The present invention relates generally to bicycles and, more particularly, to an adapter constructed to be operatively disposed between a repair clamp and a bicycle.
The primary structural component of a conventional two-wheel bicycle is the frame. On a conventional road bicycle, the frame is typically constructed from a set of tubular members assembled together to form the frame. For many bicycles, the frame is constructed from members commonly referred to as the top tube, down tube, seat tube, seat stays and chain stays, and those members are joined together at intersections commonly referred to as the head tube, seat post, bottom bracket and rear dropout. The top tube usually extends from the head tube rearward to the seat tube. The head tube, sometimes referred to as the neck, is a short tubular structural member at the upper forward portion of the bicycle which supports the handlebar and front steering fork, which has the front wheel on it. The down tube usually extends downwardly and rearward from the head tube to the bottom bracket, the bottom bracket usually comprising a cylindrical member for supporting the pedals and chain drive mechanism which powers the bicycle. The seat tube usually extends from the bottom bracket upwardly to where it is joined to the rear end of the top tube. The seat tube also usually functions to telescopically receive a seat post for supporting a seat or saddle for the bicycle rider to sit on.
The handlebars, accessories, front and rear wheel assemblies, and drive assembly of the bicycle are attached to the respective portions of the frame. Occasionally, these systems require periodic maintenance or repair. Frequently, it is desired to suspend the bicycle from the frame to manipulate any of the various components that are commonly supported by the frame. Often, a technician or user uses a clamp or repair clamp that is constructed to engage the frame of the bicycle and suspend the bicycle above the ground. The repair clamps come in a variety of configurations. Some include a movable jaw that compresses an area of the frame of the bicycle between the moveable jaw and a fixed jaw. Others provide an expandable jaw that is constructed to be received within a cavity of the frame, such as the seat tube, and expanded therein. Each of these clamp types are not without their respective drawbacks.
The expandable type of clamp requires the removal of a structure of the bicycle to expose the frame cavity. That is, for the clamp to engage the seat tube, the seat post must be removed from the seat tube. Such requirements increase the service time associated with using such types of clamps. The moveable jaw types of clamps also present several drawbacks to their utilization. It is commonly desired to engage the clamp proximate a gravitational axis of the bicycle to prevent tipping of the clamp supporting structure and to evenly distribute the weight of the bicycle across the structure of the clamp. A user must commonly elevate a bicycle to engage it with the clamp. Mounting the bicycle in a balanced orientation in the clamp requires the user to offset their gripping of the frame such that their hands do not interfere with the engagement of the clamp with the frame. Additionally, once positioned loosely in the clamp, the user must maintain the position of the bicycle with one hand while manipulating the clamping operation of the clamp with the other hand. Such activity can be trying and the user is generally wary that inadvertent translation of the bicycle relative to the clamp jaws can mare or otherwise blemish the finish of the frame of the bicycle
Another consideration of such clamp systems is the structure of the bicycle frame. Commonly, such clamps are provided with generally planar or only slightly curved jaw faces. Although such clamps are adequate to provide sufficient clamping forces for generally round frame structures, the advent of non-round bicycle frame structures has presented several additional shortcomings of these clamping devices.
Many bicycle manufactures provide frame or bicycle elements formed from carbon fiber materials. The carbon fiber materials are used to provide lightweight durable frame structures. In addition to the strength of the material, many prefer carbon fiber materials for the ability to easily form elements having a non-circular cross-section. To increase the aerodynamic performance of the bicycle, bicycles have been provided with frame, seat tube, and seat post assemblies formed of carbon fiber material in an aerodynamic shape. These shapes generally include a teardrop, airfoil, or other non-circular sections. Although such structures enhance the aerodynamic function of the bicycle, they also complicate usage of the clamping devices.
