first derail the bicycle chain from the second sprocket in the first shifting operation. The second derailing tooth is provided in the second shifting facilitation area to first derail the bicycle chain from the second sprocket in the second shifting operation.
With the bicycle crank assembly according to the seventh aspect, it is possible to smoothly derail the bicycle chain from the second sprocket in each of the first chain-phase state and the second chain-phase state different from the first chain-phase state.
In accordance with an eighth aspect of the present invention, the bicycle crank assembly according to the sixth or seventh aspect is configured so that the at least one second tooth includes at least one chain-driving tooth provided outside the first shifting facilitation area and the second shifting facilitation area. The at least one chain-driving tooth has a reference radial length defined radially outward from the second outer periphery. The first derailing tooth has a first radial length defined radially outward from the second outer periphery. The first radial length is shorter than the reference radial length. The second derailing tooth has a second radial length defined radially outward from the second outer periphery, the second radial length being shorter than the reference radial length.
With the bicycle crank assembly according to the eighth aspect, it is possible to more smoothly derail the bicycle chain from the second sprocket in each of the first chain-phase state and the second chain-phase state different from the first chain-phase state.
In accordance with a ninth aspect of the present invention, the bicycle crank assembly according to any one of the first to eighth aspect is configured so that the first shifting facilitation area at least partly overlaps with the second shifting facilitation area in a circumferential direction defined about the rotational center axis.
With the bicycle crank assembly according to the ninth aspect, it is possible to make a total area of the first and second shifting facilitation areas smaller. This increases driving teeth provided outside of the first and second shifting facilitation areas, improving chain-holding performance of the second tooth.
In accordance with a tenth aspect of the present invention, the bicycle crank assembly according to any one of the seventh to ninth aspects is configured so that the first derailing tooth is adjacent to the second derailing tooth without another tooth between the first derailing tooth and the second derailing tooth in a circumferential direction defined about the rotational center axis.
With the bicycle crank assembly according to the tenth aspect, it is possible to smoothly derail the bicycle chain from the second sprocket in each of the first chain-phase state and the second chain-phase state different from the first chain-phase state.
In accordance with an eleventh aspect of the present invention, the bicycle crank assembly according to any one of the first to tenth aspects is configured so that the second sprocket comprises a shifting facilitation projection provided in the second shifting facilitation area to facilitate the second shifting operation.
With the bicycle crank assembly according to the eleventh aspect, it is possible to effectively facilitate the second shifting operation by using the shifting facilitation projection. This can smoothen shifting of the bicycle chain from the second sprocket to the first sprocket in each of the first chain-phase state and the second chain-phase state different from the first chain-phase state.
In accordance with a twelfth aspect of the present invention, the bicycle crank assembly according to the eleventh aspect is configured so that the shifting facilitation projection is provided on an upstream side of the second derailing tooth in a driving rotational direction in which the bicycle crank assembly rotates about the rotational center axis during pedaling.
With the bicycle crank assembly according to the twelfth aspect, it is possible to more smoothly shift the bicycle chain from the second sprocket to the first sprocket in each of the first chain-phase state and the second chain-phase state different from the first chain-phase state.
In accordance with a thirteenth aspect of the present invention, the bicycle crank assembly according to the twelfth aspect is configured so that the at least one second tooth includes an adjacent tooth closest to the shifting facilitation projection among the at least one second tooth. The second derailing tooth is adjacent to the adjacent tooth without another tooth between the second derailing tooth and the adjacent tooth in the driving rotational direction.
With the bicycle crank assembly according to the thirteenth aspect, it is possible to more smoothly shift the bicycle chain from the second sprocket to the first sprocket in each of the first chain-phase state and the second chain-phase state different from the first chain-phase state.
In accordance with a fourteenth aspect of the present invention, the bicycle crank assembly according to any the eleventh to thirteenth aspects is configured so that the second sprocket comprises a bump portion provided in the second shifting facilitation area to restrict engagement of the shifting facilitation projection with the bicycle chain in the first shifting operation.
With the bicycle crank assembly according to the fourteenth aspect, the bump portion and the shifting facilitation projection differentiate a first route of the bicycle chain in the first chain-phase state and a second route of the bicycle chain in the second chain-phase state. This smoothens shifting of the bicycle chain from the second sprocket to the first sprocket in each of the first chain-phase state and the second chain-phase state.
In accordance with a fifteenth aspect of the present invention, the bicycle crank assembly according to the fourteenth aspect is configured so that the bump portion is provided on a downstream side of the shifting facilitation projection in a driving rotational direction in which the bicycle crank assembly rotates about the rotational center axis during pedaling.
