The present invention relates to a bicycle hub assembly and a bicycle drive train assembly.
Bicycling is becoming an increasingly more popular form of recreation as well as a means of transportation. Moreover, bicycling has become a very popular competitive sport for both amateurs and professionals. Whether the bicycle is used for recreation, transportation or competition, the bicycle industry is constantly improving the various components of the bicycle. One bicycle component that has been extensively redesigned is a hub assembly.
In accordance with a first aspect of the present invention, a bicycle hub assembly comprises a hub axle, a hub body, a sprocket support structure, and a brake-rotor support structure. The hub body is rotatably supported on the hub axle about a rotational center axis of the bicycle hub assembly. The hub body has a first body end and a second body end opposite to the first body end in an axial direction with respect to the rotational center axis. The sprocket support structure includes a first torque-transmitting profile and a first externally-threaded portion. The first torque-transmitting profile is configured to transmit a rotational force between the sprocket support structure and a bicycle sprocket assembly. The first externally-threaded portion is configured to threadedly engage with a first internally-threaded portion of a first lock member. The first torque-transmitting profile is closer to the first body end than the first externally-threaded portion in the axial direction. The brake-rotor support structure includes a radially external surface, a radially internal surface, and a second torque-transmitting profile configured to transmit a rotational force between the brake-rotor support structure and a brake rotor. The second torque-transmitting profile is provided on the radially external surface.
With the bicycle hub assembly according to the first aspect, it is possible to easily attach and detach the brake rotor to and from the bicycle hub assembly and to mount the bicycle sprocket assembly having a wide gear range to the bicycle hub assembly.
In accordance with a second aspect of the present invention, the bicycle hub assembly according to the first aspect further comprises the first lock member configured to prevent an axial movement of the bicycle sprocket assembly relative to the sprocket support structure in a state where the first lock member is attached to the sprocket support structure.
With the bicycle hub assembly according to the second aspect, it is possible to firmly secure the bicycle sprocket assembly to the bicycle hub assembly in the axial direction with the first lock member.
In accordance with a third aspect of the present invention, the bicycle hub assembly according to the first or second aspect further comprises a second lock member configured to prevent an axial movement of the brake rotor relative to the brake-rotor support structure in a state where the second lock member is attached to the brake-rotor support structure.
With the bicycle hub assembly according to the third aspect, it is possible to firmly secure the brake rotor to the bicycle hub assembly in the axial direction with the second lock member.
In accordance with a fourth aspect of the present invention, the bicycle hub assembly according to the third aspect is configured so that the brake-rotor support structure includes a second internally-threaded portion provided on the radially internal surface. The second lock member includes a second externally-threaded portion configured to threadedly engage with the second internally-threaded portion of the sprocket support structure.
With the bicycle hub assembly according to the fourth aspect, the arrangement of the second internally-threaded portion and the second externally-threaded portion reduces an axial length of the brake-rotor support structure. This makes the bicycle hub assembly compact.
In accordance with a fifth aspect of the present invention, the bicycle hub assembly according to any one of the first to fourth aspects is configured so that the first torque-transmitting profile includes a first splined portion configured to engage with a sprocket splined portion of the bicycle sprocket assembly.
With the bicycle hub assembly according to the fifth aspect, the first splined portion allows the bicycle hub assembly to transmit a higher torque between the bicycle hub assembly and the bicycle sprocket assembly.
In accordance with a sixth aspect of the present invention, the bicycle hub assembly according to any one of the first to fifth aspects is configured so that the second torque-transmitting profile includes a second splined portion configured to engage with a rotor splined portion of the brake rotor.
With the bicycle hub assembly according to the sixth aspect, the second splined portion allows the bicycle hub assembly to transmit a higher torque between the bicycle hub assembly and the brake rotor.
In accordance with a seventh aspect of the present invention, the bicycle hub assembly according to any one of the first to sixth aspects is configured so that the first torque-transmitting profile has a first external diameter. The second torque-transmitting profile has a second external diameter that is larger than the first external diameter.
With the bicycle hub assembly according to the seventh aspect, the second external diameter saves a weight of the sprocket support structure.
In accordance with an eighth aspect of the present invention, the bicycle hub assembly according to the seventh aspect is configured so that the first externally-threaded portion has a third external diameter that is smaller than the first external diameter.
With the bicycle hub assembly according to the eighth aspect, third external diameter enables attachment of a smaller sprocket (e.g., a sprocket having 10 or less teeth) to the bicycle hub assembly. This makes a gear range of the bicycle sprocket assembly wider.
In accordance with a ninth aspect of the present invention, the bicycle hub assembly according to any one of the first to eighth aspects is configured so that the first torque-transmitting profile has a first external diameter that ranges from 34 mm to 35 mm.
With the bicycle hub assembly according to the ninth aspect, the first external diameter saves a weight of the sprocket support structure with enabling a higher torque transmission between the sprocket support structure and the bicycle sprocket assembly.
In accordance with a tenth aspect of the present invention, the bicycle hub assembly according to any one of the first to ninth aspects is configured so that the second torque-transmitting profile has a second external diameter that ranges from 35 mm to 36 mm.
With the bicycle hub assembly according to the tenth aspect, the second external diameter saves a weight of the brake-rotor support structure with enabling a higher torque transmission between the brake-rotor support structure and the brake rotor.
In accordance with an eleventh aspect of the present invention, the bicycle hub assembly according to any one of the first to tenth aspects is configured so that the first torque-transmitting profile has a first axial length. The second torque-transmitting profile has a second axial length that is larger than the first axial length.
With the bicycle hub assembly according to the eleventh aspect, the first axial length saves a weight of the sprocket support structure with enabling a higher torque transmission between the brake-rotor support structure and the brake rotor and the brake rotor.
In accordance with a twelfth aspect of the present invention, the bicycle hub assembly according to the eleventh aspect is configured so that the first externally-threaded portion has a third axial length that is larger than the first axial length.
With the bicycle hub assembly according to the twelfth aspect, it is possible to firmly secure the bicycle sprocket assembly to the bicycle hub assembly with saving a weight of the sprocket support structure.