Due in part to the non-corresponding contours of the frame sections and the clamp jaws; such frame elements are susceptible to damage due to over clamping. That is, as a user increases the clamping pressure in an effort to secure the frame element in the clamp, the un-matching contours of the clamp and the frame concentrate the clamping forces in the areas of contact between the clamp and the frame. Such over clamping can readily be seen as a deformation or other marring in metal material frame elements and can even result in total failure of carbon fiber frame elements. Accordingly, it is desired to provide an adapter that has a contour that generally matches the contour of a frame element. It is also desired to provide an adapter that limits the clamping force that can be imparted to a portion of a bicycle frame.
The present invention provides an adapter assembly that overcomes the aforementioned drawbacks. An adapter according to a number of aspects of the invention includes a first arm and a second arm that is pivotably connected to the first arm. A first portion of the first and second arms cooperate to form a contour which generally matches a contour of a portion of a bicycle frame. A second portion of the first and second arms are constructed to engage one another such that, during a clamping process, the adapter engages the bicycle frame with a desired gripping pressure. Preferably, the gripping pressure is less than a pressure that would crush or otherwise deform the frame of the bicycle.
One aspect of the invention discloses a bicycle clamp adapter that includes a first arm and a second arm pivotably connected to the first arm. Each first arm and second arm has a frame section and a clamp section. The frame sections are constructed to cooperate to grip a frame portion of a bicycle and the clamp sections are constructed to engage a clamp and define a maximum grip pressure of the frame sections. Such a construction prevents unintentionally over clamping of the frame portion.
A bicycle support device according to another aspect of the invention is disclosed that includes a first portion that is constructed to engage a seat post of a bicycle and a second portion that is constructed to engage a bicycle clamp. The first portion and the second portion are connected such that when the first portion is engaged with the seat post, the second portion extends in a crossing direction from an axis of the seat post. Such a construction allows a user to conveniently manipulate the position of the bicycle with the support device.
A further aspect of the invention is disclosed as a method of forming a bicycle repair stand adapter. The method includes forming a first section and a second section. The first section is formed with a contour that generally matches a contour of a portion of a bicycle frame and the second section is formed to extend from the first section and constructed to be engaged by a repair clamp. A pivotable link is formed such that the first and second sections can be opened to allow the bicycle frame to pass therebetween and closed to generally surround the bicycle frame.
These and various other features and advantages of the present invention will be made apparent from the following detailed description and the drawings.
The drawings illustrate one preferred embodiment presently contemplated for carrying out the invention.
In the drawings:
A rear wheel assembly 58 is rotationally attached to bicycle 10 and supported by a chain stay 64 and a seat stay 62 that extend generally rearward from seat tube 22. Rear wheel assembly 58 includes a tire 64 that is positioned about a rim 66. Rim 66 includes a number of spokes 68 that extend from a hub 70. A rear axle 72 engages hub 70 and rotationally attaches hub 70 to frame assembly 18.
A gear cluster 74 is positioned proximate hub 70 and is operationally connected to a crankset 76. Crankset 76 includes a set of pedals 78 that is operationally connected to a chain 80 via a chain ring or sprocket 82. Operation of pedals 78 rotates chain 80 and communicates a drive force to gear cluster 74. Gear cluster 74 is generally concentrically orientated with respect to rear axle 72 and includes a number of variable diameter gears. Gear cluster 74 is operationally connected to hub 70 of rear wheel assembly 58. As is commonly understood, rider operation of pedals 78 drives chain 80 thereby driving rear wheel 58 which in turn propels bicycle 10.
Understandably, front wheel assembly 36 and rear wheel assembly 58 could be equipped with any of a number of brake system configurations and related components. That is it is understood that one or both of the front and rear wheel assemblies of bicycle 10 be equipped any of a number of brake systems including caliper brake systems which engage the tire rims of rotor brake systems which include a rotor positioned proximate the hub for engaging a hydraulic or other powered caliper. It is further envisioned that bicycle 10 may include any of a number of accessories or accessory mounting systems attached to frame assembly 18. Bicycle 10 could also be equipped with a number of suspension elements or shock absorbers. These shock arresting systems could be integrated into any of frame assembly 18, forks 34, head tube 28, seat and chain stays 62, 64, or the like.