With the bicycle crank assembly according to the fifteenth aspect, it is possible to certainly restrict engagement of the shifting facilitation projection with the bicycle chain in the first shifting operation. This certainly smoothens shifting of the bicycle chain from the second sprocket to the first sprocket in each of the first chain-phase state and the second chain-phase state.
In accordance with a sixteenth aspect of the present invention, the bicycle crank assembly according to the fourteenth or fifteenth aspect is configured so that the bump portion includes a guide surface to guide the bicycle chain toward the first sprocket in an axial direction parallel to the rotational center axis in the second shifting operation.
With the bicycle crank assembly according to the sixteenth aspect, it is possible to more certainly restrict engagement of the shifting facilitation projection with the bicycle chain in the first shifting operation. This more certainly smoothens shifting of the bicycle chain from the second sprocket to the first sprocket in each of the first chain-phase state and the second chain-phase state.
In accordance with a seventeenth aspect of the present invention, the bicycle crank assembly according to any one of the fourteenth to sixteenth aspects is configured so that the shifting facilitation projection has a first amount of projection defined from the second sprocket body in an axial direction parallel to the rotational center axis. The bump portion has a second amount of projection defined from the second sprocket body in the axial direction. The second amount of projection is larger than the first amount of projection.
With the bicycle crank assembly according to the seventeenth aspect, it is possible to certainly restrict engagement of the shifting facilitation projection with the bicycle chain in the first shifting operation. This certainly smoothens shifting of the bicycle chain from the second sprocket to the first sprocket in each of the first chain-phase state and the second chain-phase state.
In accordance with an eighteenth aspect of the present invention, the bicycle crank assembly according to any one of the seventh to seventeenth aspects is configured so that the second sprocket comprises an axial surface and a reverse axial surface. The axial surface faces toward the first sprocket in an axial direction parallel to the rotational center axis. The reverse axial surface is provided on a reverse side of the axial surface in the axial direction. The first derailing tooth includes a first upstream chamfer provided on the axial surface. The first upstream chamfer is provided on an upstream side in the first derailing tooth in a driving rotational direction in which the bicycle crank assembly rotates about the rotational center axis during pedaling.
With the bicycle crank assembly according to the eighteenth aspect, it is possible to smoothly derail the bicycle chain from the second sprocket at the first derailing tooth. This smoothens shifting of the bicycle chain from the second sprocket to the first sprocket in at least one of the first chain-phase state and the second chain-phase state.
In accordance with a nineteenth aspect of the present invention, the bicycle crank assembly according to any one of the seventh to eighteenth aspects is configured so that the second sprocket comprises an axial surface and a reverse axial surface. The axial surface faces toward the first sprocket in an axial direction parallel to the rotational center axis. The reverse axial surface is provided on a reverse side of the axial surface in the axial direction. The first derailing tooth includes a first reverse upstream chamfer provided on the reverse axial surface. The first reverse upstream chamfer is provided on an upstream side in the first derailing tooth in a driving rotational direction in which the bicycle crank assembly rotates about the rotational center axis during pedaling.
With the bicycle crank assembly according to the nineteenth aspect, it is possible to smoothly derail the bicycle chain from the second sprocket at the second derailing tooth. This smoothens shifting of the bicycle chain from the second sprocket to the first sprocket in at least one of the first chain-phase state and the second chain-phase state.
In accordance with a twentieth aspect of the present invention, the bicycle crank assembly according to any one of the seventh to nineteenth aspects is configured so that the second sprocket comprises an axial surface and a reverse axial surface. The axial surface faces toward the first sprocket in an axial direction parallel to the rotational center axis. The reverse axial surface is provided on a reverse side of the axial surface in the axial direction. The first derailing tooth includes a first downstream chamfer provided on the axial surface. The first downstream chamfer is provided on a downstream side in the first derailing tooth in a driving rotational direction in which the bicycle crank assembly rotates about the rotational center axis during pedaling.
With the bicycle crank assembly according to the twentieth aspect, it is possible to certainly derail the bicycle chain from the second sprocket at the first derailing tooth.
In accordance with a twenty-first aspect of the present invention, the bicycle crank assembly according to any one of the seventh to twentieth aspects is configured so that the second sprocket comprises an axial surface and a reverse axial surface. The axial surface faces toward the first sprocket in an axial direction parallel to the rotational center axis. The reverse axial surface is provided on a reverse side of the axial surface in the axial direction. The second derailing tooth includes a second downstream chamfer provided on the axial surface. The second downstream chamfer is provided on a downstream side in the second derailing tooth in a driving rotational direction in which the bicycle crank assembly rotates about the rotational center axis during pedaling.