In accordance with a thirteenth aspect of the present invention, the bicycle hub assembly according to any one of the first to twelfth aspects is configured so that the first torque-transmitting profile has a first axial length. The second torque-transmitting profile has a second axial length. The ratio of the first axial length to the second axial length ranges from 1 to 2.
With the bicycle hub assembly according to the thirteenth aspect, it is possible to save a weight of the sprocket support structure with enabling a higher torque transmission between the brake-rotor support structure and the brake rotor.
In accordance with a fourteenth aspect of the present invention, the bicycle hub assembly according to any one of the first to thirteenth aspects is configured so that the first torque-transmitting profile has a first axial length that ranges from 5 mm to 6 mm.
With the bicycle hub assembly according to the fourteenth aspect, it is possible to save a weight of the sprocket support structure with certainly transmitting a torque between the sprocket support structure and the bicycle sprocket assembly.
In accordance with a fifteenth aspect of the present invention, the bicycle hub assembly according to any one of the first to fourteenth aspects is configured so that the second torque-transmitting profile has a second axial length that ranges from 10 mm to 11 mm.
With the bicycle hub assembly according to the fifteenth aspect, it is possible to save a weight of the brake-rotor support structure with certainly transmitting a torque between the brake-rotor support structure and the brake rotor.
In accordance with a sixteenth aspect of the present invention, the bicycle hub assembly according to any one of the first to fifteenth aspects is configured so that the sprocket support structure is closer to the first body end than the brake-rotor support structure in the axial direction.
With the bicycle hub assembly according to the sixteenth aspect, it is possible to easily attach and detach the brake rotor to and from the bicycle hub assembly and to mount the bicycle sprocket assembly having a wider gear range to the bicycle hub assembly.
In accordance with a seventeenth aspect of the present invention, a bicycle drive train assembly comprises a bicycle sprocket assembly and a bicycle hub assembly. The bicycle sprocket assembly includes a smallest sprocket and a largest sprocket. The smallest sprocket has a first total tooth number that is equal to or smaller than 10. The largest sprocket has a second total tooth number that is equal to or larger than 46. The bicycle hub assembly includes a hub axle, a hub body, a sprocket support structure, and a brake-rotor support structure. The hub body is rotatably supported on the hub axle about a rotational center axis of the bicycle hub assembly. The hub body has a first body end and a second body end opposite to the first body end in an axial direction with respect to the rotational center axis. The sprocket support structure is configured to support the bicycle sprocket assembly. The sprocket support structure includes a first torque-transmitting profile configured to transmit a rotational force between the sprocket support structure and the bicycle sprocket assembly. The brake-rotor support structure includes a radially external surface, a radially internal surface, and a second torque-transmitting profile. The second torque-transmitting profile is configured to transmit a rotational force between the brake-rotor support structure and a brake rotor. The second torque-transmitting profile is provided on the radially external surface. The seventeenth aspect can be combined with any one of the first to sixteenth aspects.
With the bicycle drive train assembly according to the seventeenth aspect, it is possible to easily attach and detach the brake rotor to and from the bicycle hub assembly and to mount the bicycle sprocket assembly having a wide gear range to the bicycle hub assembly.
In accordance with an eighteenth aspect of the present invention, the bicycle drive train assembly according to the seventeenth aspect is configured so that the sprocket support structure includes a first externally-threaded portion configured to threadedly engage with a first internally-threaded portion of a first lock member. The first torque-transmitting profile is closer to the first body end than the first externally-threaded portion in the axial direction.
With the bicycle drive train assembly according to the eighteenth aspect, it is possible to provide a bicycle hub assembly with a sprocket support structure which is lightweight and to mount the bicycle sprocket assembly having a wider gear range to the bicycle hub assembly.
In accordance with a nineteenth aspect of the present invention, the bicycle drive train assembly according to the seventeenth or eighteenth aspect is configured so that the bicycle hub assembly comprises the first lock member configured to prevent an axial movement of the bicycle sprocket assembly relative to the sprocket support structure in a state where the first lock member is attached to the sprocket support structure.
With the bicycle drive train assembly according to the nineteenth aspect, it is possible to firmly secure the bicycle sprocket assembly to the bicycle hub assembly in the axial direction with the first lock member.
In accordance with a twentieth aspect of the present invention, the bicycle drive train assembly according to any one of the seventeenth to nineteenth aspects is configured so that the bicycle hub assembly comprises a second lock member configured to prevent an axial movement of the brake rotor relative to the brake-rotor support structure in a state where the second lock member is attached to the brake-rotor support structure.
With the bicycle drive train assembly according to the twentieth aspect, it is possible to firmly secure the brake rotor to the bicycle hub assembly in the axial direction with the second lock member.
In accordance with a twenty-first aspect of the present invention, the bicycle drive train assembly according to the twentieth aspect is configured so that the brake-rotor support structure includes a second internally-threaded portion provided on the radially internal surface. The second lock member includes a second externally-threaded portion configured to threadedly engage with the second internally-threaded portion of the sprocket support structure.
With the bicycle drive train assembly according to the twenty-first aspect, the arrangement of the second internally-threaded portion and the second externally-threaded portion reduces an axial length of the brake-rotor support structure. This makes the bicycle hub assembly compact.
In accordance with a twenty-second aspect of the present invention, the bicycle drive train assembly according to any one of the seventeenth to twenty-first aspects is configured so that the first torque-transmitting profile includes a first splined portion configured to engage with a sprocket splined portion of the bicycle sprocket assembly.
With the bicycle drive train assembly according to the twenty-second aspect, the first splined portion allows the bicycle hub assembly to transmit a higher torque between the bicycle hub assembly and the bicycle sprocket assembly.
In accordance with a twenty-third aspect of the present invention, the bicycle drive train assembly according to any one of the seventeenth to twenty-second aspects is configured so that the second torque-transmitting profile includes a second splined portion configured to engage with a rotor splined portion of the brake rotor.
With the bicycle drive train assembly according to the twenty-third aspect, the second splined portion allows the bicycle hub assembly to transmit a higher torque between the bicycle hub assembly and the brake rotor.