Regardless of the amenities and features of bicycle 10, periodic service and or maintenance of bicycle 10 is inevitable. Servicing of bicycle 10 is more convenient when a technician can manipulate the various parts and assemblies of bicycle 10 without interference from a bicycle supporting surface such as the ground 84. Accordingly, many technicians and riders employ a repair stand 86 that is constructed to secure bicycle 10 and elevate the bicycle 10 above the ground 84.
Repair stand 86 includes a body 88 having a number of legs 90, 92, 94 pivotably attached thereto. Body 88 preferably includes a telescopic portion 96 having a clamp head 98 positioned that an end 100 thereof. Clamp head 98 includes a first jaw 102 and a second jaw 104 that are secured to end 100 of body 88 such that the first jaw 102 and second jaw 104 can be cooperatively closed about an object. Preferably clamp head 98 is constructed as a clamp-type of clamp wherein manipulation of a lever or handle displaces one or both of first and second jaws 102, 104 to enclose about an object. Understandably, as shown in
Clamp head 98 is constructed to engage adapter 12 such that the adapter extends generally forward or rearward of seat stem 20. Such a construction ensures that a user can both maintain the desired positioning of adapter 12 relative to stem 20 and manipulate the operator associated with the respective clamping device. Such an orientation also ensures that the gravitational loading of bicycle 10 upon repair stand 86 maintains a center of gravity of the combined repair stand 86 and bicycle 10 at least between the outermost points of leg 90, 92, 94. Preferably, the center of gravity of the loaded repair stand is generally aligned with an axis of body 88. Such a construction and orientation ensures that adapter 12 and bicycle 10 can be efficiently positioned in a variety of clamp configurations while reducing the potential that the loaded repair stand will tip over upon loading or servicing of bicycle 10.
A shown in
Clamp portion 108 of adapter 12 extends from stem portion 106 and is operatively engaged by clamp head 98. Clamp portion 108 includes a contour 112 that is constructed to generally cooperate with a contour 114 associated with an interior surface 116 of jaws 102, 104. Preferably, contour 112 of adapter 12 is configured to operatively interact with a variety of clamp head constructions. As shown in
Referring to
Each clamp section 135 of first arm 128 and second arm 130 includes an interface edge 146, 148, respectively. The interface edge 146 of first arm 128 is constructed to operationally engage the interface edge 148 of second arm 130 such that clamp sections 135 define a maximum clamping pressure 126 independent of continued operation of knob 120. Furthermore, adapter 12 is operable with clamps which generate clamping pressure in the direction indicated by arrow 126 and clamps which generate a clamping pressure in other directions, such as a direction generally normal thereto, as shown by the clamping pressure indicated by arrow 150 as shown in
As shown in
Referring to
As shown in
Therefore, a bicycle clamp adapter according to one embodiment of the invention includes a first arm and a second arm. The second arm is pivotably connected to the first arm and each first arm and second arm has a frame section and a clamp section. The frame sections are constructed to cooperate to grip a frame portion of a bicycle and the clamp sections are constructed to engage a clamp. The clamp sections are also constructed to define a maximum grip pressure of the frame sections.
A bicycle support device according to another embodiment includes a first portion that is constructed to engage a seat post of a bicycle and a second portion that is constructed to engage a bicycle clamp. The first portion and the second portion are connected such that when the first portion is engaged with the seat post, the second portion extends in a crossing direction from an axis of the seat post. Such a construction allows a user to conveniently manipulate the position of the bicycle with the support device.
A method of forming a bicycle repair stand adapter according to another embodiment includes forming an adapter with a number of sections. The adapter includes a first section that is formed with a contour that generally matches a contour of a portion of a bicycle frame and a second section that is formed to extend from the first section and constructed to be engaged by a repair clamp. A pivotable link is formed such that the first and second sections can be opened to allow the bicycle frame to pass therebetween and closed to generally surround the bicycle frame.