With the bicycle crank assembly according to the twenty-first aspect, it is possible to smoothly derail the bicycle chain from the second sprocket at the second derailing tooth.
In accordance with a twenty-second aspect of the present invention, the bicycle crank assembly according to any one of the first to fifth, ninth, and eleventh to seventeenth aspects is configured so that the first sprocket has a first pitch-circle diameter defined by the plurality of first sprocket teeth. The second sprocket has a second pitch-circle diameter defined by the plurality of second sprocket teeth. The first pitch-circle diameter is larger than the second pitch-circle diameter.
With the bicycle crank assembly according to the twenty-second aspect, it is possible to smoothly shift the bicycle chain from the second sprocket to the first sprocket in each of the first chain-phase state and the second chain-phase state different from the first chain-phase state.
In accordance with a twenty-third aspect of the present invention, the bicycle crank assembly according to any one of the first to twentieth aspects is configured so that all the plurality of second sprocket teeth are capable of being received in each of the outer link space and the inner link space.
With the bicycle crank assembly according to the twenty-third aspect, it is possible to smoothly shift the bicycle chain from the second sprocket to the first sprocket in each of the first chain-phase state and the second chain-phase state different from the first chain-phase state.
In accordance with a twenty-fourth aspect of the present invention, a bicycle sprocket assembly comprises a first sprocket and a second sprocket. The first sprocket comprises a first sprocket body, a plurality of first sprocket teeth, and the first pitch-circle diameter. The first sprocket body includes a first outer periphery. The plurality of first sprocket teeth is provided on the first outer periphery. The plurality of first sprocket teeth includes at least one first tooth provided on the first outer periphery to be received in only an outer link space defined between a pair of outer link plates of a bicycle chain. The first pitch-circle diameter is defined by the plurality of first sprocket teeth. The second sprocket comprises a second sprocket body, a plurality of second sprocket teeth, and a second pitch-circle diameter. The second sprocket body includes a second outer periphery. The plurality of second sprocket teeth is provided on the second outer periphery. The plurality of second sprocket teeth includes at least one second tooth provided on the second outer periphery to be capable of being received in each of the outer link space and an inner link space defined between a pair of inner link plates of the bicycle chain. The second pitch-circle diameter is defined by the plurality of second sprocket teeth and larger than the first pitch-circle diameter.
With the bicycle sprocket assembly according to the twenty-fourth aspect, it is possible to smoothly shift the bicycle chain from the second sprocket to the first sprocket with improving chain-holding performance.
In accordance with a twenty-fifth aspect of the present invention, the bicycle sprocket assembly according to the twenty-fourth aspect is configured so that the at least one first tooth includes a plurality of first teeth provided on the first outer periphery to be received in only the outer link space. The at least one second tooth includes a plurality of second teeth provided on the second outer periphery to be capable of being received in each of the outer link space and the inner link space.
With the bicycle sprocket assembly according to the twenty-fifth aspect, it is possible to smoothly shift the bicycle chain from the second sprocket to the first sprocket with improving chain-holding performance.
In accordance with a twenty-sixth aspect of the present invention, the bicycle sprocket assembly according to the twenty-fourth or twenty-fifth aspect is configured so that the second sprocket comprises a first shifting facilitation area and a second shifting facilitation area. The first shifting facilitation area is to facilitate a first shifting operation in which the bicycle chain is shifted from the second sprocket toward the first sprocket in a first chain-phase state in which a reference tooth of the plurality of second sprocket teeth is received in the outer link space. The second shifting facilitation area is to facilitate a second shifting operation in which the bicycle chain is shifted from the second sprocket toward the first sprocket in a second chain-phase state in which a reference tooth of the plurality of second sprocket teeth is received in the inner link space.
With the bicycle sprocket assembly according to the twenty-sixth aspect, it is possible to smoothly shift the bicycle chain from the second sprocket to the first sprocket in each of the first chain-phase state and the second chain-phase state with improving chain-holding performance.
In accordance with a twenty-seventh aspect of the present invention, the bicycle sprocket assembly according to any one of the twenty-fourth to twenty-sixth aspects is configured so that the plurality of first sprocket teeth includes at least one first additional tooth provided on the first outer periphery of the first sprocket body to be received in only the inner link space.
With the bicycle sprocket assembly according to the twenty-seventh aspect, it is possible to improve chain-holding performance of the first sprocket.
In accordance with a twenty-eighth aspect of the present invention, the bicycle sprocket assembly according to any one of the twenty-fourth to twenty-seventh aspects is configured so that the first sprocket body has a first reference center plane perpendicular to the rotational center axis. The at least one first tooth has a first maximum width and a first tooth center plane. The first maximum width is defined in an axial direction parallel to the rotational center axis. The first tooth center plane is defined to bisect the first maximum width in the axial direction and offset from the first reference center plane in the axial direction.