In accordance with a twenty-fourth aspect of the present invention, the bicycle drive train assembly according to any one of the seventeenth to twenty-third aspects is configured so that the second total tooth number is equal to or larger than 50.
With the bicycle drive train assembly according to the twenty-fourth aspect, it is possible to provide the bicycle drive train assembly having a wide gear range on a low gear side.
In accordance with a twenty-fifth aspect of the present invention, the bicycle drive train assembly according to any one of the seventeenth to twenty-fourth aspects is configured so that the bicycle sprocket assembly includes at least nine additional sprockets disposed between the smallest sprocket and the largest sprocket in the axial direction.
With the bicycle drive train assembly according to the twenty-fifth aspect, it is possible to provide the bicycle drive train assembly sufficiently having a wide gear range and a plurality of gear stages.
In accordance with a twenty-sixth aspect of the present invention, the bicycle drive train assembly according to any one of the seventeenth to twenty-fifth aspects is configured so that the bicycle sprocket assembly includes at least ten additional sprockets disposed between the smallest sprocket and the largest sprocket in the axial direction.
With the bicycle drive train assembly according to the twenty-sixth aspect, it is possible to provide the bicycle drive train assembly sufficiently having a wide gear range and a plurality of gear stages.
In accordance with a twenty-seventh aspect of the present invention, the bicycle drive train assembly according to any one of the seventeenth to twenty-sixth aspects is configured so that the sprocket support structure is closer to the first body end than the brake-rotor support structure in the axial direction.
With the bicycle drive train assembly according to the twenty-seventh aspect, it is possible to easily attach and detach the brake rotor to and from the bicycle hub assembly and to mount the bicycle sprocket assembly having a wide gear range to the bicycle hub assembly.
In accordance with a twenty-eighth aspect of the present invention, a bicycle drive train assembly comprises a bicycle sprocket assembly and a bicycle hub assembly. The bicycle sprocket assembly includes at least ten sprockets. The bicycle sprocket assembly has an entire gear range and an average percentage gear stage step. The entire gear range is equal to or higher than 350%. The average percentage gear stage step ranges from 15% to 30%. The bicycle hub assembly includes a hub axle, a hub body, a sprocket support structure, and a brake-rotor support structure. The hub body is rotatably supported on the hub axle about a rotational center axis of the bicycle hub assembly. The hub body has a first body end and a second body end opposite to the first body end in an axial direction with respect to the rotational center axis. The sprocket support structure is configured to support the bicycle sprocket assembly. The sprocket support structure includes a first torque-transmitting profile configured to transmit a rotational force between the sprocket support structure and the bicycle sprocket assembly. The brake-rotor support structure includes a radially external surface, a radially internal surface, and a second torque-transmitting profile. The second torque-transmitting profile is configured to transmit a rotational force between the brake-rotor support structure and a brake rotor. The second torque-transmitting profile is provided on the radially external surface. The twenty-eighth aspect can be combined with any one of the first to twenty-seventh aspects.
With the bicycle drive train assembly according to the twenty-eighth aspect, it is possible to easily attach and detach the brake rotor to and from the bicycle hub assembly and to mount the bicycle sprocket assembly having a wide gear range to the bicycle hub assembly.
In accordance with a twenty-ninth aspect of the present invention, the bicycle drive train assembly according to the twenty-eighth aspect is configured so that the sprocket support structure includes a first externally-threaded portion configured to threadedly engage with a first internally-threaded portion of a first lock member. The first externally-threaded portion is disposed axially outwardly from the first torque-transmitting profile in the axial direction.
With the bicycle drive train assembly according to the twenty-ninth aspect, it is possible to provide a bicycle hub assembly with a sprocket support structure which is lightweight and to mount the bicycle sprocket assembly having a wider gear range to the bicycle hub assembly.
In accordance with a thirtieth aspect of the present invention, the bicycle drive train assembly according to the twenty-eighth or twenty-ninth aspect is configured so that the bicycle hub assembly comprises the first lock member configured to prevent an axial movement of the bicycle sprocket assembly relative to the sprocket support structure in a state where the first lock member is attached to the sprocket support structure.
With the bicycle drive train assembly according to the thirtieth aspect, it is possible to firmly secure the bicycle sprocket assembly to the bicycle hub assembly in the axial direction with the first lock member.
In accordance with a thirty-first aspect of the present invention, the bicycle drive train assembly according to any one of the twenty-eighth to thirtieth aspects is configured so that the bicycle hub assembly comprises a second lock member configured to prevent an axial movement of the brake rotor relative to the brake-rotor support structure in a state where the second lock member is attached to the brake-rotor support structure.
With the bicycle drive train assembly according to the thirty-first aspect, it is possible to firmly secure the brake rotor to the bicycle hub assembly in the axial direction with the second lock member.
In accordance with a thirty-second aspect of the present invention, the bicycle drive train assembly according to the thirty-first aspect is configured so that the brake-rotor support structure includes a second internally-threaded portion provided on the radially internal surface. The second lock member includes a second externally-threaded portion configured to threadedly engage with the second internally-threaded portion of the sprocket support structure.
With the bicycle drive train assembly according to the thirty-second aspect, the arrangement of the second internally-threaded portion and the second externally-threaded portion reduces an axial length of the brake-rotor support structure. This makes the bicycle hub assembly compact.
In accordance with a thirty-third aspect of the present invention, the bicycle drive train assembly according to any one of the twenty-eighth to thirty-second aspects is configured so that the first torque-transmitting profile includes a first splined portion configured to engage with a sprocket splined portion of the bicycle sprocket assembly.
With the bicycle drive train assembly according to the thirty-third aspect, the first splined portion allows the bicycle hub assembly to transmit a higher torque between the bicycle hub assembly and the bicycle sprocket assembly.
In accordance with a thirty-fourth aspect of the present invention, the bicycle drive train assembly according to any one of the twenty-eighth to thirty-third aspects is configured so that the second torque-transmitting profile includes a second splined portion configured to engage with a rotor splined portion of the brake rotor.
With the bicycle drive train assembly according to the thirty-fourth aspect, the second splined portion allows the bicycle hub assembly to transmit a higher torque between the bicycle hub assembly and the brake rotor.