The present invention has been described in terms of the preferred embodiment, and it is recognized that equivalents, alternatives, and modifications, aside from those expressly stated, are possible and within the scope of the appending claims.
Number | Name | Date | Kind |
---|---|---|---|
559312 | Seely | Apr 1896 | A |
564733 | Beardsley | Jul 1896 | A |
577910 | Bierbach | Mar 1897 | A |
588291 | Porter | Jul 1897 | A |
592534 | Webster et al. | Oct 1897 | A |
592544 | Graham et al. | Oct 1897 | A |
594627 | Hewlett | Nov 1897 | A |
605429 | Howard | Jun 1898 | A |
619186 | Kingsbury | Feb 1899 | A |
640631 | Conti | Jan 1900 | A |
653519 | Masters | Jul 1900 | A |
3514091 | Johnson et al. | May 1970 | A |
3675784 | John | Jul 1972 | A |
D229132 | Uroshevich | Nov 1973 | S |
3981491 | Snyder | Sep 1976 | A |
4040613 | Kartasuk et al. | Aug 1977 | A |
4073418 | Edson | Feb 1978 | A |
4234176 | Goff et al. | Nov 1980 | A |
4395070 | Veltman et al. | Jul 1983 | A |
4431174 | Varden | Feb 1984 | A |
4503743 | Ryba | Mar 1985 | A |
D280088 | Shedden | Aug 1985 | S |
4569510 | Haramoto | Feb 1986 | A |
4763887 | Yang | Aug 1988 | A |
4765033 | Hollingsworth | Aug 1988 | A |
4809962 | Lee | Mar 1989 | A |
4910986 | Funkhouser | Mar 1990 | A |
4971301 | Yang | Nov 1990 | A |
5032045 | Calco | Jul 1991 | A |
D330695 | Simmons | Nov 1992 | S |
5165635 | Hoshino | Nov 1992 | A |
5320227 | Minoura | Jun 1994 | A |
5385280 | Littlepage et al. | Jan 1995 | A |
D356901 | Schoenig et al. | Apr 1995 | S |
D358048 | Schoenig et al. | May 1995 | S |
5497967 | Gantois | Mar 1996 | A |
5509629 | Sassmannshausen et al. | Apr 1996 | A |
5562013 | Kao | Oct 1996 | A |
5702006 | Durham | Dec 1997 | A |
5709521 | Glass et al. | Jan 1998 | A |
5765821 | Janisse et al. | Jun 1998 | A |
5779116 | Rosch et al. | Jul 1998 | A |
5779119 | Talbot et al. | Jul 1998 | A |
5876026 | Chen | Mar 1999 | A |
5897109 | Lin | Apr 1999 | A |
5996814 | Workman et al. | Dec 1999 | A |
6027133 | Phillips | Feb 2000 | A |
6092797 | You | Jul 2000 | A |
6135435 | Schmitz | Oct 2000 | A |
6227081 | Bally et al. | May 2001 | B1 |
6273392 | Birkhold | Aug 2001 | B1 |
6334609 | Chun | Jan 2002 | B1 |
6371309 | Smith | Apr 2002 | B1 |
6375135 | Eason et al. | Apr 2002 | B1 |
6449919 | Behlen | Sep 2002 | B1 |
6454228 | Bosnakovic | Sep 2002 | B1 |
6568644 | Pedersen | May 2003 | B2 |
6619644 | Liou | Sep 2003 | B1 |
D490289 | Chuang | May 2004 | S |
6761349 | McCraw | Jul 2004 | B2 |
6789772 | Eason | Sep 2004 | B2 |
7234219 | Deiter | Jun 2007 | B2 |
20030102343 | Anderson et al. | Jun 2003 | A1 |
20040046091 | Chuang | Mar 2004 | A1 |
20050035247 | Roberts et al. | Feb 2005 | A1 |
20050056740 | Chuang | Mar 2005 | A1 |
20090057973 | Henderson | Mar 2009 | A1 |
Number | Date | Country | |
---|---|---|---|
20080272264 A1 | Nov 2008 | US |