With the bicycle sprocket assembly according to the twenty-eighth aspect, it is possible to save weight of the first sprocket with improving the chain-holding performance.
In accordance with a twenty-ninth aspect of the present invention, the bicycle sprocket assembly according to any one of the twenty-fourth to twenty-eighth aspects is configured so that all the plurality of second sprocket teeth are capable of being received in each of the outer link space and the inner link space.
With the bicycle sprocket assembly according to the twenty-ninth aspect, it is possible to smoothly shift the bicycle chain from the second sprocket to the first sprocket in each of the first chain-phase state and the second chain-phase state different from the first chain-phase state.
A more complete appreciation of the invention and many of the attendant advantages thereof will be readily obtained as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings.
The embodiment(s) will now be described with reference to the accompanying drawings, wherein like reference numerals designate corresponding or identical elements throughout the various drawings.
Referring initially to
In the present application, the following directional terms “front”, “rear”, “forward”, “rearward”, “left”, “right”, “transverse”, “upward” and “downward” as well as any other similar directional terms refer to those directions which are determined on the basis of a user (e.g., a rider) who sits on a saddle (not shown) of a bicycle with facing a handlebar (not shown). Accordingly, these terms, as utilized to describe the bicycle crank assembly 10, should be interpreted relative to the bicycle equipped with the bicycle crank assembly 10 as used in an upright riding position on a horizontal surface.
As seen in
The first sprocket 16 and the second sprocket 18 are engaged with a bicycle chain C to transmit a rotational driving force F1 to the bicycle chain C. The bicycle chain C is shifted between the first sprocket 16 and the second sprocket 18 by a front derailleur (not shown). In this embodiment, the bicycle sprocket assembly 14 is a front sprocket assembly. However, at least one of the structures of the first and second sprockets 16 and 18 can be at least partly applied to a rear sprocket.
The first sprocket 16 is coupled to the crank arm 12 to integrally rotate with the crank arm 12 about the rotational center axis A1. The second sprocket 18 is coupled to the crank arm 12 to integrally rotate with the crank arm 12 about the rotational center axis A1. In this embodiment, the bicycle sprocket assembly 14 includes a sprocket mounting member 24. The sprocket mounting member 24 is mounted on the crank arm 12 to be rotatable integrally with the crank arm 12 about the rotational center axis A1. The first sprocket 16 and the second sprocket 18 are coupled to the sprocket mounting member 24. The sprocket mounting member 24 includes crank connecting arms 26. The first sprocket 16 comprises first crank attachment portions 28. The second sprocket 18 comprises second crank attachment portions 30. The crank connecting arms 26 are respectively fastened to the first crank attachment portions 28 with fasteners such as bolts (not shown). The second crank attachment portions 30 are fastened to the sprocket mounting member 24 with fasteners such as bolts (not shown).
In this embodiment, the sprocket mounting member 24 is integrally provided with the crank arm 12 as a one-piece unitary member. However, the sprocket mounting member 24 can be a separate member from the crank arm 12. Furthermore, the sprocket mounting member 24 can be omitted from the bicycle sprocket assembly 14. In such an embodiment, the first sprocket 16 and the second sprocket 18 can be directly coupled to the crank arm 12 and the crank axle 20. The sprocket mounting member 24 can be integrally provided with one of the first sprocket 16, the second sprocket 18, and the crank axle 20.
As seen in
The first sprocket 16 is adjacent to the second sprocket 18 in an axial direction D2 parallel to the rotational center axis A1 without another sprocket between the first sprocket 16 and the second sprocket 18.
As seen in
As seen in
As seen in
As seen in
In this embodiment, the first sprocket 16 comprises a first axial surface 32B and a first reverse axial surface 32C. The first axial surface 32B faces toward the second sprocket 18 in the axial direction D2. The first reverse axial surface 32C is provided on a reverse side of the first axial surface 32B in the axial direction D2. The first axial surface 32B and the first reverse axial surface 32C are defined on the first sprocket body 32. The first sprocket body 32 has a first body maximum width W10 defined between the first axial surface 32B and the first reverse axial surface 32C in the axial direction D2. The first reference center plane CP10 is defined to bisect the first body maximum width W10 in the axial direction D2.