In accordance with a thirty-fifth aspect of the present invention, the bicycle drive train assembly according to any one of the twenty-eighth to thirty-fourth aspects is configured so that the entire gear range of the bicycle sprocket assembly is equal to or higher than 400%.
With the bicycle drive train assembly according to the thirty-fifth aspect, it is possible to provide the bicycle drive train assembly having a wider gear range.
In accordance with a thirty-sixth aspect of the present invention, the bicycle drive train assembly according to any one of the twenty-eighth to thirty-fifth aspects is configured so that the average percentage gear stage step of the bicycle sprocket assembly ranges from 20% to 30%.
With the bicycle drive train assembly according to the thirty-sixth aspect, it is possible to provide the bicycle drive train assembly having a wider gear range with enabling an effective shift operation.
In accordance with a thirty-seventh aspect of the present invention, the bicycle drive train assembly according to any one of the twenty-eighth to thirty-sixth aspects is configured so that the bicycle sprocket assembly has individual percentage gear stage steps ranging from 15% to 35%.
With the bicycle drive train assembly according to the thirty-seventh aspect, it is possible to provide the bicycle drive train assembly having a wider gear range with enabling an effective shift operation.
In accordance with a thirty-eighth aspect of the present invention, the bicycle drive train assembly according to any one of the twenty-eighth to thirty-seventh aspects is configured so that the sprocket support structure is closer to the first body end than the brake-rotor support structure in the axial direction.
With the bicycle drive train assembly according to the thirty-eighth aspect, it is possible to easily attach and detach the brake rotor to and from the bicycle hub assembly and to mount the bicycle sprocket assembly having a wide gear range to the bicycle hub assembly.
In accordance with a thirty-ninth aspect of the present invention, a bicycle drive train assembly comprises a bicycle sprocket assembly and a bicycle hub assembly. The bicycle sprocket assembly includes a smallest sprocket having a smallest-sprocket external diameter. The bicycle hub assembly includes a hub axle, a hub body, a sprocket support structure, and a brake-rotor support structure. The hub body is rotatably supported on the hub axle about a rotational center axis of the bicycle hub assembly. The hub body has a first body end and a second body end opposite to the first body end in an axial direction with respect to the rotational center axis. The sprocket support structure is configured to support the bicycle sprocket assembly. The sprocket support structure includes a first torque-transmitting profile configured to transmit a rotational force between the sprocket support structure and the bicycle sprocket assembly. The first torque-transmitting profile has a first external diameter. The brake-rotor support structure includes a radially external surface, a radially internal surface, and a second torque-transmitting profile. The second torque-transmitting profile is configured to transmit a rotational force between the brake-rotor support structure and a brake rotor. The second torque-transmitting profile is provided on the radially external surface and has a second external diameter that is larger than the smallest-sprocket external diameter. The thirty-ninth aspect can be combined with any one of the first to thirty-eighth aspects.
With the bicycle drive train assembly according to the thirty-ninth aspect, it is possible to provide the bicycle drive train assembly having a wide gear range on a top gear side with enabling a high braking performance.
In accordance with a fortieth aspect of the present invention, the bicycle drive train assembly according to the thirty-ninth aspect is configured so that the sprocket support structure includes a first externally-threaded portion configured to threadedly engage with a first internally-threaded portion of a first lock member. The first externally-threaded portion is disposed axially outwardly from the first torque-transmitting profile in the axial direction.
With the bicycle drive train assembly according to the fortieth aspect, it is possible to provide a bicycle hub assembly with a sprocket support structure which is lightweight and to mount the bicycle sprocket assembly having a wider gear range to the bicycle hub assembly.
In accordance with a forty-first aspect of the present invention, the bicycle drive train assembly according to the thirty-ninth or fortieth aspect is configured so that the bicycle hub assembly comprises the first lock member configured to prevent an axial movement of the bicycle sprocket assembly relative to the sprocket support structure in a state where the first lock member is attached to the sprocket support structure.
With the bicycle drive train assembly according to the forty-first aspect, it is possible to firmly secure the bicycle sprocket assembly to the bicycle hub assembly in the axial direction with the first lock member.
In accordance with a forty-second aspect of the present invention, the bicycle drive train assembly according to any one of the thirty-ninth to forty-first aspects is configured so that the bicycle hub assembly comprises a second lock member configured to prevent an axial movement of the brake rotor relative to the brake-rotor support structure in a state where the second lock member is attached to the brake-rotor support structure.
With the bicycle drive train assembly according to the forty-second aspect, it is possible to firmly secure the brake rotor to the bicycle hub assembly in the axial direction with the second lock member.
In accordance with a forty-third aspect of the present invention, the bicycle drive train assembly according to the forty-second aspect is configured so that the brake-rotor support structure includes a second internally-threaded portion provided on the radially internal surface. The second lock member includes a second externally-threaded portion configured to threadedly engage with the second internally-threaded portion of the sprocket support structure.
With the bicycle drive train assembly according to the forty-third aspect, the arrangement of the second internally-threaded portion and the second externally-threaded portion reduces an axial length of the brake-rotor support structure. This makes the bicycle hub assembly compact.
In accordance with a forty-fourth aspect of the present invention, the bicycle drive train assembly according to any one of the thirty-ninth to forty-third aspects is configured so that the first torque-transmitting profile includes a first splined portion configured to engage with a sprocket splined portion of the bicycle sprocket assembly.
With the bicycle drive train assembly according to the forty-fourth aspect, the first splined portion allows the bicycle hub assembly to transmit a higher torque between the bicycle hub assembly and the bicycle sprocket assembly.
In accordance with a forty-fifth aspect of the present invention, the bicycle drive train assembly according to any one of the thirty-ninth to forty-fourth aspects is configured so that the second torque-transmitting profile includes a second splined portion configured to engage with a rotor splined portion of the brake rotor.
With the bicycle drive train assembly according to the forty-fifth aspect, the second splined portion allows the bicycle hub assembly to transmit a higher torque between the bicycle hub assembly and the brake rotor.
In accordance with a forty-sixth aspect of the present invention, the bicycle drive train assembly according to any one of the thirty-ninth to forty-fifth aspects is configured so that the second external diameter is larger than the first external diameter.