Furthermore, the first tooth 36 includes a chain-engagement surface 36A and an additional chain-engagement surface 36B. The chain-engagement surface 36A faces in the axial direction D2 and is contactable with one of the pair of outer link plates C1. The additional chain-engagement surface 36B faces in the axial direction D2 and is contactable with the other of the pair of outer link plates C1. The additional chain-engagement surface 36B is provided on a reverse side of the chain-engagement surface 36A in the axial direction D2. The first maximum width W11 is defined between the chain-engagement surface 36A and the additional chain-engagement surface 36B in the axial direction D2. The first maximum width W11 is smaller than the first body maximum width W10.
As seen in
In this embodiment, the first additional tooth 38 includes a chain-engagement surface 38A and an additional chain-engagement surface 38B. The chain-engagement surface 38A faces in the axial direction D2 and is contactable with one of the pair of inner link plates C2. The additional chain-engagement surface 38B faces in the axial direction D2 and is contactable with the other of the pair of inner link plates C2. The additional chain-engagement surface 38B is provided on a reverse side of the chain-engagement surface 38A in the axial direction D2. The first additional maximum width W12 is defined between the chain-engagement surface 38A and the additional chain-engagement surface 38B in the axial direction D2. The first additional maximum width W12 is smaller than the first body maximum width W10.
As seen in
In this embodiment, as seen in
As seen in
In this embodiment, the second sprocket 18 comprises an axial surface 40B and a reverse axial surface 40C. The axial surface 40B faces toward the first sprocket 16 in the axial direction D2 parallel to the rotational center axis A1. The reverse axial surface 40C is provided on a reverse side of the axial surface 40B in the axial direction D2. The axial surface 40B and the reverse axial surface 40C are defined on the second sprocket body 40. The second sprocket body 40 has a second body maximum width W20 defined between the axial surface 40B and the reverse axial surface 40C in the axial direction D2. The second reference center plane CP20 is defined to bisect the second body maximum width W20 in the axial direction D2. The axial surface 40B can also be referred to as a second axial surface 40B. The reverse axial surface 40C can also be referred to as a second reverse axial surface 40C.
Furthermore, the second tooth 44 includes a chain-engagement surface 44A and an additional chain-engagement surface 44B. The chain-engagement surface 44A faces in the axial direction D2 and is contactable with one of the pair of outer link plates C1 and one of the pair of inner link plates C2. The additional chain-engagement surface 44B faces in the axial direction D2 and is contactable with the other of the pair of outer link plates C1 and the other of the pair of inner link plates C2. The additional chain-engagement surface 44B is provided on a reverse side of the chain-engagement surface 44A in the axial direction D2. The second maximum width W21 is defined between the chain-engagement surface 44A and the additional chain-engagement surface 44B in the axial direction D2. The second maximum width W21 is smaller than the second body maximum width W20.
As seen in
The first pitch-circle diameter PCD1 can be defined based on centers C31 of pins C3 (
As seen in
In this embodiment, the second sprocket 18 comprises a pair of first shifting facilitation areas FA1 to facilitate the first shifting operation in which the bicycle chain C is shifted from the second sprocket 18 toward the first sprocket 16 in the first chain-phase state CS1 (
In a case where the second pitch-circle diameter PCD2 is smaller than the first pitch-circle diameter PCD1, the first sprocket 16 can comprise the first shifting facilitation area FA1 to facilitate the first shifting operation in which the bicycle chain C is shifted from the second sprocket 18 toward the first sprocket 16 in the first chain-phase state CS1 (
As seen in
As seen in
As seen in
As seen in
The second derailing tooth 48 includes a second downstream chamfer 48A provided on the axial surface 40B. The second downstream chamfer 48A is provided on a downstream side in the second derailing tooth 48 in the driving rotational direction D11 in which the bicycle crank assembly 10 rotates about the rotational center axis A1 during pedaling. The second downstream chamfer 48A reduces interference between the second derailing tooth 48 and the bicycle chain C (e.g., the inner link plate C2) when the second derailing tooth 48 first derails the bicycle chain C from the second sprocket 18 in the second chain-phase state CS2. In other words, the second downstream chamfer 48A can guide the bicycle chain C to be derailed from the second derailing tooth 48 toward the first sprocket 16.
The first derailing tooth 46 includes a first upstream chamfer 46B provided on the axial surface 40B. The first upstream chamfer 46B is provided on an upstream side in the first derailing tooth 46 in the driving rotational direction D11 in which the bicycle crank assembly 10 rotates about the rotational center axis A1 during pedaling. The first upstream chamfer 46B facilitates a bend of the bicycle chain C toward the first sprocket 16 in order to smoothly guide the bicycle chain C toward the first sprocket 16 in the first shifting operation.
As seen in
In this embodiment, the first derailing tooth 46 includes the first downstream chamfer 46A, the first upstream chamfer 46B, and the first reverse upstream chamfer 46C. The second derailing tooth 48 includes the second downstream chamfer 48A. However, at least one of the first downstream chamfer 46A, the first upstream chamfer 46B, and the first reverse upstream chamfer 46C can be omitted from the first derailing tooth 46. The second downstream chamfer 48A can be omitted from the second derailing tooth 48.
As seen in
The derailing facilitation tooth 50 includes a second reverse upstream chamfer 50A provided on the reverse axial surface 40C. The second reverse upstream chamfer 50A is provided on an upstream side in the derailing facilitation tooth 50 in the driving rotational direction D11. The second reverse upstream chamfer 50A reduces interference between the first derailing tooth 46 and the bicycle chain C (e.g., the inner link plate C2) when the first derailing tooth 46 first derails the bicycle chain C from the second sprocket 18 in the first shifting operation. In other words, the second reverse upstream chamfer 50A facilitates the bicycle chain C to be moved toward the first sprocket 16 during the first shifting operation. The second reverse upstream chamfer 50A also reduces interference between the second derailing tooth 48 and the bicycle chain C (e.g., the inner link plate C2) when the second derailing tooth 48 first derails the bicycle chain C from the second sprocket 18 in the second shifting operation. In other words, the second reverse upstream chamfer 50A facilitates the bicycle chain C to be moved toward the first sprocket 16 in the second shifting operation. However, the second reverse upstream chamfer 50A can be omitted from the derailing facilitation tooth 50.
As seen in
The at least one second tooth 44 includes an adjacent tooth 54 closest to the shifting facilitation projection 52 among the at least one second tooth 44. The second derailing tooth 48 is adjacent to the adjacent tooth 54 without another tooth between the second derailing tooth 48 and the adjacent tooth 54 in the driving rotational direction D11. The second derailing tooth 48 is provided on a downstream side of the adjacent tooth 54 in the driving rotational direction D11. However, the positional relationship between the shifting facilitation projection 52 and the second derailing tooth 48 is not limited to this embodiment. In a case where the first sprocket 16 and the second sprocket 18 each have a predetermined total number of teeth, the positional relationship between the second derailing tooth 48 and the adjacent tooth 54 is not limited to this embodiment. In the case where the first sprocket 16 and the second sprocket 18 each have the predetermined total number of teeth, the shifting facilitation projection 52 can be omitted from the second sprocket 18.
As seen in
In this embodiment, the shifting facilitation projection 52 includes a contact part 52A, a securing part 52B, and an intermediate part 52C. The contact part 52A is provided on the axial surface 40B to contact the outer link plate C1. The contact part 52A is provided at one end of the intermediate part 52C. The securing part 52B is provided on the reverse axial surface 40C. The securing part 52B is provided at the other end of the intermediate part 52C. The intermediate part 52C extends through a hole 55 of the second sprocket body 40. The contact part 52A has an outer diameter larger than an outer diameter of the intermediate part 52C. The securing part 52B has an outer diameter larger than the outer diameter of the intermediate part 52C. The contact part 52A, the securing part 52B, and the intermediate part 52C provide a rivet. However, the structure of the shifting facilitation projection 52 is not limited to this embodiment.
As seen in
As seen in
The bump portion 56 is coupled to the second sprocket body 40 to contact the bicycle chain C (e.g., the inner link plate C2) in the first shifting operation. The bump portion 56 is a separate member from the second sprocket body 40 and is secured to the second sprocket body 40. However, the bump portion 56 can be integrally provided with the second sprocket body 40 as a one-piece unitary member.
As seen in
As seen in
As seen in
As seen in
As seen in
The inner-link receiving tooth 62 is adjacent to the derailing facilitation tooth 50 without another tooth between the derailing facilitation tooth 50 and the inner-link receiving tooth 62 in the circumferential direction D1. The outer-link receiving tooth 60 is adjacent to the inner-link receiving tooth 62 without another tooth between the outer-link receiving tooth 60 and the inner-link receiving tooth 62 in the circumferential direction D1.
As seen in
The inner-link receiving tooth 62 includes an inner-link downstream chamfer 62B provided on the reverse axial surface 40C. The inner-link downstream chamfer 62B is provided on a downstream side in the inner-link receiving tooth 62 in the driving rotational direction D11. The inner-link downstream chamfer 62B reduces interference between the inner-link receiving tooth 62 and the bicycle chain C (e.g., the inner link plate C2) when the inner-link receiving tooth 62 first receives the pair of inner link plates C2 in the third shifting operation.