With the bicycle drive train assembly according to the forty-sixth aspect, it is possible to save a weight of the sprocket support structure with enabling a higher torque transmission between the brake-rotor support structure and the brake rotor.
In accordance with a forty-seventh aspect of the present invention, the bicycle drive train assembly according to any one of the thirty-ninth to forty-sixth aspects is configured so that the sprocket support structure is closer to the first body end than the brake-rotor support structure in the axial direction.
With the bicycle drive train assembly according to the forty-seventh aspect, it is possible to provide the bicycle drive train assembly having a wider gear range on a top gear side with enabling a high braking performance.
In accordance with a forty-eighth aspect of the present invention, a bicycle drive train assembly comprises a bicycle sprocket assembly, a brake rotor, and a bicycle hub assembly. The bicycle sprocket assembly includes a largest sprocket having a largest-sprocket external diameter. The brake rotor has a rotor external diameter. The bicycle hub assembly includes a hub axle, a hub body, a sprocket support structure, and a brake-rotor support structure. The hub body is rotatably supported on the hub axle about a rotational center axis of the bicycle hub assembly. The hub body has a first body end and a second body end opposite to the first body end in an axial direction of the rotational center axis. The sprocket support structure is configured to support the bicycle sprocket assembly. The sprocket support structure includes a first torque-transmitting profile configured to transmit a rotational force between the sprocket support structure and the bicycle sprocket assembly. The brake-rotor support structure includes a radially external surface, a radially internal surface, and a second torque-transmitting profile. The second torque-transmitting profile is configured to transmit a rotational force between the brake-rotor support structure and the brake rotor. The second torque-transmitting profile is provided on the radially external surface. The brake rotor has a rotor external diameter that is smaller than the largest-sprocket external diameter. The forty-eighth aspect can be combined with any one of the first to forty-seventh aspects.
With the bicycle drive train assembly according to the forty-eighth aspect, it is possible to provide the bicycle drive train assembly having a wide gear range on a low gear side with enabling a high braking performance.
In accordance with a forty-ninth aspect of the present invention, the bicycle drive train assembly according to the forty-eighth aspect is configured so that the sprocket support structure includes a first externally-threaded portion configured to threadedly engage with a first internally-threaded portion of a first lock member. The first externally-threaded portion is disposed axially outwardly from the first torque-transmitting profile in the axial direction.
With the bicycle drive train assembly according to the forty-ninth aspect, it is possible to provide a bicycle hub assembly with a sprocket support structure which is lightweight and to mount the bicycle sprocket assembly having a wider gear range to the bicycle hub assembly.
In accordance with a fiftieth aspect of the present invention, the bicycle drive train assembly according to the forty-eighth or forty-ninth aspect is configured so that the bicycle hub assembly comprises the first lock member configured to prevent an axial movement of the bicycle sprocket assembly relative to the sprocket support structure in a state where the first lock member is attached to the sprocket support structure.
With the bicycle drive train assembly according to the fiftieth aspect, it is possible to firmly secure the bicycle sprocket assembly to the bicycle hub assembly in the axial direction with the first lock member.
In accordance with a fifty-first aspect of the present invention, the bicycle drive train assembly according to any one of the forty-eighth to fiftieth aspects is configured so that the bicycle hub assembly comprises a second lock member configured to prevent an axial movement of the brake rotor relative to the brake-rotor support structure in a state where the second lock member is attached to the brake-rotor support structure.
With the bicycle drive train assembly according to the fifty-first aspect, it is possible to firmly secure the brake rotor to the bicycle hub assembly in the axial direction with the second lock member.
In accordance with a fifty-second aspect of the present invention, the bicycle drive train assembly according to the fifty-first aspect is configured so that the brake-rotor support structure includes a second internally-threaded portion provided on the radially internal surface. The second lock member includes a second externally-threaded portion configured to threadedly engage with the second internally-threaded portion of the sprocket support structure.
With the bicycle drive train assembly according to the fifty-second aspect, the arrangement of the second internally-threaded portion and the second externally-threaded portion reduces an axial length of the brake-rotor support structure. This makes the bicycle hub assembly compact.
In accordance with a fifty-third aspect of the present invention, the bicycle drive train assembly according to any one of the forty-eighth to fifty-second aspects is configured so that the first torque-transmitting profile includes a first splined portion configured to engage with a sprocket splined portion of the bicycle sprocket assembly.
With the bicycle drive train assembly according to the fifty-third aspect, the first splined portion allows the bicycle hub assembly to transmit a higher torque between the bicycle hub assembly and the bicycle sprocket assembly.
In accordance with a fifty-fourth aspect of the present invention, the bicycle drive train assembly according to any one of the forty-eighth to fifty-third aspects is configured so that the second torque-transmitting profile includes a second splined portion configured to engage with a rotor splined portion of the brake rotor.
With the bicycle drive train assembly according to the fifty-fourth aspect, the second splined portion allows the bicycle hub assembly to transmit a higher torque between the bicycle hub assembly and the brake rotor.
In accordance with a fifty-fifth aspect of the present invention, the bicycle drive train assembly according to any one of the forty-eighth to fifty-fourth aspects is configured so that the sprocket support structure is closer to the first body end than the brake-rotor support structure in the axial direction.
With the bicycle drive train assembly according to the fifty-fifth aspect, it is possible to provide the bicycle drive train assembly having a wider gear range on a top gear side with enabling a high braking performance.
In accordance with a fifty-sixth aspect of the present invention, a bicycle hub assembly comprises a hub axle, a hub body, and a sprocket support structure. The hub body is rotatably supported on the hub axle about a rotational center axis of the bicycle hub assembly. The hub body has a first body end and a second body end opposite to the first body end in an axial direction with respect to the rotational center axis. The hub body includes a first spoke-mounting portion, a second spoke-mounting portion, and a first axial distance. The first spoke-mounting portion has a first axially outermost part. The second spoke-mounting portion has a second axially outermost part. The first axial distance is defined between the first axially outermost part of the first spoke-mounting portion and the second axially outermost part of the second spoke-mounting portion in the axial direction. The first axial distance is equal to or larger than 55 mm. The sprocket support structure is rotatably mounted on the hub axle about the rotational center axis. The sprocket support structure includes a first torque-transmitting profile and a first externally-threaded portion. The first torque-transmitting profile is configured to transmit a rotational force between the sprocket support structure and a bicycle sprocket assembly. The first externally-threaded portion is configured to threadedly engage with a first internally-threaded portion of a first lock member. The first torque-transmitting profile is closer to the first body end than the first externally-threaded portion in the axial direction. The fifty-sixth aspect can be combined with any one of the first to fifty-fifth aspects.
With the bicycle hub assembly according to the fifty-sixth aspect, the first axial length improves strength of a wheel including the bicycle hub assembly. Furthermore, the sprocket support structure allows the bicycle sprocket assembly having a lighter weight.
In accordance with a fifty-seventh aspect of the present invention, the bicycle hub assembly according to the fifty-sixth aspect is configured so that the first axial distance is equal to or larger than 60 mm.
With the bicycle hub assembly according to the fifty-seventh aspect, the first axial length further improves strength of a wheel including the bicycle hub assembly.
In accordance with a fifty-eighth aspect of the present invention, the bicycle hub assembly according to the fifty-sixth aspect is configured so that the first axial distance is equal to or larger than 65 mm.
With the bicycle hub assembly according to the fifty-eighth aspect, the first axial length further improves strength of a wheel including the bicycle hub assembly.
In accordance with a fifty-ninth aspect of the present invention, the bicycle hub assembly according to any one of the fifty-sixth to fifty-eighth aspects is configured so that the hub axle includes a first axial frame abutment surface, a second axial frame abutment surface, and a second axial distance. The first axial frame abutment surface is configured to abut against a first part of a bicycle frame in the axial direction in a state where the bicycle hub assembly is mounted to the bicycle frame. The second axial frame abutment surface is configured to abut against a second part of the bicycle frame in the axial direction in the state where the bicycle hub assembly is mounted to the bicycle frame. The second axial distance is defined between the first axial frame abutment surface and the second axial frame abutment surface in the axial direction. The second axial distance is equal to or larger than 140 mm.
With the bicycle hub assembly according to the fifty-ninth aspect, the second axial length makes the bicycle hub assembly attachable to a variety type of bicycle frame with obtaining the effect of the fifty-sixth aspect.
In accordance with a sixtieth aspect of the present invention, the bicycle hub assembly according to any one of the fifty-sixth to fifty-eighth aspects is configured so that the hub axle includes a first axial frame abutment surface, a second axial frame abutment surface, and a second axial distance. The first axial frame abutment surface is configured to abut against a first part of a bicycle frame in the axial direction in a state where the bicycle hub assembly is mounted to the bicycle frame. The second axial frame abutment surface is configured to abut against a second part of the bicycle frame in the axial direction in the state where the bicycle hub assembly is mounted to the bicycle frame. The second axial distance is defined between the first axial frame abutment surface and the second axial frame abutment surface in the axial direction, the second axial distance being equal to or larger than 145 mm.
With the bicycle hub assembly according to the sixtieth aspect, the second axial length improves a degree of freedom of choosing the first axial length and/or a wider range of the bicycle sprocket assembly, and enables the first axial length to lengthen so that more sprockets can be mounted to the bicycle hub assembly.
In accordance with a sixty-first aspect of the present invention, the bicycle hub assembly according to any one of the fifty-sixth to fifty-eighth aspects is configured so that the hub axle includes a first axial frame abutment surface, a second axial frame abutment surface, and a second axial distance. The first axial frame abutment surface is configured to abut against a first part of a bicycle frame in the axial direction in a state where the bicycle hub assembly is mounted to the bicycle frame. The second axial frame abutment surface is configured to abut against a second part of the bicycle frame in the axial direction in the state where the bicycle hub assembly is mounted to the bicycle frame. The second axial distance is defined between the first axial frame abutment surface and the second axial frame abutment surface in the axial direction. The second axial distance is equal to or larger than 147 mm.
With the bicycle hub assembly according to the sixty-first aspect, the second axial length further improves a degree of freedom of choosing the first axial length and/or a wider range of the bicycle sprocket assembly, and enables the first axial length to lengthen so that more sprockets can be mounted to the bicycle hub assembly.
In accordance with a sixty-second aspect of the present invention, the bicycle hub assembly according to any one of the fifty-sixth to sixty-first aspects further comprises the first lock member configured to prevent an axial movement of the bicycle sprocket assembly relative to the sprocket support structure in a state where the first lock member is attached to the sprocket support structure.
With the bicycle hub assembly according to the sixty-second aspect, it is possible to firmly secure the bicycle sprocket assembly to the bicycle hub assembly in the axial direction with the first lock member.
In accordance with a sixty-third aspect of the present invention, the bicycle hub assembly according to any one of the fifty-sixth to sixty-second aspects is configured so that the first torque-transmitting profile includes a first splined portion configured to engage with a sprocket splined portion of the bicycle sprocket assembly.
With the bicycle hub assembly according to the sixty-third aspect, the first splined portion allows the bicycle hub assembly to transmit a higher torque between the bicycle hub assembly and the bicycle sprocket assembly.
A more complete appreciation of the invention and many of the attendant advantages thereof will be readily obtained as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings.
The embodiment(s) will now be described with reference to the accompanying drawings, wherein like reference numerals designate corresponding or identical elements throughout the various drawings.
Referring initially to
In the present application, the following directional terms “front,” “rear,” “forward,” “rearward,” “left,” “right,” “transverse,” “upward” and “downward” as well as any other similar directional terms refer to those directions which are determined on the basis of a user (e.g., a rider) who sits on a saddle (not shown) of a bicycle (not shown) with facing a handlebar. Accordingly, these terms, as utilized to describe the bicycle drive train assembly 10, should be interpreted relative to the bicycle equipped with the bicycle drive train assembly 10 as used in an upright riding position on a horizontal surface.