As seen in
In this embodiment, the inner-link receiving tooth 62 includes the inner-link upstream chamfer 62A, the inner-link downstream chamfer 62B, and the inner-link reverse upstream chamfer 62C. However, at least one of the inner-link upstream chamfer 62A, the inner-link downstream chamfer 62B, and the inner-link reverse upstream chamfer 62C can be omitted from the inner-link receiving tooth 62.
The outer-link receiving tooth 60 includes an outer-link downstream chamfer 60A provided on the reverse axial surface 40C. The outer-link downstream chamfer 60A is provided on a downstream side in the outer-link receiving tooth 60 in the driving rotational direction D11. The outer-link downstream chamfer 60A reduces interference between the outer-link receiving tooth 60 and the bicycle chain C (one of the outer link plates C1) when the outer-link receiving tooth 60 first receives the pair of outer link plates C1 in the third shifting operation. However, the outer-link downstream chamfer 60A can be omitted from the outer-link receiving tooth 60.
As seen in
The receiving facilitation tooth 64 includes an upstream facilitation chamfer 64A and a downstream facilitation chamfer 64B. The upstream facilitation chamfer 64A is provided on an upstream side in the receiving facilitation tooth 64 in the driving rotational direction D11. The downstream facilitation chamfer 64B is provided on a downstream side in the receiving facilitation tooth 64 in the driving rotational direction D11. The upstream facilitation chamfer 64A is provided on the axial surface 40B to reduce interference between the outer-link receiving tooth 60 and the bicycle chain C (the outer link plate C1) in the third shifting operation. The downstream facilitation chamfer 64B is provided on the axial surface 40B to reduce interference between the receiving facilitation tooth 64 and the bicycle chain C (the outer link plate C1) in the third shifting operation.
As seen in
The at least one second tooth 44 includes an additional adjacent tooth 68 closest to the additional shifting facilitation projection 66 among the at least one second tooth 44. The receiving facilitation tooth 64 is adjacent to the additional adjacent tooth 68 without another tooth between the receiving facilitation tooth 64 and the additional adjacent tooth 68 in the driving rotational direction D11. However, the positional relationship between the additional shifting facilitation projection 66 and the receiving facilitation tooth 64 is not limited to this embodiment.
As seen in
The additional shifting facilitation projection 66 includes a contact part 66A, a securing part 66B, and an intermediate part 66C. The contact part 66A is provided on the axial surface 40B to contact the outer link plate C1. The contact part 66A is provided at one end of the intermediate part 66C. The securing part 66B is provided on the reverse axial surface 40C. The securing part 66B is provided at the other end of the intermediate part 66C. The intermediate part 66C extends through a hole 67 of the second sprocket body 40. The contact part 66A has an outer diameter larger than an outer diameter of the intermediate part 66C. The securing part 66B has an outer diameter larger than the outer diameter of the intermediate part 66C. The contact part 66A, the securing part 66B, and the intermediate part 66C provide a rivet. The additional shifting facilitation projection 66 can be omitted from the second sprocket 18.
As seen in
As seen in
As seen in
In this embodiment, as seen in
The first shifting operation, the second shifting operation, and the third shifting operation will be described in detail below referring to
As seen in
As seen in
As seen in
In the second shifting operation, the inner link plate C2E is not guided by the guide surface 56A of the bump portion 56 toward the first sprocket 16 since the inner link plate C2E is adjacent to or in contact with the second derailing tooth 48. This brings the outer link plate C1E into contact with the shifting facilitation projection 52. Thus, as seen in
As seen in
With the bicycle crank assembly 10, it is possible to smoothly shift the bicycle chain C between the first sprocket 16 and the second sprocket 18 in each of the first chain-phase state CS1 and the second chain-phase state CS2 (i.e. the irregular chain-phase state CS2) different from the first chain-phase state CS1 (i.e. the regular chain-phase state CS1).
A bicycle crank assembly 210 including a first sprocket 216 in accordance with a second embodiment will be described below referring to
As seen in
In this embodiment, the first tooth 236 includes a chain-engagement surface 236A and a reverse surface 236B. The chain-engagement surface 236A faces in the axial direction D2 and is contactable with one of the pair of outer link plates C1. The reverse surface 236B faces in the axial direction D2 and is provided on a reverse side of the chain-engagement surface 236A in the axial direction D2. The first maximum width W211 is defined between the chain-engagement surface 236A and the reverse surface 236B in the axial direction D2. The first maximum width W211 is smaller than the first body maximum width W10. The first maximum width W211 is smaller than the first maximum width W11 of the first tooth 36 of the first embodiment. The first maximum width W211 is substantially equal to the first additional maximum width W12 of the first additional tooth 38 of the second embodiment.
As seen in
With the bicycle crank assembly 210, it is possible to obtain substantially the same effect as that of the bicycle crank assembly 10 of the first embodiment.
The term “comprising” and its derivatives, as used herein, are intended to be open ended terms that specify the presence of the stated features, elements, components, groups, integers, and/or steps, but do not exclude the presence of other unstated features, elements, components, groups, integers and/or steps. This concept also applies to words of similar meaning, for example, the terms “have”, “include” and their derivatives.
The terms “member”, “section”, “portion”, “part”, “element”, “body” and “structure” when used in the singular can have the dual meaning of a single part or a plurality of parts.
The ordinal numbers such as “first” and “second” recited in the present application are merely identifiers, but do not have any other meanings, for example, a particular order and the like. Moreover, for example, the term “first element” itself does not imply an existence of “second element”, and the term “second element” itself does not imply an existence of“first element.”
The term “pair of”, as used herein, can encompass the configuration in which the pair of elements have different shapes or structures from each other in addition to the configuration in which the pair of elements have the same shapes or structures as each other.
The terms “a” (or “an”), “one or more” and “at least one” can be used interchangeably herein.
Finally, terms of degree such as “substantially”, “about” and “approximately” as used herein mean a reasonable amount of deviation of the modified term such that the end result is not significantly changed.
Obviously, numerous modifications and variations of the present invention are possible in light of the above teachings. It is therefore to be understood that within the scope of the appended claims, the invention may be practiced otherwise than as specifically described herein.
Number | Name | Date | Kind |
---|---|---|---|
590649 | Ribyn, Jr. | Sep 1897 | A |
3956943 | Yamasaki | May 1976 | A |
3969947 | Martin | Jul 1976 | A |
4174642 | Martin | Nov 1979 | A |
4598608 | Ueno | Jul 1986 | A |
4889521 | Nagano | Dec 1989 | A |
5087226 | Nagano | Feb 1992 | A |
5192248 | Nagano | Mar 1993 | A |
5192249 | Nagano | Mar 1993 | A |
5413534 | Nagano | May 1995 | A |
5503598 | Neuer | Apr 1996 | A |
5514042 | Liou | May 1996 | A |
5545096 | Su | Aug 1996 | A |
5609536 | Hsu | Mar 1997 | A |
5690570 | Chang | Nov 1997 | A |
5738603 | Schmidt | Apr 1998 | A |
5876296 | Hsu | Mar 1999 | A |
5935033 | Tseng | Aug 1999 | A |
5971878 | Leng | Oct 1999 | A |
6007442 | Schmidt | Dec 1999 | A |
6013001 | Miyoshi | Jan 2000 | A |
6045472 | Sung | Apr 2000 | A |
6139456 | Lii | Oct 2000 | A |
6203462 | Takamori | Mar 2001 | B1 |
6264575 | Lim | Jul 2001 | B1 |
6340338 | Kamada | Jan 2002 | B1 |
6666786 | Yahata | Dec 2003 | B2 |
6860171 | Nanko | Mar 2005 | B1 |
7883437 | Braedt | Feb 2011 | B2 |
8092329 | Wickliffe | Jan 2012 | B2 |
8617015 | Wickliffe | Dec 2013 | B2 |
8882619 | Braedt | Nov 2014 | B2 |
9316302 | Braedt | Apr 2016 | B2 |
9328814 | Wesling | May 2016 | B2 |
9334014 | Fukunaga | May 2016 | B2 |
9463844 | Fukunaga | Oct 2016 | B2 |
9540070 | Watarai | Jan 2017 | B2 |
9873481 | Braedt | Jan 2018 | B2 |
20020098934 | Wigsten | Jul 2002 | A1 |
20030073530 | Mao | Apr 2003 | A1 |
20040009838 | Valle | Jan 2004 | A1 |
20040043855 | Wei | Mar 2004 | A1 |
20050079940 | Reiter | Apr 2005 | A1 |
20050282671 | Emura | Dec 2005 | A1 |
20060128511 | Oishi | Jun 2006 | A1 |
20060154767 | Kamada | Jul 2006 | A1 |
20070054768 | Miyazawa | Mar 2007 | A1 |
20070060428 | Meggiolan | Mar 2007 | A1 |
20090098966 | Kamada | Apr 2009 | A1 |
20110092327 | Oishi | Apr 2011 | A1 |
20130139642 | Reiter | Jun 2013 | A1 |
20130184110 | Reiter | Jul 2013 | A1 |
20140338494 | Sugimoto | Nov 2014 | A1 |
20160101825 | Braedt | Apr 2016 | A1 |
Number | Date | Country | |
---|---|---|---|
20180127057 A1 | May 2018 | US |