As seen in
The smallest sprocket SP1 has a smallest-sprocket external diameter ED1. The largest sprocket SP12 has a largest-sprocket external diameter ED12. The largest-sprocket external diameter ED12 is larger than the smallest-sprocket external diameter ED1. The brake rotor 16 has a rotor external diameter ED20. The rotor external diameter ED20 is smaller than the largest-sprocket external diameter ED12. The rotor external diameter ED20 is larger than the smallest-sprocket external diameter ED1. However, the rotor external diameter ED20 can be equal to or larger than the largest-sprocket external diameter ED12. The rotor external diameter ED20 can be equal to or smaller than the smallest-sprocket external diameter ED1.
As seen in
The sprocket support structure 34 is configured to support the bicycle sprocket assembly 12. The sprocket support structure 34 is closer to the first body end 32A than the brake-rotor support structure 36 in the axial direction D1. The sprocket support structure 34 is rotatably mounted on the hub axle 30 about the rotational center axis A1. In this embodiment, as seen in
As seen in
As seen in
As seen in
As seen in
The bicycle hub assembly 14 further comprises a first lock member 50. The first externally-threaded portion 42 is configured to threadedly engage with a first internally-threaded portion 50A of the first lock member 50. The first lock member 50 is configured to prevent an axial movement of the bicycle sprocket assembly 12 relative to the sprocket support structure 34 in a state where the first lock member 50 is attached to the sprocket support structure 34.
The largest sprocket SP12 is provided between the first lock member 50 and the sprocket stopper 47 in the axial direction D1 in the state where the first lock member 50 is attached to the sprocket support structure 34. The first lock member 50 is rotatably coupled to the sprockets SP1 to SP12. The first lock member 50 is coupled to the sprockets SP1 to SP12 to move integrally with the sprockets SP1 to SP12 in the axial direction D1. In this embodiment, the bicycle hub assembly 14 comprises the first lock member 50. However, the bicycle sprocket assembly 12 can include the first lock member 50. In this embodiment, the sprockets SP1 to SP11 are integrally provided with each other as a one-piece unitary member, and the sprocket SP12 is a separate member from the sprockets SP1 to SP11. However, the sprocket SP12 can be integrally provided with the sprockets SP1 to SP11 as a one-piece unitary member. Namely, the bicycle sprocket assembly 12 can be a one-piece unitary member. Furthermore, at least one of the sprockets SP1 to SP11 can be a separate member from another of the sprockets SP1 to SP11.
As seen in
As seen in
As seen in
As seen in
As seen in
The first torque-transmitting profile 40 has a first external diameter ED31. The second torque-transmitting profile 56 has a second external diameter ED32. The second external diameter ED32 is larger than the first external diameter ED31. The first externally-threaded portion 42 has a third external diameter ED33. The third external diameter ED33 is smaller than the first external diameter ED31. The third external diameter ED33 is smaller than the second external diameter ED32. The second external diameter ED32 is larger than the smallest-sprocket external diameter ED1. However, the second external diameter ED32 can be equal to or smaller than the first external diameter ED31. The third external diameter ED33 can be equal to or larger than the second external diameter ED32.
In this embodiment, the first external diameter ED31 ranges from 34 mm to 35 mm. The second external diameter ED32 ranges from 35 mm to 36 mm. The third external diameter ED33 ranges from 31 mm to 33 mm. However, each of the ranges of the first external diameter ED31, the second external diameter ED32, and the third external diameter ED33 is not limited to this embodiment.
The first torque-transmitting profile 40 has a first axial length AL11. The second torque-transmitting profile 56 has a second axial length AL12. The second axial length AL12 is larger than the first axial length AL11. The first externally-threaded portion 42 has a third axial length AL13. The third axial length AL13 is larger than the first axial length AL11. The third axial length AL13 is smaller than the second axial length AL12. However, the second axial length AL12 can be equal to or smaller than the first axial length AL11. The third axial length AL13 can be equal to or smaller than the first axial length AL11. The third axial length AL13 can be equal to or larger than the second axial length AL12.
In this embodiment, the ratio of the first axial length AL11 to the second axial length AL12 ranges from 1 to 2. The first axial length AL11 ranges from 5 mm to 6 mm. The second axial length AL12 ranges from 10 mm to 11 mm. The third axial length AL13 ranges from 5.5 mm to 6.5 mm. However, each of the ranges of the first axial length AL11, the second axial length AL12, and the third axial length AL13 is not limited to this embodiment.
As seen in
The bicycle sprocket assembly 12 has an entire gear range equal to or higher than 350%. The entire gear range of the bicycle sprocket assembly 12 is equal to or higher than 400%. The entire gear range of the bicycle sprocket assembly 12 is defined as a ratio of the second total tooth number TN12 of the largest sprocket SP12 to the first total tooth number TN1 of the smallest sprocket SP1. In this embodiment, the entire gear range of the bicycle sprocket assembly 12 is equal to 480%. However, the entire gear range can be lower than 350%.
The bicycle sprocket assembly 12 has an average percentage gear stage step ranging from 15% to 30%. The average percentage gear stage step of the bicycle sprocket assembly 12 ranges from 20% to 30%. The bicycle sprocket assembly 12 has individual percentage gear stage steps ranging from 15% to 35%. The average percentage gear stage step of the bicycle sprocket assembly 12 is defined as an average of individual percentage gear stage steps of the sprockets SP1 to SP12. The individual percentage gear stage step is defined as a ratio of difference between a total number of teeth of a larger sprocket and a total number of teeth of a smaller sprocket axially directly adjacent to the larger sprocket to the total number of teeth of the smaller sprocket. For example, the individual percentage gear stage step between the sprockets SP12 and SP11 is defined as a ratio of difference (6) between the total tooth number (48) of the sprocket SP12 and the total tooth number (42) of the sprocket SP11 to the total tooth number (42) of the sprocket SP11. The average percentage gear stage step can be lower than 15% and can be higher than 30%. The individual percentage gear stage steps can be lower than 15% and can be higher than 35%.
As seen in
As seen in
The first spoke-mounting portion 32C is provided at the first body end 32A. The second spoke-mounting portion 32D is provided at the second body end 32B. The second spoke-mounting portion 32D is spaced apart from the first spoke-mounting portion 32C in the axial direction D1. The first spoke-mounting portion 32C is provided between the sprocket support structure 34 and the second spoke-mounting portion 32D in the axial direction D1. The second spoke-mounting portion 32D is provided between the first spoke-mounting portion 32C and the brake-rotor support structure 36 in the axial direction D1.
The first spoke-mounting portion 32C has a first axially outermost part 32C1. The second spoke-mounting portion 32D has a second axially outermost part 32D1. The first axially outermost part 32C1 includes a surface facing toward the first frame BF1 in the axial direction D1 in a state where the bicycle hub assembly 14 is mounted to the bicycle frame BF. The second axially outermost part 32D1 includes a surface facing toward the second frame BF2 in the axial direction D1 in a state where the bicycle hub assembly 14 is mounted to the bicycle frame BF.
The hub body 32 includes a first axial distance AL1. The first axial distance AL1 is defined between the first axially outermost part 32C1 of the first spoke-mounting portion 32C and the second axially outermost part 32D1 of the second spoke-mounting portion 32D in the axial direction D1 with respect to the rotational center axis A1. The first axial distance AL1 can be equal to or larger than 55 mm. The first axial distance AL1 can be equal to or smaller than 80 mm. The first axial distance AL1 can be equal to or larger than 60 mm. The first axial distance AL1 can be equal to or larger than 65 mm. The first axial distance AL1 can be 67 mm. However, the first axial distance AL1 is not limited to this embodiment and the above ranges. Examples of the first axial distance AL1 include 55.7 mm, 62.3 mm, and 67 mm.
As seen in
The hub axle 30 includes a second axial distance AL2. The second axial distance AL2 is defined between the first axial frame abutment surface 30B1 and the second axial frame abutment surface 30C1 in the axial direction D1. The second axial distance AL2 can be equal to or larger than 140 mm. The second axial distance AL2 can be equal to or smaller than 160 mm. The second axial distance AL2 can be equal to or larger than 145 mm. The second axial distance AL2 can be equal to or larger than 147 mm. The second axial distance AL2 can be 148 mm. However, the second axial distance AL2 is not limited to this embodiment and the above ranges. Examples of the second axial distance AL2 include 142 mm, 148 mm, and 157 mm.
A ratio of the first axial distance AL1 to the second axial distance AL2 can be equal to or larger than 0.3. The ratio of the first axial distance AL1 to the second axial distance AL2 can be equal to or larger than 0.4. The ratio of the first axial distance AL1 to the second axial distance AL2 can be equal to or smaller than 0.5. For example, the ratio of the first axial distance AL1 (67 mm) to the second axial distance AL2 (148 mm) is approximately 0.45. However, the ratio of first axial distance AL1 to the second axial distance AL2 is not limited to this embodiment and the above ranges. Examples of the ratio of the first axial distance AL1 to the second axial distance AL2 include approximately 0.42 (AL1 is 62.3 mm and AL2 is 148 mm), or include approximately 0.39 (AL1 is 55.7 mm and AL2 is 142 mm).
As seen in
As seen in
The term “comprising” and its derivatives, as used herein, are intended to be open ended terms that specify the presence of the stated features, elements, components, groups, integers, and/or steps, but do not exclude the presence of other unstated features, elements, components, groups, integers and/or steps. This concept also applies to words of similar meaning, for example, the terms “have,” “include” and their derivatives.
The terms “member,” “section,” “portion,” “part,” “element,” “body” and “structure” when used in the singular can have the dual meaning of a single part or a plurality of parts.
The ordinal numbers such as “first” and “second” recited in the present application are merely identifiers, but do not have any other meanings, for example, a particular order and the like. Moreover, for example, the term “first element” itself does not imply an existence of “second element,” and the term “second element” itself does not imply an existence of “first element.”
The term “pair of,” as used herein, can encompass the configuration in which the pair of elements have different shapes or structures from each other in addition to the configuration in which the pair of elements have the same shapes or structures as each other.
The terms “a” (or “an”), “one or more” and “at least one” can be used interchangeably herein.
Finally, terms of degree such as “substantially,” “about” and “approximately” as used herein mean a reasonable amount of deviation of the modified term such that the end result is not significantly changed. All of numerical values described in the present application can be construed as including the terms such as “substantially,” “about” and “approximately.”
Obviously, numerous modifications and variations of the present invention are possible in light of the above teachings. It is therefore to be understood that within the scope of the appended claims, the invention may be practiced otherwise than as specifically described herein.
The present application is a continuation-in-part application of the U.S. patent application Ser. No. 15/602,011 filed May 22, 2017. The contents of this application are incorporated herein by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
5480357 | Liang | Jan 1996 | A |
6371252 | Kanehisa | Apr 2002 | B1 |
9855794 | Nakajima | Jan 2018 | B1 |
20050139444 | Kanehisa | Jun 2005 | A1 |
20050230199 | Takizawa | Oct 2005 | A1 |
20070194620 | Kanehisa | Aug 2007 | A1 |
20070240945 | Hirotomi | Oct 2007 | A1 |
20080004143 | Kanehisa | Jan 2008 | A1 |
20080157585 | Meggiolan | Jul 2008 | A1 |
20090008987 | Hoogendoorn | Jan 2009 | A1 |
20130017914 | Braedt | Jan 2013 | A1 |
20160167737 | Tokuyama | Jun 2016 | A1 |
20160223033 | Fujita et al. | Aug 2016 | A1 |
20160362159 | Braedt | Dec 2016 | A1 |
20170057598 | Thrash et al. | Mar 2017 | A1 |
Number | Date | Country |
---|---|---|
1403339 | Mar 2003 | CN |
105835619 | Aug 2016 | CN |
Entry |
---|
Zee Rear Freehub for Disc Brake, Model No. FH-M645, https://web.archive.org/web/20150905181629/http://bike.shimano.com/content/sac-bike/en/home/mtb1/wheels---hubs/rear-hubs/fh-m645.html, Sep. 5, 2015. (Year: 2015). |
Number | Date | Country | |
---|---|---|---|
20180333986 A1 | Nov 2018 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15602011 | May 2017 | US |
Child | 15686173 | US |